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Deep learning segmentation 
of hyperautofluorescent fleck 
lesions in Stargardt disease
Jason charng1,7, Di Xiao2,7, Maryam Mehdizadeh2, Mary S. Attia1, Sukanya Arunachalam1, 
Tina M. Lamey1,3, Jennifer A. Thompson3, Terri L. McLaren1,3, John N. De Roach1,3, 
David A. Mackey1,3,4,6, Shaun Frost2 & Fred K. Chen1,3,5,6*

Stargardt disease is one of the most common forms of inherited retinal disease and leads 
to permanent vision loss. A diagnostic feature of the disease is retinal flecks, which appear 
hyperautofluorescent in fundus autofluorescence (FAF) imaging. The size and number of these flecks 
increase with disease progression. Manual segmentation of flecks allows monitoring of disease, but is 
time-consuming. Herein, we have developed and validated a deep learning approach for segmenting 
these Stargardt flecks (1750 training and 100 validation FAF patches from 37 eyes with Stargardt 
disease). Testing was done in 10 separate Stargardt FAF images and we observed a good overall 
agreement between manual and deep learning in both fleck count and fleck area. Longitudinal data 
were available in both eyes from 6 patients (average total follow-up time 4.2 years), with both manual 
and deep learning segmentation performed on all (n = 82) images. Both methods detected a similar 
upward trend in fleck number and area over time. In conclusion, we demonstrated the feasibility of 
utilizing deep learning to segment and quantify FAF lesions, laying the foundation for future studies 
using fleck parameters as a trial endpoint.

Stargardt disease (STGD1, OMIM #248200) refers to an inherited retinal disorder which causes progressive 
vision loss. The hallmark of STGD1 is the accumulation of bisretinoid fluorophores in the photoreceptor outer 
segments and lipofuscin-like fluorophores in the retinal pigment epithelium (RPE) due to the impaired flippase 
function of a retina-specific transmembrane protein, the adenosine triphosphate-binding cassette subfamily A 
member 4 (ABCA4)1. Several investigational drugs have been developed to inhibit or block biochemical path-
ways that lead to the formation of the bisretinoid fluorophores and their conversion to the toxic lipofuscin-like 
fluorophores in the  RPE2–6. Some clinical trials have utilized fundus autofluorescence (FAF) imaging to measure 
fluorophore concentration and distribution in the retina as an endpoint to assess disease progression rate and 
therapeutic efficacy of these new  agents7–9.

The earliest stage of STGD1 is characterized by an increase in the background FAF signal due to widespread 
accumulation of lipofuscin-like fluorophores within the RPE  layer10. A recent multimodal imaging study showed 
that the formation of discrete fleck lesions, characterized by yellow pisciform deposits, which spread centrifu-
gally and circumferentially around the fovea, correspond to clusters of degenerating photoreceptor  cells8. These 
intensely hyperautofluorescent flecks, with FAF signal arising from photoreceptor bisretinoid fluorophores, 
make them a particularly prominent features on FAF imaging, even before they are clearly visible on clinical 
 fundoscopy11,12. Over a period of years, these hyperautofluorescent flecks evolve through their own natural life 
cycle of enlargement, confluence and then regression into dark regions on FAF imaging due to death of the  RPE9. 
Currently, FAF is used as a primary endpoint for novel treatment in STGD1 clinical trials (ClinicalTrials.gov 
identifiers NCT01736592, NCT03772665). The key parameter in FAF analysis is the quantification of the area 
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where the autofluorescence signal is lacking due to the death of RPE  cells7,9. However, a proportion of patients 
with childhood or late-onset diseases cannot be monitored in this way as they present prior to RPE loss. At this 
pre-atrophic stage, FAF has been used to quantify the signal intensity of the background diffuse autofluorescence 
(also known as quantitative autofluorescence, qAF, available on Heidelberg Spectralis, Heidelberg Engineering, 
Heidelberg, Germany) as a biomarker of RPE lipofuscin-like fluorophore  accumulation13. However, qAF is not 
widely available and is no longer compatible with the most recent upgrade of the Heidelberg device software. 
Furthermore, patients are generally not diagnosed until flecks are visible and by this stage, quantification of AF 
can be confounded by the number and size of these flecks as they are highly hyperautofluorescent. Hence, track-
ing the evolution of fleck lesions using FAF individually or collectively over time as an alternative approach to 
monitoring STGD1 disease progression warrants further investigation. Automated segmentation of the central 
atrophic region on FAF imaging has been described in retinitis  pigmentosa14. To the best of our knowledge, there 
has only been one study that described a thresholding algorithm in detecting flecks in STGD1 fundus  images15. 
However, this algorithm was developed to identify but not quantify retinal flecks.

Herein, we used a set of manually segmented FAF images (ground truth, current gold standard) from patients 
with genetically confirmed STGD1 to develop a deep learning model for automated segmentation of flecks. We 
then compared the performance of the deep learning algorithm to manual segmentation by analyzing the same 
sets of longitudinal images using both approaches.

Results
Patient demographics.  Forty-seven FAF images from 24 subjects (12 males, 12 females) from 19 families 
with a molecular diagnosis of STGD1 were utilized in the study (Table 1). The mean (range) age at which the 
first FAF images were obtained was 48 (12–89) years. Two patients (Patients 15 and 19) were of Asian descent 

Table 1.  Summary of patient demographics, clinical data and genetic diagnoses. a Individuals from the same 
family are indicated by a lower case letter following the same number; all were siblings except for subjects 
3a and 3b, who were mother and son. b BCVA; best-corrected visual acuity, as measured at imaging session. 
c Modified Fishman grading scale: Grade 1: flecks limited to within 1DD of foveal centre with no atrophy, 
Grade 2: flecks beyond 1DD of fovea with no atrophy, Grade 3: Choriocapillaris atrophy of the macula 
associated with flecks within 1DD of foveal centre (3A), flecks beyond 1DD of fovea but within central 55° (3B) 
and flecks beyond 55° (3C), and Grade 4: Diffuse flecks and choriocapillaris atrophy throughout the fundus. 
d No familial DNA for phase determination, four ABCA4 variants detected: c.5836-145C>A, c.4253+43G>A, 
c.5177C>A, c.5603A>T. e Origin of parental alleles not established but familial analysis indicates variants are 
biallelic. f Variant not detected in parent but familial analysis indicates variants are biallelic. g Asymptomatic 
mother and son, age of onset is age at which retinal lesions were first identified. h East Asian origin.

Pida Sex Age onset Age imaging RE  BCVAb LE  BCVAb RE clinical  gradingc LE clinical  gradingc Paternal allele Maternal allele

1d M 55 60 20/16 20/20 2 2 c.4253+43G>A;5836-
145C>A c.5177C>A;5603A>T

2 F 12 15 20/200 20/160 3C 3C c.5461-10T>C c.4139C>T

3ag F 89 89 20/32 20/25 1 1 c.6498C>Te c.2564G>Ae

3bg M 58 58 20/32 20/20 3B 3B c.3113C>Tf c.2564G>A

4a F 22 26 20/25 20/20 2 2 c.5691G>T c.768G>T

4b F 18 24 20/40 20/50 2 2 c.5691G>T c.768G>T

5 F 72 70 20/25 20/25 2 2 c.4222T>C; 4918C>Te c.5603A>Te

6 F 70 76 20/25 20/20 3C 3C c.2576A>Ge c.2041C>Te

7a M 17 27 20/1200 20/1200 3C 3C c.6079C>Tf c.768G>T

7b M 16 29 20/160 20/160 3C 3C c.6079C>Tf c.768G>T

8a M 9 13 20/320 20/320 3C 3C c.5461-10T>C c.4320delT

8b M 11 12 20/40 20/32 2 2 c.5461-10T>C c.4320delT

9a F 36 57 20/20 20/20 3C 3C c.6079C>T c.4577C>T

9b M 51 56 20/1000 20/250 3C 3C c.6079C>T c.4577C>T

10 M 30 44 20/16 20/16 3B 3B c.3608G>A;  4537dupCf c.3113C>T

11 F 50 55 20/160 20/32 3C 3C c.2827C>T; c.5603A>T c.2588G>C

12 M 48 59 20/40 20/32 3A 3A c.4670A>G; 6148G>C c.3237T>C; 5603A>T

13 M 81 87 20/250 20/160 3B 3B c.2549A>G; 4667+5G>T; 
5882G>Ae c.5603A>Te

14 F 12 24 20/500 20/200 3C 3C c.2626C>T c.5714+5G>A

15h F 56 66 20/125 20/200 3A 3A c.517delC c.587C>Tf

16 M 46 74 20/32 20/40 2 3B c.4139C>Te c.5603A>Te

17 F 13 45 20/250 20/250 3B 3B c.2966T>Ce c.67-1860A>G; c.6079C>Te

18 M 19 29 20/125 20/125 3B 3B c.2588G>C; c.5603A>T c.5461-10T>C; c.5603A>T

19h F 20 59 20/400 20/230 3B 3B c.3109G>Te c.5761G>Ae
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while the remaining twenty-two were Caucasian. The median (range) age of onset of symptoms (or first sign of 
retinal lesion) was 33 (9–89) years. Seven (29%) patients had Fishman grade of 1–2 (i.e. no macular atrophy) and 
the remaining 17 (71%) had Fishman grade of 3 (8 with flecks localized to the posterior pole and 9 with flecks 
extending beyond the posterior pole). None had Fishman grade of 4.

Deep learning training and optimization procedure.  Amongst 47 FAF images, 31 had discrete well-
defined pisciform lesions and 16 had diffusely speckled lesions without pisciform lesions (Table 2, Fig. 1). Manual 
segmentation of the flecks marked a total of 4833 lesions and the total lesion area was 88.2 mm2 in the 47 images. 
FAF images with a discrete, large pisciform classification had an average of 109 (range 10–249) fleck lesions with 
a mean total hyperautofluorescent area of 2.35 (range 0.29–5.55) mm2 while those with a diffusely speckled FAF 
classification had an average of 92 (range 5–202) lesions with a mean total area of 0.96 (range 0.05–2.04) mm2.

Of the 47 manually segmented FAF images, 37 were selected as the training and validation sets in deep learn-
ing and 10 used as independent testing images. The images were graded according to their clinical appearance 
and the senior author (FKC) ensured that, in the training, validation and testing sets, the distribution of clinical 
appearance was even across the three datasets. Fifty image patches (512 × 512 pixels) were generated from each of 
the 37 FAF images (total 1850 patches). Of these, 1750 and 100 partitioned image patches were used for training 
and validation, respectively. There was improvement in dice score and a decrease in validation loss with training. 
Both dice score and validation loss appeared to plateau from the 100th epoch onwards.

Bland–Altman  analyses16 (Fig. 2) between manual and deep learning segmentation were performed in the 10 
FAF images (4 with diffuse speckled and 6 with discrete fleck lesions) that underwent testing. Three concentric 
circles (10°, 20°, 30° diameter) centered at the fovea were placed on each image, which partitioned each image 
into a central disc of 10° diameter and two hollowed-out rings of 10°–20° and 20°–30° diameters. Manual and 
deep learning segmentation-derived fleck count were similar, with a mean difference (deep learning − manual) 
of − 0.60 (95% CI − 9.57 to 8.37), 4.10 (95% CI − 24.01 to 32.21) and 3.00 (95% CI − 27.21 to 33.21) for the 10° 
disc, 10°–20° and 20°–30° rings, respectively. Total fleck area was also similar, with a mean difference (deep 

Table 2.  Characteristics of FAF images used in deep learning training. n/a not applicable. a Individuals from 
the same family are indicated by a lower case letter following the same number; all were siblings except for 
subjects 3a and 3b, who were mother and son. b Dice score between manual and deep learning segmentation, 
only available in 10 left eye images used for validation. c Longitudinal serial FAF images were used as part of the 
training set in subjects 1 and 17.

Subject  IDa Fleck lesion type

RE LE

Fleck count Fleck area  (mm2) Fleck count Fleck area  (mm2) Dice  scoreb

1c Discrete 249 5.49 171 2.74

1c Discrete n/a 152 2.02

1c Discrete n/a 144 2.41

2 Diffuse 128 0.70 149 1.39

3a Discrete n/a 10 0.29

3b Discrete 167 4.85 207 4.85 0.77

4a Discrete 53 0.69 59 0.79 0.72

4b Discrete 159 4.36 233 3.71

5 Discrete 78 2.59 57 2.44

6 Discrete 202 2.11 249 2.76

7a Diffuse 202 2.04 182 1.34

7b Diffuse 109 1.38 147 1.29 0.61

8a Diffuse 5 0.05 7 0.07

8b Diffuse 71 1.48 50 1.03 0.63

9a Diffuse 37 1.03 109 1.57

9b Diffuse 47 0.35 102 0.68 0.60

10 Discrete 145 4.29 154 3.74 0.80

11 Discrete 101 2.02 124 2.17 0.70

12 Discrete 48 0.56 29 0.44 0.69

13 Discrete 34 0.73 35 0.79 0.57

14 Diffuse 57 0.43 67 0.48 0.33

15 Discrete 29 0.50 10 0.86

16 Discrete 50 2.85 89 2.55

17c Discrete n/a 64 0.71

17c Discrete n/a 52 0.60

18 Discrete n/a 55 2.43

19 Discrete n/a 155 5.55
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Figure 1.  Manual and deep learning on Stargardt FAF images. (a) An example of a raw FAF image with discrete 
large pisciform lesions with (b) the outline of the hyperautofluorescent flecks manually marked. (c) An image 
mask of the fleck outline was generated for image analysis. (d) CLAHE transformation applied to the raw image 
in panel (a) followed by (e) fleck marking via deep learning. (f) Image mask of fleck outlines from deep learning 
was generated for image analysis. Dice score between the manual and deep learning segmentations is shown 
on the bottom left corner. (g–i) Manual and (j–l) deep learning segmentation of a FAF image with a diffusely 
speckled FAF pattern, as per panels (a–f), with dice score shown on the bottom left corner.
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learning − manual) of − 0.03 (95% CI − 0.11 to 0.06), 0.01 (95% CI − 0.24 to 0.26) and − 0.03 (95% CI − 0.32 to 
0.26) mm2 for the 10° disc, 10°–20° and 20°–30° rings, respectively. The mean ± standard deviation (SD) dice 
score for FAF images with diffuse speckled patterns (N = 4) was lower than those with discrete flecks (N = 6); 
0.54 ± 0.14 versus 0.71 ± 0.08, respectively (p < 0.04, t test).

Longitudinal analysis.  Right and left eye images from 6 subjects with discrete pisciform flecks and a mini-
mum of 12 months of follow-up (mean ± SD total follow-up period: 4.2 ± 1.8 years) underwent both manual and 
deep learning segmentation. Longitudinal analyses are illustrated using two case examples: Patients 4b and 1 
(Fig. 3). Patient 4b at 21 years old showed discrete pisciform FAF regions at the first visit (Fig. 3a), which pro-
gressed into speckled hypoautofluorescent regions at the last visit (27 years, Fig. 3b). Manual (blue outlines) and 
deep learning (red outlines) segmentation results at each visit are shown side by side. In all images, three con-
centric circles (10°, 20°, 30° diameter) were centred on the fovea, from which the number and area of FAF flecks 
within each ring were analyzed. Fleck number (Fig. 3c) did not significantly increase over time in the 10° ring 

Figure 2.  Bland–Altman plots comparing manual and deep learning segmentation methods. (a) Difference 
in fleck count (deep learning − manual) plotted against the mean of manual and deep learning fleck count in 
the central 10° ring. Solid black line indicates the mean difference and dashed black lines indicate the 95% 
confidence interval, gray line indicates no difference. (b) Difference in fleck area (deep learning − manual) 
plotted against the mean of manual and deep learning fleck area in the central 10° ring. Other details as per 
panel (a). (c,d) Bland–Altman plots of fleck number and fleck area in the 20° ring, respectively. Other details as 
per panel (a). (e,f) Bland–Altman plots of fleck number and fleck area in the 30° ring, respectively. Other details 
as per panel (a).
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Figure 3.  Two examples of longitudinal data analysed via manual or deep learning segmentation. (a) Manual 
(blue outlines) and deep learning (red outlines) segmentation of the hyperautofluorescent flecks of Patient 
4b, 21 years old, at the first visit. Each image is sub-divided into three rings (10°, 10°–20°, 20°–30° diameter), 
centred on the fovea. (b) Manual and deep learning segmentation of the same eye as panel (a) 6 years later 
at 27 years old. All other details as per panel (a). (c) Fleck number plotted against time after first visit using 
manual (filled) and deep learning (unfilled) segmentation in the 10° (left), 10°–20° (middle) and 20°–30° (right) 
rings. (d) Fleck area plotted against time after first visit using manual (filled) and deep learning (unfilled) 
segmentation in the 10° (left), 10°–20° (middle) and 20°–30° (right) rings. (e–h) Manual versus deep learning 
longitudinal results in Patient 1, 56 years old at first visit and 62 years old at last visit. Other details as per (a–d).
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(p = 0.06), but the deep learning method underestimated the fleck count across most follow-up visits (p < 0.05). 
In the 20° and 30° rings, fleck number increased over time (both p < 0.05) and the deep learning method again 
underestimated the fleck count in both rings (both p < 0.05). Fleck area was low with either method in the 10° 
ring over the five years (Fig. 3d, left). In contrast, both methods detected an increase in fleck area over time 
(p < 0.05) in the 20° and 30° rings, with the deep learning method overestimating fleck area (both p < 0.05). Fleck 
progression was also shown in an older patient (Patient 1, 56 years at first visit) with discrete pisciform lesions 
regions at the first visit (Fig. 3e), which progressed into discrete regions of RPE atrophy centrally and speckled 
hypoautofluorescent regions in the perimacula at the last visit (Fig. 3f, 62 years). There was no increase in fleck 
number across time in the 10° ring (p = 0.15, Fig. 3g, left) and no difference in fleck number detected with either 
method (p = 0.47). In the 20 and 30° rings, both manual and deep learning methods showed a significant increase 
in fleck number over time (p < 0.05) but with no difference in fleck number estimation between the two methods 
(20° ring, p = 0.15; 30° ring, p = 0.07). Fleck area (Fig. 3h) was increased significantly over 6 years in all three 
rings (all p < 0.05). The 10° ring showed a significantly larger area with the manual method (p < 0.05), but there 
was no difference between deep learning and manual segmentation in the outer two rings (20° ring, p = 0.27; 30° 
ring, p = 0.06).

Overall, a total of 82 images across 12 eyes were used for longitudinal analysis. The deep learning segmenta-
tion method provided a lower fleck count than manual segmentation in 69 (84%), 72 (88%) and 70 (85%) of 
the 82 FAF images in the central 10° disc, 10°–20° and 20°–30° rings, respectively (Fig. 4). Conversely, the deep 
learning segmentation method provided a greater fleck area than manual segmentation in 52 (63%), 74 (90%) 
and 68 (83%) of the 82 FAF images in the central 10° disc, 10°–20° and 20°–30° rings, respectively (Fig. 4). 
The mean ± SD changes in fleck count derived from manual segmentation were − 1.5 ± 3.6, 8.9 ± 7.4, 13.4 ± 13.5 
flecks/year for the 10° disc, 10°–20° and 20°–30° rings, respectively. Deep learning segmentation provided an 
estimated change in fleck count number ± SD by − 2.2 ± 3.4, 6.9 ± 3.3, 10.8 ± 9.8 flecks/year for the 10° disc, 
10°–20° and 20°–30° rings, respectively. The mean ± SD change in fleck area derived from manual segmentation 
was − 0.01 ± 0.05, 0.05 ± 0.26, 0.12 ± 0.18 mm2/year for the 10° disc, 10°–20° and 20°–30° rings, respectively. Deep 
learning segmentation provided an estimated change in mean fleck area ± SD by − 0.02 ± 0.06, 0.07 ± 0.20 and 
0.15 ± 0.25 mm2/year for the same three rings.

Figure 4.  Manual versus deep learning image segmentation in longitudinal data. (a) Difference in fleck number 
between deep learning and manual segmentation in all 82 images available for longitudinal analysis within the 
10° (left), 10°–20° (middle) and 20°–30° (right) rings. (b) Difference in fleck area between deep learning and 
manual segmentation in all 82 images available for longitudinal analysis, other details as per panel (a).
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Discussion
The U-Net deep learning architecture employed in the current study has been developed for biomedical image 
 segmentation17, with various adaptations of the original architecture proposed, such as M-Net18, TernausNet 
(arXiv :1801.05746  [cs.CV]) and LinkNet (arXiv :1707.03718  [cs.CV]). To our knowledge, our study is the first 
to apply deep learning to quantify hyperautofluorescent fleck lesions in FAF images.

Several FAF parameters have been proposed for quantifying STGD1 severity or documenting natural his-
tory, including analysing the area of definitely or questionably decreased  autofluorescence9, quantitative fundus 
 autofluorescence13, fluorescence lifetime profile of FAF-detected flecks over  time19 and expansion of the boundary 
of the hyperautofluorescent  fleck20. The most popular of these currently is the growth rate of the central atrophic 
 lesion7,9,14,21,22. In this work, we proposed an alternative method of disease severity assessment using quantitative 
analysis of hyperautofluorescent fleck lesions based on count and area. We purposely chose a wide variety of 
FAF images—those with well-defined or discrete pisciform lesions that were easy to manually segment as well 
as those with more diffuse and speckled FAF lesions that were much more difficult to identify—to include in 
the training and validation sets. Almost one third of the patients did not have any RPE atrophy, supporting the 
value of this method in assessing disease progression prior to atrophy formation. We observed that segmenta-
tion of flecks from images with diffusely speckled FAF regions tended to achieve poorer identification during 
validation, which was reflected in the dice scores shown in Table 2. This could be due to uncertainties in manual 
delineation and/or the lack of lesion feature similarity identified by the deep learning algorithm. Nevertheless, 
Bland–Altman analysis (Fig. 2) showed a good overall agreement between manual and deep learning in both fleck 
count and fleck area for the 10 FAF images used for testing, albeit with relatively wide 95% confidence intervals.

In longitudinal analysis with a larger number of consecutive FAF images, we observed that the deep learning 
algorithm tended to underestimate the number of fleck lesions but overestimate a greater fleck area compared to 
manual segmentation of the same image; this seems to contradict the Bland–Altman analysis based on the 10 test 
images. It is important to note that test images contain FAF images with diffusely speckled (N = 4) and discrete 
flecks (N = 6) whereas the longitudinal cohort only had images with the latter types of lesions, specifically chosen 
to illustrate the clinical utility of this method. We also observed that deep learning segmentation tended to ignore 
blood vessels that course over a large fleck and identify this as a single fleck lesion whilst manual segmentation 
delineated two separate lesions separated by the overlying blood vessel (Fig. 3a,b,e,f). We attribute this difference 
in fleck outline segmentation to the CLAHE transformation that was performed prior to segmentation using 
the deep learning method. The CLAHE transformation also tended to enhance the overall appearance of fleck 
lesions and this in turn obscured the shadow created by the overlying blood vessel, resulting in the identification 
of a single fleck lesion without blood vessel interference. One explanation for the increased area of fleck lesion 
using the deep learning method is that CLAHE enhances the appearance of lesions within the FAF image, which 
effectively enlarges the apparently hyperautofluorescent fleck lesion size. In addition, given that deep learning 
segmentation tended to incorporate the entire fleck lesion without interference from overlying blood vessels, 
the overall lesion area would have included the pixels representing blood vessels coursing over the fleck lesion.

To our knowledge, there are no data on the natural history of hyperautofluorescent fleck count and area in 
STGD1. The similar trends in the change in fleck count and area over time using both manual and deep learning 
segmentation suggests that deep learning algorithms may be useful in future studies of retinal fleck pathophysi-
ology. The reduction in fleck count and area in the central 10° disc can be explained by the natural life cycle of 
flecks evolving into RPE  atrophy9,14,23. In contrast, there was a general increase in fleck number and size over 
time in the outer rings as peripheral atrophy generally does not develop until later in the disease  course21,24. 
Given that hyperautofluorescent flecks appear to increase gradually in number and size over time and precede 
the formation of central atrophy by several years in STGD1 course, further work towards validating fleck count 
and area as a potential clinical trials endpoint measure is warranted.

One major limitation of the study is the small number of FAF images used, due to the low number of these 
rare Stargardt patients. To overcome this drawback, we utilized a patch-based approach commonly used in deep 
learning methods to increase the training set sample size. However, our training set still had eyes with very few 
flecks and/or speckled FAF signals; future training sets should remove and replace these images with those that 
have the greatest number of well-defined pisciform fleck lesions. The second limitation is the use of CLAHE 
transformation in our deep learning workflow, which transformed the appearance of the hyperautofluorescent 
flecks when compared to the raw images used in manual segmentation. Future studies should either manually 
segment the FAF images after CLAHE or explore other image transformation techniques such as region erosion 
method that truthfully retain the appearance of the hyperautofluorescent flecks.

In conclusion, we have demonstrated that hyperautofluorescent flecks in FAF images may be a useful struc-
tural outcome measure in STGD1. More importantly, we trained and put forward a deep learning-based fleck 
segmentation method which is less time-consuming than manual marking. Further research to refine the deep 
learning algorithm for fleck segmentation is warranted given its potential as a clinical trials outcome measure 
in STGD1.

Methods
The study adhered to the tenets of the Declaration of Helsinki and ethics approval was obtained from the Human 
Ethics Office of Research Enterprise, The University of Western Australia (RA/4/1/8932 and RA/4/1/7916) and 
the Human Research Ethics Committee, Sir Charles Gairdner Hospital (2001-053), Perth, Western Australia, 
Australia. Written informed consent was obtained from each individual for their imaging data to be used for 
research purpose.

http://arxiv.org/abs/arXiv:1801.05746
http://arxiv.org/abs/arXiv:1707.03718
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Patient selection.  The Western Australian Retinal Degeneration (WARD) study database was interrogated 
for subjects with a molecular diagnosis of ABCA4. FAF images of these subjects were examined and suitable 
images were chosen for the study. Exclusion criteria included poor image quality and extensive atrophy resulting 
in no visible flecks within the macular 30° × 30° FAF image.

Genetic analysis and pathogenicity assessment.  Genomic DNA extracted from peripheral  blood25 
was analysed by targeted next-generation sequencing, using a Stargardt/Macular dystrophy panel (2014–2019 
versions 1–5; 5–13 genes) or a retinal dystrophy (RD) NGS SmartPanel (version 4 or 7; 183 or 233 genes)26 tar-
geting all exons and flanking intronic regions of known Stargardt/Macular dystrophy or retinal dystrophy genes, 
together with known ABCA4 deep-intronic variants. Candidate variants were confirmed by Sanger sequencing. 
Sequencing was performed by Casey Eye Institute Molecular Diagnostics Laboratory (Portland, OR, USA) or 
Molecular Vision Laboratory (Hillsboro, OR, USA). Sequences were aligned to the ABCA4 reference sequence 
NM_000350.2/3, with nucleotide 1 corresponding to the A of the start codon ATG, and described in accord-
ance with Human Genome Variation Society recommendations version 15.1127. The phase of the variants was 
examined in the parents, where available, and family members. Variant pathogenicity was assessed as previously 
 described28 and interpreted according to the American College of Medical Genetics and Genomics/Association 
for Molecular Pathology (ACMG/AMP) joint  guidelines29.

Fundus autofluorescence  image acquisition.  FAF images were acquired using a confocal scanning 
laser ophthalmoscope (Heidelberg Spectralis HRA without OCT, Heidelberg Engineering, Heidelberg, Ger-
many) as previously  described30,31. In brief, FAF (488 nm excitation, > 500 nm emission) images were acquired 
using a 30° × 30° acquisition window. During acquisition, the manufacturer’s averaging function (Automatic 
Real Time; ART), which averages multiple images in real time, was activated in order to maximize signal-to-
noise ratio.

Manual segmentation and analysis.  Following image acquisition, raw images were extracted in bitmap 
format (1536 × 1536 pixels) and an ophthalmologist (FKC) marked the foveal centre and manually segmented 
individual autofluorescent flecks for each image using Paint.NET (v 4.2.9). Thirty-seven marked images served 
as training and validation sets for deep learning while 10 were used for testing. Prior to testing, parameters from 
each image (i.e. number of flecks, total area of flecks) were extracted. Fleck lesion size was calculated using the 
x- and y-axis scaling factor provided by the Spectralis software, which took into account the magnification factor 
of the eye due to differences in refractive power. This was done by creating an image mask of the fleck outline 
for each of the 10 FAF images, followed by placing three concentric circles (diameters of 10°, 20°, 30°) on each 
image, centred at the fovea. This allowed partitioning of all FAF images into three zones (10° disc, 10°–20° ring 
and 20°–30° ring), from which the two parameters extracted from each region served as reference data (i.e. 
ground truth).

Longitudinal analysis was performed in a subset of 12 eyes from 6 patients with discrete or well-defined pisci-
form flecks. These images were not used for deep learning training and testing. Following manual segmentation, 
image registration was first performed following manual segmentation of all available FAF images. A two-step 
image registration approach was utilized for registering a baseline image to its follow-up images. Given that 
the images acquired were macula-centred images with a large common area between them, at the first step, a 
simple rigid translation registration approach was applied to ensure that the baseline and each follow-up image 
align at the fovea. A 12-parameter transformation matrix was used to mimic the curved retinal surface via 
quadratic modelling. In the second registration step, a Dual-Bootstrap Iterative Closest Point (ICP) registration 
 approach32 was used between the image pairs from the first step. The principle of Dual-Bootstrap ICP approach 
involves starting from an initial 12-parameter transformation estimate that is only accurate in a small region (i.e. 
bootstrap region). In each bootstrap region, the algorithm iteratively refines the transformation and expands 
this locally accurate initial alignment into a globally accurate alignment between the two images. Pixel-level 
registration accuracy was achieved by applying the two-step registration method. However, the limitations are 
that it was not suitable for eyes with large atrophic areas at baseline and eyes with large atrophic changes in their 
follow-up images. Flecks were quantified after registration by placing three concentric rings (radius 5°, 10° and 
15°) centred at the fovea and measuring the number and the total area within each zone: 10° disc, 10°–20° ring 
and 20°–30° ring.

Developing deep learning algorithm for fleck segmentation.  A UNet model with ResNet encoder 
(ResNet-UNet) was constructed for the deep learning fleck segmentation. The architecture of the ResNet-UNet 
follows traditional UNet’s  structure17, composing of encoder (down-sampling) and decoder (up-sampling) por-
tions. The key difference between the ResNet-UNet and the UNet is that the down-sampling encoder adopts 
the ResNet-34  model33, which is widely applied in image classification area and benefits from the advanced 
deep residual learning method. The ResNet-34 used here consists sequentially of firstly a 7 × 7 convolutional 
layer (CL), a max pooling layer, and the following 16 residual blocks. Each residual block contains two 3 × 3 
convolutional layers with ReLu and a batch normalization identity shortcut connection (Fig. 5). Therefore, the 
ResNet down-sampling portion totally consists of 34 layers. To match the image size changes [32, 64, 128, 256] 
in the up-sampling portion, the corresponding 4 feature maps from the down-sampling structure are: (1) out-
put from the 7 × 7 CL (feature map size 256 × 256); (2) output from the first 3 residual blocks (feature map size 
128 × 128); (3) output from the second 6 residual blocks (feature map size 64 × 64); (4) output from the third 4 
residual blocks (feature map size 32 × 32). The up-sampling portion starts from the 512-channel 16 × 16 feature 
map. It is convoluted by a 2 × 2 transposed convolution with up-sampling factor 2 (stride = 2). The up-sampled 
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output (128-channel 32 × 32 feature map) is concatenated with 1 × 1 convolutional output (128-channel) of the 
corresponding feature map from the down-sampling counterpart. The procedure is repeated until the output 
reaches image size 256 × 256. Then, the final layer transposes the 256-channel 256 × 256 feature map to a 1-chan-
nel 512 × 512 feature map, giving a probability map of the segmented objects.

Contrast Limited Adaptive Histogram Equalization (CLAHE)34 was applied to the raw FAF images prior to 
deep learning training. The number of images in the training set was increased by extracting image patches from 
cropped portions (512 × 512 pixels) of the full-size CLAHE-FAF images. The training set was further augmented 
by using patches that have been randomly (1) rotated through 90°, 180° and 270°; (2) inverted horizontally or 
vertically; and (3) magnified by a scale of 1.0–1.3. The overall model was trained in two stages in order to take 
advantage of the ResNet-3433 with its pre-trained weights. The first stage involved freezing the down-sampling 
encoder portion of the model and only optimized the weights of the up-sampling decoder portion. For the second 
stage, the ResNet-34 down-sampling portion was unfrozen to fine-tune the weights of the entire model. The 
learning rates were adjusted during the training. Adam  optimization35 and BCEWithLogitsLoss were adopted 
in the overall training process. Dice score between the learning results and the ground truth was used as per-
formance metric. The model was trained on Google cloud (Google Colab). The computing configuration was 
a single 12 GB NVIDIA Tesla K80 GPU. The training data batch size was set as 6. The initial training rate was 
0.001 and the learning rate was adjusted during the training for the different layers. The model training was 
completed within 11 h (138 epochs).

Applying deep learning algorithm to segment and analyze hyperautofluorescent flecks.  The 
FAF images were first processed by CLAHE. The size of the original images was 1536 × 1536 pixels, which was 
partitioned into 9 non-overlapping image patches (3 × 3 grid, each grid 512 × 512 pixels). Each 512 × 512 pixel 
image patch was rotated 90°, 180° and 270° to generate 3 new image patches. This was followed by horizontally 
flipping the original image patch then rotation of the flipped image by 90°, 180°, 270° to generate 4 more image 
patches. All 8 patches were processed by the ResNet-UNet deep learning model for hyperautofluorescent region 
segmentations and consequently 8 outputs were obtained. The final lesion mask for the patch is the average of the 
8 patches from the reverse transformations of the 8 model outputs. The hyperautofluorescent mask of the entire 
image was then formed from the 9 partitioned 512 × 512 pixel image patches.

Figure 5.  Architecture of ResNet-UNet. The structure of the ResNet-UNet uses the traditional UNet structure, 
which comprises of encoder (down-sampling) and decoder (up-sampling) portions. The down-sampling 
encoder is replaced by the ResNet-34 model. Conv n*n indicates n × n convolutional layer. TransConv 2*2, up 2 
indicates 2 × 2 transposed convolution and keeping stride of 2.



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16491  | https://doi.org/10.1038/s41598-020-73339-y

www.nature.com/scientificreports/

Longitudinal analysis was performed using deep learning in the same subset of 12 eyes with manually seg-
mented flecks. Following the delineation of the fleck outlines by deep learning, a mask of the fleck outline was 
generated and the same registration approach described in the manual segmentation section was utilized to 
measure the number and the total size of flecks within the three concentric rings (radius 5°, 10° and 15°) centred 
at fovea. Figure 6 illustrates the workflow for both manual and deep learning segmentation employed in the study.

Validation outcome measure.  In order to evaluate the model’s segmentation performance of the lesions, 
dice score (i.e. Intersection over Union, Eq. 1) was used, where the dice score (D) is equal to two times the com-
mon elements between the manual (Y) and deep learning (Ŷ) results divided by the total number of elements 
in each set.

Dice score was calculated for each image by comparing manually delineated regions to that marked by deep 
learning.

Statistical  analysis.  Bland–Altman  analysis16 was employed to evaluate the difference in parameters 
extracted from deep learning and manual segmentation methods in the testing set. In a subset of 12 eyes from 
6 subjects, disease progression over time was assessed by using both deep learning and manual segmentation 
methods. Fleck count and area were extracted from all images from both methods and were compared across 
time via two-way ANOVA. All data were summarized as mean ± SD.

Data availability
The data that support the findings of this study are from the WARD study and restrictions apply to the availability 
of these data so are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of the WARD study.
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