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Evolution of quasi‑bound states 
in the circular n–p junction 
of bilayer graphene under magnetic 
field
Haijiao Ji, Yueting Pan & Haiwen Liu*

Electron in gapless bilayer graphene can form quasi-bound states when a circular symmetric potential 
is created in bilayer graphene. These quasi-bound states can be adjusted by tuning the radius and 
strength of the potential barrier. We investigate the evolution of quasi-bound states spectra in the 
circular n–p junction of bilayer graphene under the magnetic field numerically. The energy levels of 
opposite angular momentum split and the splitting increases with the magnetic field. Moreover, 
weak magnetic fields can slightly shift the energy levels of quasi-bound states. While strong magnetic 
fields induce additional resonances in the local density states, which originates from Landau levels. 
We demonstrate that these numerical results are consistent with the semiclassical analysis based on 
Wentzel–Kramers–Brillouin approximation. Our results can be verified experimentally via scanning 
tunneling microscopy measurements.

The successful fabrication of graphene has stimulated much interest in two-dimensional physics1,2. Graphene 
has many interesting phenomena, such as half-integer quantum Hall effects, resonant Klein tunneling, and Hof-
stadter butterflies3–5. However, Klein tunneling makes it becomes a challenge to create bound states in gapless 
graphene6–9. Recently, several experimental works have demonstrated that electrons can be trapped in nanometre-
scale circular n–p junctions (CNPJs) on monolayer graphene, and the energy levels of the quasi-bound states 
(QBSs) in experiment closely matched the solution of massless Dirac equation10–15.

Researches on monolayer and multilayer graphene are progressing rapidly due to their interesting band struc-
tures, Berry phases, and characteristics of quasi-particles16–22. AB-stacked bilayer graphene (BLG), as a stable 
material, has attracted much attention. It is a gapless semiconductor with a chiral parabolic low-energy band 
structure23,24. Thus, the low-energy electrons in AB-stacked BLG does not satisfy the standard Dirac equation, 
suggesting that its QBSs have different energy spectra from those in monolayer graphene22,25–31. Many previous 
studies have focused on the real bound states in gapped BLG theoretically and experimentally29,31,32. In contrast, 
the QBSs in gapless BLG have not yet been fully studied. Although the QBSs under zero magnetic field have 
discussed in Ref.26, the evolution of QBSs under magnetic field has not yet been investigated.

Under the magnetic field, the electrons generally exhibits different phenomena on bilayer from monolayer 
graphene. For instance, the half-integer quantum Hall effect originated from the π Berry phase has been discov-
ered in graphene3,21,33–35, while a conventional integer quantum Hall effect associated with 2π Berry phase has 
been detected in BLG19,33,36. Though the evolution of QBSs in CNPJs of monolayer graphene under magnetic field 
has been studied14,37, it is unknown that how does the magnetic field affect the QBS spectra in bilayer graphene 
CNPJ, which may demonstrate different features compared with the case in monolayer graphene.

In this paper, we study the evolution of the QBSs spectra in BLG under the perpendicular magnetic fields 
using Wentzel–Kramers–Brillouin(WKB) approximation and the numerical method. We find that, at the pres-
ence of magnetic field, the QBSs of opposite angular momentum split and their splitting increases with the 
magnetic field strength. Furthermore, we demonstrate that weak magnetic fields can slightly shift the position 
of QBSs, while strong magnetic fields give rise to additional resonance peaks besides QBSs due to the Landau 
levels. These results provide comprehensive understanding of the evolution of quasi-bound states in CNPJ of 
BLG under the magnetic field.
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This paper is organized as follows. In Section “Model and quasi-bound states spectrum”, we give an analytical 
solution for the quasi-bound states in a CNPJ of BLG under zero magnetic field, which are useful for the numeri-
cal and WKB analysis in the following sections. In Section “Energy spectra of quasi-bound states in magnetic 
fields”, we investigate the evolution of the QBSs spectra under the magnetic fields numerically and analyze the 
results using the semiclassical WKB approximation. In Section “Discussion”, we discuss the validity of our model, 
before summarizing our main results in Section “Summary”.

Model and quasi‑bound states spectrum
In this section, we consider the scattering of a plane wave electron on a CNPJ in BLG and calculate the local 
density of states (LDOS) of QBSs based on the two-band continuum Hamiltonian. Then we use the LDOS map 
to analyze how the QBSs’ properties change with different potential barrier radius and strength.

The Bernal ( A− B′ ) stacked BLG is shown in Fig.  1a. Taking into account in-plane hopping parameter 
γ AB = γA′B′ ≡ t and inter-layer coupling parameter γA′B ≡ t⊥ for undoped BLG, four bands model can be 
obtained by considering one 2pz orbital on each of the four atomic sites in the unit cell ( A,B,A′,B′)2,23. Near 
the Dirac point K and K ′ , the two low-energy bands are touched and can be approximated as E±(k) = ±�

2k2

2m  , 
where m = |t⊥|

2v2
 is the effective mass, v = 106m/s is fermion velocity of electron, and a ≈ 1.42Å is the nearest-

neighbour distance.
We consider a CNPJ of gapless BLG and model a circular potential barrier with the step-like potential 

V = V(r)σ0 = V0�(R − r)σ0 , as shown in Fig.  1b,c. Focusing on the dynamics near a single Dirac point at K, 
the full two-band Hamiltonian is given by38:

where p± = px ± ipy . The validity of Eq. (1) are discussed in Section “Discussion”.
To solve this equation, we start by writing the canonical momentum operators as p± = �

i e
±iφ

(

∂r ± i
r ∂φ

)

 . 
The Hamiltonian commutes with the pseudo angular momentum operator Jz = Lz + �σz due to the radially 
symmetric potential. Here, Lz = (r × p)z , and σz is the third Pauli matrix. Then, we need look for eigenfunc-
tions of Jz = Lz + �σz with eigenvalues j = l + 1 = 1, 2, 3,…, where l = 0, 1, 2,…. Assuming wavefunction is

where the phase factor e±iφ is derived from the BLG Hamiltonian, the coupled eigen equations are obtained:

(1)H = H0 + V =
1

2m

(

2mV(r) p2−
p2+ 2mV(r)

)

,

(2)Ψ = eijφ
(

e−iφχA(r)
−eiφχB(r)

)

=
(

ei(j−1)φχA(r)

−ei(j+1)φχB(r)

)

.

(3)
(

∂2r +
2j + 1

r
∂r +

j2 − 1

r2

)

χB(r) =
2m(E − V)

�2
χA(r);

Figure 1.   (a) Side view of the crystal of Bernal staking BLG, where a1 , a2 are the basis vectors of monolayer 
graphene and A, B(A′ , B′ ) are two sublattices of each layer. (b) Illustration of Klein tunneling across a CNPJ of 
BLG with energy of E and potential of V(r). (c) Top view of the circular potential in BLG, where QBSs appear in 
the p region.
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We solve Eqs. (3) and (4) by considering a scattering processes25,39, that an incident electron with energy E in 
BLG is scattered by a CNPJ created by a gate-induced circular potential barrier V(r). The incident plane wave in 
the n region can be written as a certain combination of cylindrical waves, then we utilize the scatter theory and 
the properties of and Bessel functions to get the wavefunctions outside the barrier (n region) as25:

Within the barrier (p region), the regular eigenfunctions of the Hamiltonian H with energy E are25

These functions are simultaneously eigenfunctions of H and Jz , with eigenvalues E and �j , respectively. 
Here, H(1)

j  , H(2)
j  are the Hankel functions of first and second kind, Kj , Ij are the modified Bessel functions, 

kn =
√
2mE/� , kp =

√
2m(E − V0)/� denote wavevectors in the n, p region, respectively. And we use α′ = sgn(E) 

and α = sgn(E − V0) to ensure the proper signs for electrons and holes.
In the n region, H(1)

j  , H(2)
j  , and Kj are effective eigenfunctions which are bounded for large arguments, and 

we disregard other eigenfunctions that diverge for large arguments. Similarly, in the p region, we consider Jj and 
Ij but ignore the other eigenfunctions which are divergent at the origin. Thus, the complete wavefunction can 
be written as25

in the n and p region, respectively. The coefficients Sj , Aj , Bj and Cj can be obtained from the boundary conditions 
at the interface of the CNPJ: the wavefunctions and their derivatives at r = R are continuous

Therefore, we can calculate the local density of states by LDOS(j, r,E) ∝ |Ψ (r,E)|2 . In the n region,

where

In the p region,

where

(4)
(

∂2r −
2j − 1

r
∂r +

j2 − 1

r2

)

χA(r) =
2m(E − V)

�2
χB(r).

(5)h
(1)
j (r,φ) =

[

H
(1)
j−1(knr)e

−iφ

α′H(1)
j+1(knr)e

iφ

]

eijφ ,

(6)h
(2)
j (r,φ) =
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H
(2)
j−1(knr)e

−iφ

α′H(2)
j+1(knr)e

iφ

]

eijφ ,

(7)kj(r,φ) =
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]

eijφ .
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(
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)
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)

eiφ
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[
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∣
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Figure 2a depicts the LDOS(j, r, E) for resonant states at different angular momenta. As j increases, the resonant 
modes shift from the center of the quantum dot and gradually move outward, which acts similarly to those in 
monolayer graphene10. However, the QBSs in BLG for l = 0 are narrower compared to the l = 1 , l = 2 modes. 
This feature is different from monolayer graphene due to their different band structures10,26. The QBSs spectra 
can be measured experimentally via STM. Besides, we notice that the QBSs are formed in the p region, which 
can be regarded as BLG quantum dots.

Figure 2b and c show the QBSs energy levels change with different potential barrier radius R and strength V0 
for the j = 1 mode at position r0 = 10 nm. Here, the peaks of LDOS in the p region represent the energy levels 
of QBSs. In general, the higher barrier potential trap more QBSs along with the wider energy spacings. Likewise, 
larger bilayer graphene quantum dot can trap more QBSs with the narrower energy spacing. Additionally, the 
trapping time can be obtained through half-width of energy levels by τ = �

△E . For larger R and higher V0 , QBSs 
can be trapped longer. These results suggest that we can confine specific energies and angular momentum modes 
by adjusting the potential size and depth. Note that the above calculations neglect valley mixing, for reasons 
explained in Section “Discussion”.

Energy spectra of quasi‑bound states in magnetic fields
In this section, we numerically solve the radial equation for a CNPJ of BLG in the presence of an external perpen-
dicular magnetic field. Following, we focus on the case that the magnetic field is not sufficiently strong to make 
system fully evolve into Landau levels. In order to provide a simpler and more intuitive physical picture, we also 
give a semiclassical analysis of QBSs based on the WKB approximation at the end of this section.

When a magnetic field is applied perpendicularly on the graphene surface, the orbital motion of electrons in 
two-dimension is quantized and the spectrum becomes discrete, called Landau levels. These Landau levels 

(18)F−
(

kpr
)

=BjJj−1

(

kpr
)

+ CjIj−1

(

kpr
)

,

(19)F+
(

kpr
)

=BjJj+1

(

kpr
)

+ CjIj+1

(

kpr
)

Figure 2.   (a) LDOS maps for quasi-bound states in CNPJ of bilayer graphene with barrier radius R = 40 nm, 
barrier potential V0 = 30 meV for four angular momentum channels j = 1, 2, 3, 4 . The QBSs energy levels 
decrease with j. (b) Peaks of LDOS represent the energy levels in R = 40 nm BLG quantum dot for the j = 1 
mode at position r0 = 10 nm, The different lines indicate different cases with barrier potentials V0 = 20 meV 
(blue), 25 meV (red), 30 meV (green), 35 meV (purple), respectively. The energy levels of QBSs increases with 
the barrier potential V0 . (c) Peaks of LDOS represent the energy levels in V0 = 30 meV BLG quantum dot for 
the j = 1 mode at position r0 = 10 nm, The different lines indicate different cases with barrier radius R = 30 nm 
(blue), 40 nm (red), 50 nm (green), 60 nm (purple), respectively. The energy levels spacing of QBSs decreases 
with the barrier radius R. The numbers of peak in (b,c) represent the quantum number of energy levels.
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inevitably have an influence on the QBSs. Under the magnetic field, quasi-particles in the low-energy regime 
can be characterized by the Hamiltonian in Eq. (1) via making the substitution p → p+ eA , where the radial 
gauge A =

(

− By
2
, Bx
2
, 0

)

 . Writing the canonical momentum operators as

the corresponding radial equations become

Next, according to these coupling equations, we solve the quasi bound states under the magnetic field with 
numerical method and give a semiclassical analysis based on the WKB approximation.

Numerical solution under magnetic fields.  To obtain the QBSs under the magnetic field, we start by 
solving the Eqs. (22) and  (23) via the two sides finite difference method discretized in 600 sites in the interval 
0+ < r < L ( L > R is truncation position). The initial wavefunction of finite difference method is ψ0 at r ≃ 0+ , 
while ψL at r = L . According to the finite difference method, ψ0 and ψL evolve with the formula from two sides 
to n–p junction boundary r = R . Then, analogy to the analytic method at B = 0 in Section “Model and quasi-
bound states spectrum”, we apply the boundary condition of ψ0 and ψL at r = R to obtain the new coefficients 
under the magnetic field11,26,35. To be specific, at r ≃ 0+ side, owing to eBr

�
≪ 2j−1

r  and e
2B2r2

4�2 + eB(j−1)
�

≪ j2−1

r2
 , 

Eqs. (22) and  (23) can be reduced to Eqs. (3) and (4) by neglecting the magnetic terms. Consequently, we can 
directly use the analytical solution of zero magnetic field case, a set of Bessel function [Eqs. (5–9)], as ψ0 . For 
other side r = L , the magnetic field become dominant to give rise to the Landau level spectrum. Thus, we can 
not directly utilize the Eqs. (5–9) as initial wavefunctions at r = L . Here, we consider the low magnetic field case, 
and under the influence of disorder the wave function acquires a Lorentzian weight 

∑

n
△2

(ε−εn(B))
2+△2

 on the zero 
magnetic field ψ0 to produce ψL . This treatment continuously returns to the zero magnetic field case, and reflects 
the Landau levels effect on large distance induced by magnetic field. Note that this approximation works well 

when the magnetic length lB =
√

�

eB  is comparable to barrier radii R. Because small lB will make the whole sys-
tem evolves into Landau levels, which beyond our research. Here, △ = 0.5 meV is a broadening parameter from 
disorder scattering, εn(B) = �ωc

√
n(n− 1) is spectrum of BLG under magnetic field2, and ωc = eB

mc is the cyclo-
tron frequency of non-relativistic electrons with effective mass m. Moreover, the results are proved to be insensi-
tive to the details of the cutoff, as an example, we take a cutoff at L = 1.5R below.

At relatively weak magnetic field B < 0.5 T, magnetic field only slightly shifts QBSs, as shown in Fig. 3a,b. 
Here, we plot the LDOS in logarithmic scale to clearly display the subpeaks induced by weak magnetic field. The 
energy shift is about 0.06 meV for 0.1 T, which evaluated from Fig. 3c. Furthermore, we notice the system has 
time-reversal symmetry at B = 0 T, which guarantees the degeneracy pair EK (j) = EK (−j) . However, the finite 
magnetic field break time-reversal symmetry of the system. The degenerate states of opposite angular momentum 
separate and the energy splitting enlarges as B increases. Specifically, with B increasing, the energies of QBSs for 
j = +n mode decrease while for j = −n increase.

For relatively strong magnetic field, we plot the evolution of QBSs spectra under B = 1.1 T, 1.3 T and 1.7 T, 
as shown in Fig. 3d,e. Comparing with the weak magnetic case, a stronger magnetic field have a more obvious 
effect on the QBSs due to the appearance of Landau levels and this effect becomes larger as B increases. The 
Landau levels appear next to the QBSs energy levels, and it seems to be no arresting interplay between them 
from numerical results. The QBSs and Landau levels do not merge or simply repel but coexist in this transition 
region. The LDOS peaks are the superposition between the confined state and the Landau levels. If we continue 
to increase the magnetic field B, when it exceeds the critical magnetic field Bc , the QBSs will disappear and the 
whole system will evolves into Landau levels. Here, Bc can be evaluated from the magnitude of Landau levels 
and QBSs energy, and it is about 3 T at R = 40 nm for j = 1 mode. Therefore, the QBSs in a CNPJ of BLG can 
be tuned by adjusting the magnetic field strength as well.

WKB approximation for zero and weak magnetic fields.  Aforementioned numerical results cannot 
directly show the impact of particular parameters on the QBSs. To obtain a better understanding of numerical 
results, we can analyze the QBSs with semiclassical method based on WKB approximation. Reconsidering Eqs. 
(22) and (23), we firstly rewrite these equations in the matrix form37,40,41:

(20)p+ =ieiφ
(

i�∂r − i
�

r
∂φ +

eBr

2

)

(21)p− = − ieiφ
(

i�∂r − i
�

r
∂φ +

eBr

2

)

,

(22)

∂2rχB(r)+
(

2j + 1

r
+

eBr

�

)

∂rχB(r)+
(

j2 − 1

r2
+

e2B2r2

4�2
+

eB(j + 1)

�

)

χB(r) =
2m(E − V)

�2
χA(r)

(23)

∂2rχA(r)−
(

2j − 1

r
+

eBr

�

)

∂rχA(r)+
(

j2 − 1

r2
+

e2B2r2

4�2
+

eB(j − 1)

�

)

χA(r) =
2m(E − V)

�2
χB(r).

(24)χ ′′ +
1

�
Fχ ′ +

1

�2
Gχ = 0,
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Figure 3.   (a,d) show the evolution of the LDOS under relatively weak and strong magnetic fields, respectively. 
(b,e) show the detail effect on energy levels, respectively. Here, we plot the LDOS in logarithmical scale to show 
the magnetic field effect clearer, and the peaks in the yellow region indicate the QBSs energy levels. (c) Show 
the QBS energy levels for j = 1 and j = −1 as the function of magnetic field strength B. And the magnetic field 
lift the energy levels for j = −1 mode and pull down those of the j = 1 mode. (e), the arrows labeled Lx mark 
the Landau levels. Taking B = 1.7 T (green) as an example, L2 , L3 and L4 are BLG Landau levels with quantum 
numbers n = 2, 3, 4 and the QBSs energy level is close to L3.
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where

Then, we suppose

where y(r) can be written in the form of Taylor expansion

So, we obtain the determinant of the first-order quasi-classical momentum y0 = qB,

where

Here, in order to get a nice formula of qB , we simplify the calculation by replacing L±(j,B, r) with L′
±(j,B, r):

Then, we have the momentum qB:

where

Corresponding to the solution of quasi-bound states, q2B(r) > 0 give classically allowed region rB < r < R
42,43, where

with

Then applying Bohr–Sommerfeld quantization condition

(25)χ =
(

χA
χB

)

,

(26)F
�

j,B, r
�

=





−�

�

2j−1

r + eBr
�

�

0

0 �

�

2j+1

r + eBr
�

�



,

(27)G
(

j,B, r
)

=
(

�
2G+

(

j,B, r
)

− 2m(E − V0)

−2m(E − V0) �
2G−

(

j,B, r
)

)

,

(28)G±
(

j,B, r
)

=
j2 − 1

r2
+

e2B2r2

4�2
+

eB
(

j ± 1
)

�
.

(29)χ(r) = ψ(r)exp

{

i

∫

y(r)dr

}

.

(30)y(r) =
∞
∑

n=0

�
nyn(r),

(31)
∣

∣

∣

∣
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∣

∣

∣

∣

= 0,
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(
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r
+
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�

)

+ G±
(
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)

.
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(

2j

r
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�
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+
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+
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�
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−
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+

M
(
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)
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,
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(
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√
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�
+
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�2
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√

− 2eBj
�
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�
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=
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+
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�
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∫ R
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we can obtain the relation between energy level En,j of QBSs and quantum number n. Here, we take phase factor 
δ = 0 , because the step-like circular potential can be regarded as two vertical barrier potential in radial direction, 
and this geometrical shape of boundary corresponds to δ = 044. In Fig. 4, the blue curves in rightmost panels 
depict the relation of Ej and n, and the red dots represent the position of QBSs. Setting B = 0 T in the above for-
mula, the energy levels of QBSs are consistent with the rigorous results shown in Section “Model and quasi-bound 
states spectrum”. Likewise, at relatively weak magnetic field B < 0.5 T, the WKB solution are in accordance with 
the numerical results in Section “Numerical solution under magnetic fields”. These results verify the availability 
of the WKB approximation. Thus, WKB approximation provides an easier way for predicting the QBSs energies.

Discussion
Throughout the above analysis of CNPJ, we have modeled the electrostatic potential as a step-like function of 
position. This assumption is justified if a ≪ R ensures the absence of inter-valley scattering at the interface, where 
a is the lattice constant and R is the characteristic length representing the width of the transition region between 
the junction’s n and p sides. The inter-valley scattering is inevitable in experiments, but as investigated in Fig. 3 
of Ref.15, the authors demonstrated that the inter-valley scattering caused by the step potential is very weak and 
QBSs are nearly insensitive to the smoothness of boundary. These results are in good agreement with those of 
experiments10,13,14. These previous investigations justify the validity of our approximation.

Regarding the feasibility of the two-band Hamiltonian in Eq. (1), there are two points needs to address. Firstly, 
we require EF < t⊥/2 ≈ 200 meV to ensure the quadratic dispersion relation holds. Secondly, we neglect the 
trigonal warping term. Thus, our model is reliable for quasi-particles in the energy regime under 200 meV25. 
Furthermore, we calculate the LDOS as a function of energy derived from the two-band Hamiltonian and four-
band Hamiltonian to verify the validity of the two-band Hamiltonian in Eq. (1), as shown in Fig. 5.

Besides, the QBSs of CNPJ in our study differ from those of Coulomb potential. The QBSs of long range Cou-
lomb potential exhibit the dramatic property of discrete scale invariance45,46. In contrast, the circular potential 
added on our system is confined potential and the QBSs of them don’t show the discrete scale invariance. Thus, 
the results of these two kinds of potential are different in the qualitative and quantitative studies. Moreover, the 
construction of circular np junction in graphene has already been achieved experimentally, and our theoretical 
results can be useful for qualitative analysis to them.

Summary
In this paper, we have studied the quasi-bound states in a circular n–p junction of bilayer graphene and their 
evolution under the magnetic field numerically. We have shown that the quasi-bound states spectra can be con-
trolled by adjusting the potential barrier radius and strength. These energy spectra are quantitatively different 

Figure 4.   WKB analysis for quasi-bound states in CNPJ of BLG (a) without and (b) with magnetic field. The 
blue curve is from quantization condition Eq. (38), the red dots on blue curve corresponds to the peaks of 
LDOS, justifying the consistency between WKB solution and analytical (numerical) results.
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from those for monolayer graphene due to different band structures. We also have demonstrated that the energy 
level degeneracy of opposite angular momentum states breaks under magnetic field and the energy splitting 
enlarges as magnetic field strength increases. Moreover, applying weak magnetic fields on system leads to slight 
shift of quasi-bound states. While the strong magnetic fields induce additional resonances beside the quasi-bound 
states. These additional resonances originate from the Landau levels. The evolution of quasi-bound state spectra 
under magnetic field is also supplemented with semiclassical analysis based on the WKB approximation. Our 
results are highly relevant to recent experiments and can be verified in STM measurement.
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