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Use of artificial intelligence 
to recover mandibular morphology 
after disease
Ye Liang1,2, JingJing Huan3, Jia‑Da Li2*, CanHua Jiang1, ChangYun Fang1 & YongGang Liu3

Mandibular tumors and radical oral cancer surgery often cause bone dysmorphia and defects. 
Most patients present with noticeable mandibular deformations, and doctors often have difficulty 
determining their exact mandibular morphology. In this study, a deep convolutional generative 
adversarial network (DCGAN) called CTGAN is proposed to complete 3D mandibular cone beam 
computed tomography data from CT data. After extensive training, CTGAN was tested on 6 
mandibular tumor cases, resulting in 3D virtual mandibular completion. We found that CTGAN can 
generate mandibles with different levels and rich morphology, including positional and angular 
changes and local patterns. The completion results are shown as tomographic images combining 
generated and natural areas. The 3D generated mandibles have the anatomical morphology of the real 
mandibles and transition smoothly to the portions without disease, showing that CTGAN constructs 
mandibles with the expected patient characteristics and is suitable for mandibular morphological 
completion. The presented modeling principles can be applied to other areas for 3D morphological 
completion from medical images.
Clinical trial registration: This study is not a clinical trial. Patient data were only used for testing in a 
virtual environment. The use of the digital data used in this study was ethically approved.

Some diseases and procedures, such as mandibular trauma and radical surgery for oral cancer, often cause bone 
dysmorphia and defects1–4. In such cases, the exact morphology of the normal mandible before disease is often 
difficult to obtain because the mandible is already deformed when the doctor first examines it. Additionally, the 
human mandible has strong specificity, and its morphology varies between individuals5–9, making it impossible to 
use a universal mandibular model as a reference for surgery10 and increasing the uncertainty of the surgical effect.

The digital surgical process often requires an expected mandibular reference model11–14. In the existing digital 
surgery process, the common method is to mirror repair or manually look for other similar mandibles for local 
data fusion and smoothing processing, as shown in Fig. 1a. A more accurate expected reference model is dif-
ficult to achieve, time consuming and difficult to promote in clinical practice. However, rapid routing processing 
often has poor accuracy. For cumulative bilateral lesions, massive lesions, obvious displacement or lesions cross 
the middle line, there is still no effective method to predict the expected reference model in clinical practice, as 
shown in Fig. 1b.

The irreplaceable nature of Artificial Intelligence (AI) will have important future implications15–19. In the 
medical field, AI technology has also been essential in disease diagnosis and classification, disease image recog-
nition and other fields. Generative adversarial networks (GANs), which endow AI with the capacity to create20, 
were proposed in 201421 and represent the most recent technological breakthrough in the AI field. GANs contain 
a generative neural network for generating data and a discriminating neural network for determining which 
data are true. Through unsupervised learning, the two neural networks compete to improve the reliability of 
the generated results.

This study applies a GAN in the mandible medical morphology field. We hope to solve the expected refer-
ence model of the mandible, which conforms to both the morphology of the natural mandible and the healthy 
portion of the patient’s mandibular morphology.
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The technique that we applied relies on the deep convolutional generative adversarial network (DCGAN) 
proposed by Radford et al.22. This model introduces the GAN algorithm to the random generation of images. 
A DCGAN learns the morphological features in an image and then uses those features to create entirely new 
photorealistic images23,24. This study used a DCGAN to perform machine learning on CT images of normal 
mandibles to generate images that conform to the anatomical features of the mandible.

Although a DCGAN can creatively generate reasonable images that are consistent with the target theme, the 
resulting images are completely random. With regard to our goal, the generated images conform to only the 
anatomical mandibular morphology and do not match the patient’s individual morphology. Yeh et al.25 defined 
context loss and perception loss based on the DCGAN algorithm and proposed an image semantic repair method 
for plane images. By iterating randomly generated images, the algorithm continuously reduces the semantic and 
perceptual losses and finally generates reasonable images that are as similar as possible to the original image in 
the missing area26.

In this study, we aimed to apply a DCGAN to CT data, creating CTGAN. We trained the algorithm extensively 
and tested it in the virtual environment. In this environment, we tested 6 mandibular tumor cases, resulting in 
3D virtual mandibular completion.

Results
Training results of the mandibular discriminator and generator.  The goals of the training were 
to obtain a discriminator that could tell whether the drawing looked similar to a real mandible and to obtain a 
generator that could draw different tomographic images of the mandible. The discriminator and generator use a 
randomly initialized neural network. Therefore, their losses change during the training process. A discriminator 
loss value close to 0 indicates that the discriminator can distinguish the real image from an image generated by 
the generator. A generator loss value close to 0 means that the image generated by the generator is more likely to 
be treated as a real image by the discriminator, indicating a high degree of authenticity of the generated image. 
In Fig. 2, we recorded the loss changes of the discriminator and generator during the 45-h training period (a–b) 

Figure 1.   Existing methods and limitations of mandibular reconstruction. In the existing digital surgery 
process, the common method is to mirror repair or manually look for other similar mandibles for local 
data fusion and smoothing processing. (a) Shows the mirror process of manual repair in traditional surgical 
simulation. (a1) original mandible; (a2) simulation of the removal of all abnormal parts; (a3) mirror, crop and 
splice of the normal parts to achieve the expected reference model; however, the accuracy is often not good). (b) 
Shows some cases of mandibular defects that are difficult to repair.
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and clearly observed that the two neural networks improved via the adversarial process (d–e). Figure 2c shows 
the images generated by the generator with the same input parameters at different training times. More training 
details of the continuous process are provided in the article video (https​://CTGAN​s.kuye.cn/).

To determine the performance of the mandibular generator and analyze its robustness, Fig. 3 shows the 
tomographic image changes in the mandible obtained by regularly adjusting some parameters. We observed the 
image rotation angle change from 7.0° to − 2° and the image position change from 0 to 9.6 mm. The image local 
pattern changes with different combinations, and the image layer is also changed. All the changes are continuous. 

Figure 2.   Mandibular tomography generated with different training times. The training time starts with 
the first batch of mandibular tomography images entering the learning stage. Since the discriminator neural 
network and the generator neural network are constantly changing during training, the generated image will 
change. The goal of the training is to obtain a discriminator that can tell whether a drawing looks similar to the 
mandible and a generator that can draw different tomographic images of the mandible. (a) Shows the loss value 
and smooth loss of the discriminator at different training times. A discriminator loss value closer to 0 indicates 
that the discriminator can distinguish the real image and the image generated by the generator. Since the change 
in loss value is drastic, we draw the smooth loss with a smoothness of 0.85 to facilitate the analysis. (b) Shows 
the loss value and smooth loss of the generator at different training times. A generator loss value closer to 0 
means that the image generated by the generator is more likely to be treated as a real image by the discriminator, 
indicating a high degree of authenticity of the generated image. (c) Shows the images generated by the generator 
with the same input parameters at different training times. (d,e) Show the discriminator and generator 
adversarial training process. In process (e1), the loss of the generator decreases, indicating that the generator 
is making progress, which causes the loss of the discriminator to increase in process (d1); in other words, 
its capacity to judge truth and falsehood decreases. In process (d2), the loss of the discriminator decreases, 
indicating that the discriminator has improved and increasing the loss of the generator. Thus, the authenticity of 
the images generated by generator needs further improvement. More training details of the continuous process 
are provided in the article video (https​://CTGAN​s.kuye.cn/).

https://CTGANs.kuye.cn/
https://CTGANs.kuye.cn/
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The input parameter of the generator is composed of 100 separate floating-point numbers, and the number of 
combinations is essentially infinite. With our model, possible mandibular tomographic images can be generated, 
exceeding the total number of mandibular CT images resulting from all humans on the earth being scanned.

Since the completion model starts with random parameters, the process of obtaining the morphology of a 
given mandible finds a local optimal solution. In the initial results, although many of the completion results 
were good or perfect, as shown in Fig. 4a, some were failures, as shown in Fig. 4b. As the process is affected by 
random factors, the incidence rate of failure is between 3 and 57%.

To solve this problem, we added the multioutcome option network (MOON) model for CTGAN. There 
are many tomographic images in 3D CT data. Therefore, not all images are completed perfectly, as shown in 
Fig. 4c;c1 and c2 show some examples of failed 2D completions. In MOON S1, the failed results were excluded 
by the loss. However, some problems were observed in Fig. 4c3. Although the completion has a low loss, in the 
lower part of mandible, there should not be a tooth; therefore, this layer is an error. To obtain the correct layer 
and generate mandibular tomography with respect to the spatial correlation of the CT 3D data, we use MOON 
S2. Figure 4c4 shows the final completed image filtered by the MOON.

3D morphology of the completed mandible.  Compared with 2D completion, the most important 
change in CTGAN is the completion of 3D spatial data. The results of the diseased mandible reconstruction 
are displayed in 3D. Figure 5 shows the 3D completion process for 6 cases. One case with a large range defect of 
the mandible is presented in detail; however, the completed mandible is shown for all cases. Furthermore, we 
provide additional 3D completion details in the video of this article (https​://ctgan​s.kuye.cn/).

Discussion
Although current medical science cannot provide a mandibular prosthesis for a patient directly from a computer 
design, the design is significant because it provides a reference for the doctor. In the functional reconstruction of 
the mandible using the fibula or ilium, a reference from mandible completion can help ensure a more accurate 
splicing position and angle.

Compared with traditional methods such as mirror inversion, the CTGAN model reduces the manual pro-
cess and improves the mandibular completion efficiency. Compared with traditional methods such as mirror 
inversion, the CTGAN model helps the manual process and the mandibular completion efficiency. This avoids 
technical differences in the application of traditional methods in different medical institutions. The CTGAN 

Figure 3.   Effect of changing the input parameters on the generated results. The generator’s input parameter is 
100 float numbers, and the value range of each number is − 1 to + 1. We show the results of a sample of random 
parameters and parameters adjusted using a single variable method. Some changes can be observed in changing 
parameters of a particular serial number. We list four changes, namely, (a) image rotation angle changes 
(reference, mandibular midline), (b) image local pattern changes, (c) image position changes (reference, front of 
mandible), and (d) image layer changes. In (a–c), the changes in the mandibular tomography are measured and 
marked.

https://ctgans.kuye.cn/
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model is simple and effective when the lesion crosses the mandibular midline. For cases with a wide range of 
lesions, the CTGAN model completed very little normal morphology information.

In the field of biomaterials research, personalized bone guidance materials are approaching maturity4,27; 
however, obtaining a patient’s personalized morphology is problematic. We believe that the CTGAN model can 
be used to obtain the natural morphology of a patient’s mandible. In this study, E-3D software (Version 11.0, 
licensed to Central South University) for 3D visualization was shown to quickly generate STL files for 3D printing.

According to Fig. 2, the generator was able to capture the initial features of the mandible and create low-
quality mandibular images after four hours of training. However, creating high-quality images was more dif-
ficult; quality improvement was very slow over the next 4–24 h. Finally, after 45 h of training, we obtained the 
generator model.

Figure 4.   Mandibular tomography completion results. The 2D results of the mandibular tomography 
completion were extracted and are presented as the perfect result (a) and the failed result (b). Each set of images 
contains the precompletion image, the image removal of the mask area, and the completed image. In (a1), we 
remove the lesion area, and we obtain the completion in (a2). (a2) shows that the completion can combine the 
generated area with the natural area. Therefore, although many of the completion results were good or perfect, 
some obviously failed, such as (b1,b2). (c) Shows the completion of the 3D image sequence for images from a 
real case. Due to the excessive number of images, only one of every 28 images in the lesion area is displayed. 
First, we use 2D completion initialized with a random input. Although only a few images fail, it is difficult to 
obtain all perfect results due to the many layers of 3D images. (c1) Shows a type of failure that is to complete the 
pattern with a malposition of the natural bone. (c2) Shows another type of failure in which part of the jawbone 
is deficient due to completion. To discard the poor results generated in the completion process, we establish the 
MOON model. In the first step of the MOON, we generate multiple completion results and remove the failed 
results using the image loss value. However, we still find some mistakes, such as (c3). Although the image looks 
similar to mandibular tomography, it should not have a tooth image in the lower part of the mandible, i.e., the 
layer is wrong. In the second step of the MOON, we calculate the semantic loss of each candidate image of the 
current tomography and its adjacent layer and obtain the final completed image.
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Generator robustness is mainly determined by the quality and diversity of the generated patterns. All the 
patterns we observed were high quality. In Fig. 3, we found that parameter changes could not only continuously 
adjust the generated mandible layer but also affect the image rotation angle and displacement. This finding sug-
gests that during the learning process, the machine automatically correlates two adjacent planes of the mandibular 
tomography in different orientations or positions and “understands” the reasonableness of the presence in the 
picture of these types of position and angle changes. Since the argument is a floating-point number, the number 
of patterns that can be generated are theoretically infinite. In addition, we observed that some parameters deter-
mine the changes in local patterns in the picture, such as the same layer of the mandibular tomography, which 
can be matched with different spine morphologies. This suggests that the machine creates images by splitting 
the CT scan into subpatterns and “understanding” the reasonableness of subpattern matching, which prompts 
the generator to create more patterns.

Because of the robust generator, we obtained some completion results that could combine the generated area 
with the natural area. It is difficult to recognize the filling position with professional doctors (Fig. 4a). However, 
it is also possible to obtain failed completion results that are too poor to be accepted (Fig. 4b). To discard the 
poor results generated in the completion process, we established the MOON model in CTGAN. The MOON 
can remove failed results from the mandibular completion process and look for context loss from the adjacent 
layers to seek spatial data continuity. In Fig. 4c, we verified that the MOON was actually effective in removing 
the failed results.

Drawing a 3D model of the completed mandible is an exciting process. In Fig. 5a, the original CBCT mandi-
ble, the precompletion with reduced resolution, the area to be filled with the mask and the final completion result 
are shown in accordance with the completion process detailed in case 4. We use case 4 to present details because 
of the large mandibular defect across the midline, which leaves little normal information in the tomography, mak-
ing it difficult to repair using conventional methods. After completion, we obtained better results than expected. 
Although the calculation accuracy and efficiency have limitations, but the results showed that not only was the 

Figure 5.   3D mandibular completion in 6 clinical cases. (a) Shows case 4, which includes a large range of 
mandibular defects that are difficult to repair using conventional methods. We present the case in detail from 
six views. The original mandibular morphology from CBCT, the precompletion with reduced resolution, the 
area to be filled with the 3D mask and the final completion results are shown. (b) Shows five other cases. For 
these cases, the completion process was the same as that in case 4. Therefore, only the two views of the original 
mandible and the final completion are shown.
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mandibular morphology natural but the transition to the retained portion was also smooth. The 3D completion 
results of other cases in this study also essentially restored the mandibular morphology, which is shown in Fig. 5b.

Conclusion
Therefore, it is reasonable to believe that after further optimization, CTGAN will be practical. This model will 
greatly shorten the time and technical difficulty involved in mandibular completion and even achieve better 
results than traditional repair.

More importantly, the CTGAN model proposed in this study has dual naturalization and individualization 
properties. The success of this technique in 3D mandible generation means that this technique can be used not 
only for mandibles but also for applications in other areas of the medical field that involve prosthesis repair.

Methods
Dependent work of CTGAN.  The DCGAN algorithm and image semantic repair theory based on per-
ception and context loss are mature. A large number of studies have verified and studied the DCGAN25,28–30. 
Establishing the discriminator and generator in this paper relies on the previous theories of Radford et al.22 and 
Yeh et al.25,26, and the main forms of the two networks are the same as those described in their papers and are 
described in detail in the Supplementary File. Both the generator and the discriminator are trained using the 
backpropagation algorithm. The generator finally implements a random generation of the pattern. The loss value 
generated by the discriminator is used to judge the accuracy of the generated pattern.

Overview of CTGAN.  Since CT data consist of a multilayer image with spatial information, the areas to be 
completed in each layer are different. Therefore, we optimize the original model and add the definition method 
of spatial information to be completed. The masking layer is defined three-dimensionally, as shown in the sec-
tion on establishing mandible test data.

Traditional image completion focuses on only the surrounding information of 2D space, but the context of CT 
data completion also includes the 3D environment between different layers. If the original algorithm is directly 
extended to three dimensions, it will be difficult to calculate due to the large quantity of data calculation, or the 
model cannot be used due to low data precision.

We made a filter using enumeration and dynamic programming algorithms. After the completed results were 
obtained, they were selected according to the adjacent layer images. The results were better than those without 
improvement in the preliminary experiment. We describe the results in the optimization of mandible comple-
tion results section.

Since this method is optimized for a DCGAN using CT data, it is called CTGAN.
In this study, CTGAN was able to complete the 3D lesion in the mandible, and we drew a technical roadmap 

to introduce the realization process of the technology (Fig. 6). 

Establishment of a mandibular training dataset.  After preliminary experiments to quickly calculate 
the neural network convergence, 14,278 images of mandibular tomography were used for neural network train-
ing. Among the images, 7392 were from males, and 6886 were from females. We built a training dataset called 
mini-DICOM.

14,278 CBCT images of normal mandibles were used for neural network training. All data were obtained by 
CBCT (KaVo Dental GmbH, Biberach, Germany, Imaging Sciences International, 17–19 system) with a slice 
interval of 0.25 mm (DFOV: 16 cm). Data were processed as follows.

Step 1: Fifty cases in the CBCT history database were selected by manual labeling. Only cases without man-
dibular disease, obvious dentition defects, dental damage and mixed dentition were selected.

Step 2: Jaw CBCT data of 50 cases were anonymized and obtained.
Step 3: The threshold range from − 1000 to 2000 was set, and the Digital Imaging and Communications in 

Medicine (DICOM) format was converted to portable network graphics (PNG). A total of 528 images per patient 
and 26,400 initial data images were obtained.

Step 4: To reduce the amount of training, this study focused on only the morphology of the mandible. After 
removing the images containing only the maxilla, 14,278 images of the focus area were retained.

Step 5: Limited by the computing platform performance, the image was scaled to 128 × 128 pixels by the same 
scale, and the corresponding pixel space size was 1.25 mm.

Step 6: The training data set was built and named “mini-DICOM”.

Establishment of a mandibular test dataset.  A case requiring mandibular completion was the test 
case for this study. Six patients with mandibular disease who were admitted to Xiangya Hospital of Central 
South University from March 2018 to February 2019 and voluntarily agreed to undergo digital technology with 
informed consent were screened. The data were anonymized before using machine learning. In all cases, the 
mandibular morphology showed obvious changes. In the anterior–posterior, medial–lateral and superior–infe-
rior directions, the maximum lesion distances in the case were 52.89 mm, 70.97 mm and 35.27 mm, respectively. 
In four cases, the lesion crossed the midline of the mandible; in 5 cases, CBCT was performed in an open posi-
tion to facilitate the separation of the mandible. More case details are shown in Table 1.

In the test case, we needed to match the mask for each layer of the images. The mask positions were completed 
with 0 and the places to be reserved with 1. The size and shape of the mask were consistent with the shape of the 
CT 3D image. The detailed 3D mask manufacturing method is as follow.
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Step 1: Use the E-3D 3D digital medical design system (jointly developed by Xiangya Hospital of Central 
South University and the Institute of Information Science and Engineering of Central South University) to 
import preprocessed image data.

Step 2: Use the designer tool to create a sphere, box, or other 3D entity.
Step 3: Adjust the position and size of the solid areas so that the solid shape completely covers the mandible 

lesion area. The resulting entity represents the solid region to be completed.
Step 4: Transform the entity into multiple mask image layers, and export the mask images to PNG format.
Step 5: Use the script to threshold the mask PNG data. Note that 0 represents the pixel to be completed and 

1 represents the pixel to be retained.
Step 6: Associate each mask with the original image.

Design and train
the generator

Using DCGANs algorithm
For mandible

Two Dimensional

Mask the region to
be completed
in mandible

Solve 2D complete graphs
By reducing context and semantic Loss algorithms

Robustness detection
of generator

Three Dimensional

Lesions of the mandible
were recorded

using a three-dimensional mask

Convert to 2D image sequences 
and mask sequences

Optimize 2D Completion
(MOON S1)

The 2D image is completed
layer by layer

Optimization completion results based on
adjacent layers

(MOON S2)

3D reconstruction
of the completed results

Figure 6.   The technical roadmap for CTGAN.

Table 1.   Basic information used in mandibular completion. a Recorded by the maximum distance of the defect 
in the corresponding direction.

ID Diagnosis

Size of defect (mm)

Defect crosses midline Shooting positionBone axisa Buccal–Linguala Superior–inferiora

1 Ameloblastoma 39.20 12.24 25.51 Yes Mouth opening

2 Ameloblastoma 37.01 12.43 27.74 Yes Mouth opening

3 Ameloblastoma 129.31 28.90 30.50 Yes Mouth opening

4 Ameloblastoma 95.20 27.91 33.24 Yes Mouth opening

5 Left lower gingival cancer 30.11 16.80 23.05 No Mouth opening

6 Right lower gingival cancer 42.57 21.08 34.38 No Mouth closing
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Training of the mandibular generator.  The generation and completion models of this study were com-
pleted on the graphics processing unit (GPU) server of the high-performance computing platform of Central 
South University.

In this study, CTGAN generators were trained to generate random mandibular images. We trained the mini-
DICOM training library with the generator for 260 epochs, which required 45 h.

To analyze the generator training quality, the results section shows that the generator used ten fixed input 
parameters, which were produced randomly to generate pictures of the mandible tomography in different train-
ing times.

In the results section, we provide the discriminator and generator loss in the training process.

Computing environment and program environment.  The GPU computing server (NF5280 M3) of 
the high-performance computing platform of Central South University was used for training. Server configura-
tion:

CPU: Intel(R) Xeon(R) CPU e5−2609 2.50 ghz x; Memory: 32 gb DDR3; GPU: NVDIA TESLA K20M; OS: 
CentOS 6.3 × 64.

The program was written in Python 3.5 and debugged under the TensorFlow-gpu 1.3.0 architecture. Training 
environment CUDA Version 8.0.61, CUDNN Version: 6.0.21.

Robust analysis of mandibular formation.  To determine whether the mandibular morphology gener-
ated by the generator is sufficiently diverse and can generate more than learned samples, we adjusted the param-
eters to assess the robustness of the generator.

Z is the generator input parameter formed by 100 independent digits from ‘− 1’ to ‘1’. A single variable method 
was used in the analysis process.

First, a base image was randomly selected to obtain its 100 parameters. Then, we proceeded in turn to change 
1 parameter and fix the remaining 99 parameters. The parameter we changed regularly increased. In the Table 2, 
we provide 100 initial random numbers for robustness analysis.

Changing one of the parameters provided a series of images. The robustness of the generator was judged by 
a sudden or gradual change in the generated images. The images also helped to infer what the generator had 
learned.

2D evaluation of mandibular completion results.  The mandibular completion model was initialized 
randomly. Therefore, although a pattern similar to the target was obtained by reducing the semantic and percep-
tual loss as much as possible, the model may still yield a perfect performance or a failed performance.

To evaluate the quality of the completion results, we took some normal images of the mandible from different 
cases. Then, we mixed them with one or more sample completed images and gave them to the radiologist for 
judgment. If the radiologist could clearly identify that the structure in a complete image did not conform to the 
imaging features of the natural mandible, it would be considered a failure to complete.

Optimization of mandibular completion results.  In the continuous 3D space, the probability of per-
fect completion of each 2D image is lower than that of single 2D completion. This makes the completion of 3D 
images full of more challenges.

To solve this problem, we set up a multioutcome option network (MOON) in the CTGAN algorithm. The 
MOON used the enumeration method to complete each mandibular tomogram 20–30 times. Failure did not 
occur every time. The MOON first filtered failed results based on the loss value and then calculated the seman-
tic loss of each candidate image of the current tomography and its adjacent layer, forming an undirected graph 
network. Finally, the MOON obtained a set of results with the minimum overall loss through dynamic program-
ming. The MOON also allows interactive selection. This provides an opportunity to further revise the completed 
results in subsequent clinical studies. If necessary, doctors can obtain different results by interactive selection.

Table 2.   Initial random numbers for robustness analysis.

Parameters label Base parameters

01–10 − 0.851 − 0.926 − 0.278 − 0.926 − 1.000 0.992 0.723 − 0.599 0.456 0.352

11–20 − 0.938 1.000 0.120 − 0.468 0.828 − 1.000 − 0.444 − 0.694 − 0.998 − 0.772

21–30 0.697 1.000 − 0.575 − 0.021 − 0.623 − 1.000 1.000 − 0.500 − 0.791 0.508

31–40 1.000 0.233 − 0.571 − 0.173 − 0.438 − 1.000 0.989 0.987 − 0.997 0.548

41–50 0.636 − 0.061 − 0.402 − 0.646 − 1.000 − 1.000 − 0.245 − 0.531 − 0.366 − 1.000

51–60 0.119 − 0.073 1.000 1.000 − 0.736 0.005 0.543 0.981 − 0.763 0.014

61–70 0.361 − 0.790 − 0.177 0.142 1.000 0.999 0.373 − 1.000 − 1.000 0.053

71–80 − 1.000 − 0.994 1.000 0.645 − 0.755 − 0.941 − 0.369 0.503 − 0.173 − 0.013

81–90 − 0.508 − 0.668 − 0.275 0.157 0.646 − 0.599 − 0.577 0.658 − 0.927 − 0.828

91–100 − 0.571 0.699 − 0.365 1.000 0.976 1.000 0.611 0.272 0.814 − 1.000
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3D visualization of mandibular completion.  After determining the mandibular completion image of 
each tomogram, an E-3D digital medical design system can be used for 3D visualization and solid modeling. We 
show the results of the 3D completion of each case in the results section.

Ethics statement.  This project was approved by the Center of Medical Ethics of Central South University. 
This study conforms to the Declaration of Helsinki. The training sample was added to the study after removing 
all of the privacy data. The written informed consent test sample was obtained from the patients.

This study does not involve clinical operation, and the 3D mandible after completion is used only for analysis 
and research in a virtual environment. Therefore, there is no harm to the patient. The patient’s written informed 
consent was obtained due to the need to display the lesion morphology in the study of the completion case.

In accordance with ethical requirements, all image data entering the system were anonymized in advance, 
and only the minimum necessary image information was kept. In this system, the inverse process is prevented 
during the establishment process; that is, when the system finishes learning, the original actual image data can-
not be returned through the system.

Data availability
For security and patient privacy reasons, all research data except sensitive information are public. Existing and 
future research data will continue to be published at https​://CTGAN​s.kuye.cn . E-3D software could be download 
at https​://www.e3d-med.com/e3d%20mod​eling​.html.
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