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exploring celiac disease candidate 
pathways by global gene 
expression profiling and gene 
network cluster analysis
Babajan Banaganapalli1,2,8, Haifa Mansour1,8, Arif Mohammed3, Arwa Mastoor Alharthi2,4, 
Nada Mohammed Aljuaid4, Khalidah Khalid Nasser2,5, Aftab Ahmad6, Omar I. Saadah7, 
Jumana Yousuf Al‑Aama1,2, Ramu Elango1,2* & Noor Ahmad Shaik1,2*

Celiac disease (CeD) is a gastrointestinal autoimmune disorder, whose specific molecular basis is not 
yet fully interpreted. Therefore, in this study, we compared the global gene expression profile of 
duodenum tissues from CeD patients, both at the time of disease diagnosis and after two years of the 
gluten‑free diet. A series of advanced systems biology approaches like differential gene expression, 
protein–protein interactions, gene network‑cluster analysis were deployed to annotate the candidate 
pathways relevant to CeD pathogenesis. The duodenum tissues from CeD patients revealed the 
differential expression of 106 up‑ and 193 down‑regulated genes. The pathway enrichment of 
differentially expressed genes (DEGs) highlights the involvement of biological pathways related to loss 
of cell division regulation (cell cycle, p53 signalling pathway), immune system processes (NOD‑like 
receptor signalling pathway, Th1, and Th2 cell differentiation, IL‑17 signalling pathway) and impaired 
metabolism and absorption (mineral and vitamin absorptions and drug metabolism) in celiac disease. 
The molecular dysfunctions of these 3 biological events tend to increase the number of intraepithelial 
lymphocytes (IELs) and villous atrophy of the duodenal mucosa promoting the development of 
CeD. For the first time, this study highlights the involvement of aberrant cell division, immune 
system, absorption, and metabolism pathways in CeD pathophysiology and presents potential novel 
therapeutic opportunities.

Celiac disease (CeD) is a gluten-induced autoimmune disease seen in genetically susceptible  people1. It is esti-
mated to be prevalent in 1% of the world  population2,3. CeD patients exhibit severe gastrointestinal symptoms 
such as diarrhoea, bloating, and abdominal pain following gluten consumption which is commonly found in 
wheat, rye and  barely4. Other manifestations of the disease involve malabsorption and anaemia, which are con-
sequences of the villus atrophy in small  intestine4,5. Adopting a gluten-free diet results in the clinical and histo-
logical improvements in patients. However, a substantial portion of the patients exhibit symptoms and persistent 
villus atrophy even after dietary  management6,7. Patients with CeD demonstrate other autoimmune diseases such 
as type 1 diabetes, thyroid disease, multiple sclerosis and inflammatory bowel disease, more frequently (∼5%) 
than healthy  individuals8. Several factors like genetic background, autoimmunity, environment (gluten as the 
main factor) and gut microbiome are mainly implicated in the etiology of CeD.
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The genetic liability of CeD is supported by the involvement of both HLA (40%) and non-HLA genes (60%) 
in its  etiology9. The HLA variants (DQA1 and DQB1), encode two antigens related to CeD, of which HLA-DQ2 
antigen is found in 90% of CeD patients and is associated with stronger gluten-specific T helper cell  response10. 
The second antigen HLA-DQ8 is found in the remaining patients. Interestingly, 30–40% of the general popu-
lation carry these risk alleles but do not present any CeD symptoms when exposed to dietary gluten. This 
suggests that HLA-DQ2 or HLA-DQ8 alleles act as a prerequisite but not determine the development of CeD 
in individuals. Hence, non-HLA genes are assumed to play a critical role in the disease  pathogenesis11. Early 
genome-wide association studies (GWAS) conducted on CeD have discovered that non-HLA genes like IL2 
and IL21, which are involved in T cell maturation, can modulate the risk of disease development in genetically 
susceptible  individuals12–14. Since then, several follow-up population genetics and in-vitro functional studies 
have also underlined the potential molecular crosstalk between HLA and non-HLA risk alleles, genetic expres-
sion and epigenetic changes, which subsequently triggers the cascade of autoimmune reactions critical to the 
development of  CeD15–18.

The genetic etiology of CeD is so far widely studied by different genetic approaches like candidate gene 
sequencing, exome sequencing, SNP genotyping and epigenetic  screening16,19–22. However, compared to the 
above-mentioned genotyping approaches, there are very few gene expression studies which have assessed the 
contribution of genes to the pathophysiology of CeD. Moreover, those gene expression studies have only used 
basic statistical methods to explore the up or down expressed genes. The noise and bias of gene expression 
measurements and regulation of gene expression at post transcription level pose an additional challenge to 
interpret the actual role of individual or group of genes in celiac disease. Therefore, combining the gene expres-
sion measurements with protein–protein interactions (PPIs) and pathway analysis will provide a deeper insight 
into gene expression induced CeD development.

Thus, we conducted this first systems biology study to compare the gene expression profile of duodenum 
tissue samples of celiac patients at diagnosis and after restricted gluten-free diet. This study characterized the 
protein interactions and molecular pathways involving several differentially expressed genes (DEGs) and pro-
vided a global view of gene expression changes critical to CeD pathogenesis, which presents potential therapeutic 
avenues for future research.

Materials and methods
Gene datasets sources. Gene expression changes in CeD patients were compared in different conditions; 
at disease diagnosis, post-gluten-free dietary management as well as after in-vitro gliadin challenge. The gene 
expression profiles from the above mentioned three conditions were downloaded from the public domain Array 
Express—functional genomics data (https ://www.ebi.ac.uk/array expre ss/). These gene expression profiles were 
generated on Affymetrix Human Genome U133 Plus 2.0 Array, GPL570 platform (Affymetrix, Santa Clara, CA 
USA). The full details about tissue processing, RNA isolation, hybridization of arrays can be found in the origi-
nal research  article23.

The gene expression profile of duodenum tissue biopsies after two years of gluten-free diet (n = 9, control 
samples) was compared to two different gluten exposure conditions. The first one is at disease diagnosis (chronic 
exposure, test samples, n = 9), and the corresponding dataset Array Express ID is E-MEXP-1828. The diagnosis 
was based on positive CeD-associated antibodies and a histological classification of intestinal villi was done 
according to Marsh staging grade 3b or c changes (villous atrophy). The second condition is in-vitro gliadin 
challenge (acute exposure, test samples, n = 9), and its corresponding dataset Array Express ID is E-182324.

Data processing. Preprocessing of gene expression data sets was performed using R package (https ://
www.r-proje ct.org)25. To standardize and reduce the technical noise in the sample data, raw intensity signals in 
the CEL file format were loaded into the Bioconductor-Affy package and the raw signal values of each sample 
set were standardized to a median of all samples using the Robust Multiarray Average (RMA) algorithm by 
 baseline25,26. This algorithm normalizes the raw signals by generating a matrix of expression from the data with 
context correction and  log2 conversion followed by quantile normalization.

DEGs screening. Limma package (https ://bioco nduct or.org/packa ges/relea se/bioc/html/limma .html) was 
used to obtain the required tools to analyze DEGs with t-test27. False discovery rate (FDR) was calculated using 
Benjamini & Hochberg  method28. The logFC cut off value for DEGs was |log FC|> 1.5, and the FDR was < 0.01 
while p-value was < 0.0529. Heatmap was generated for each dataset using Heatmap online software (https ://
www.heatm apper .ca) to represent significant DEGs.

PPI construction, cluster networks and hub genes identification. The DEGs were classified into 
up- and down-regulated genes and then analyzed in STRING database (https ://strin g-db.org) for detecting dif-
ferences in the PPI  network30. The STRING selection is based on different parameters of direct and indirect 
interactions. Statistical information about each PPI network was obtained using STRING. The maximum PPI 
enrichment p-value was < 1.0 × 10–16 and the minimum average local clustering coefficient was > 0.4. Both Up- 
and down-regulated PPI networks were visualized using Cytoscape 3.7.1  software31. Molecular Complex Detec-
tion (MCODE) tool was used to screen out clusters of PPI networks with the following parameters, degree cutoff 
of 2, node score cutoff of 0.2, k‐core = 2, and max depth of  10032. Genes with the highest MCODE scores were 
identified as hub genes by Cytoscape plug-in cytoHubba.

Functional annotations of cluster networks. Both up- and down-regulated (PPI networks and network 
clusters) genes were provided as an input to Cytoscape 3.7.1 software for recognizing GO terms and pathways 

https://www.ebi.ac.uk/arrayexpress/
https://www.r-project.org
https://www.r-project.org
https://bioconductor.org/packages/release/bioc/html/limma.html
https://www.heatmapper.ca
https://www.heatmapper.ca
https://string-db.org
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using functional analysis modules of ClueGo and Cluepedia tools. GO annotations interpret the association of 
gene products to biological process (BP), molecular function (MF), cellular component (CC), Kyoto Encyclope-
dia of Genes and Genomes (KEGG)  pathways33,34 (https ://www.kegg.jp/kegg/kegg1 .html) and immune system 
processes (ISP)35–37 . The selection criteria included a minimum of 3 genes in the cluster with GO tree interval 
range in between 3 and 8 and a kappa score of 0.4 for pathway network  connectivity38,39. The Bonferroni step-
down (pV correction) method with two-sided hypergeometric test option was selected for statistical assessment. 
With the aforementioned parameters we have chosen GO term fusion and restriction for creating ClueGO cat-
egory network based on network overlapping at a statistical significance of P < 0.05.

Results
Data processing and DEGs screening. The comparison of expression profiles between CeD at the time 
of diagnosis and after two years of gluten-free diet condition revealed the differential expression of 299 genes 
(corresponding to 425 probes), including 106 upregulated and 193 downregulated genes. Top five DEGs are 
presented in Table 1. Among the 106 upregulated genes, LPL has the highest LogFC of 4.36. Similarly, APOA1 
has the lowest LogFC value of -4.34 among 193 downregulated genes. The volcano plot represents the log2FC 
and the heatmap shows the DEGs in all the samples (Fig. 1). On the contrary, gluten-free diet versus in-vitro 
gliadin challenge analysis showed that global gene expression changes were less than 1.5 folds and insignificant, 
hence they were omitted from further analysis. The significant DEGs (more than 1.5 folds) from at the time of 
diagnosis versus gluten-free diet groups were selected for further analysis (Supplementary data Figure S1).

PPI networks of up and down regulated genes. PPI networks highlight the physical contacts among 
protein partners. They are critical in most basic molecular mechanisms involved in cellular function but are 
often perturbed in disease states. The PPI networks of upregulated DEGs included 103 nodes connecting 664 
edges with a clustering coefficient of 0.531 and network centralization of 0.221. While the downregulated PPIs 
included 188 nodes connecting 444 edges with a clustering coefficient of 0.256 and network centralization of 
0.120 (Fig. 2).

The gene ontology analysis of upregulated DEGs showed their significant enrichment in two broad groups 
namely cell cycle regulation and immune system function, under biological processes ontology source (Fig-
ures S2, S3). Gene expression changes in cell components were mainly enriched in the spindle, midbody, con-
densed chromosome kinetochore, and centromeric region, which are involved in cytokinesis processes at the 
end of cell division (Supplementary data Figure S4). In molecular function annotation, gene expression altera-
tions were associated with regulation of enzyme activities of endopeptidase, peptidase, and cysteine-type endo-
peptidase, which are mainly involved in activating cell-mediated immunity, autoimmune and inflammatory 
responses (Supplementary data Figure S5). The KEGG analysis revealed that DEGs were connected to cell cycle, 
p53 signalling pathway and apoptosis, where dysfunction of p53 and apoptosis are known for their association 
with  autoimmunity33,34 (Supplementary data Figure S6). Further classification of all upregulated DEGs under 
GO ontology source revealed their significant enrichment in immune system processes. Their pathway enrich-
ment analysis showed that response to interferon-gamma, regulation of T-cell proliferation, antigen processing, 
presentation of exogenous peptide antigens, NOD-like receptor signalling, Th1 and Th2 cell differentiation, IL-17 
signalling pathway were branch end terms (Fig. 2 and Supplementary data Tables S1, S2).

GO analysis of down-regulated DEGs showed their relation to metabolic and transport processes of a variety 
of molecules (Fig. 3). Some BP annotations include cellular lipid catabolism processes involved in lipid break-
down, and detoxification of inorganic compounds (Supplementary data Figure S7). MF annotations include 
symporter activity, which enables active transporting across the membrane and secondary active transmembrane 
transporter activity, which is a wider term involving solute transportation across the membrane (Supplementary 
data table S3 and Figure S8). The CC annotations included apical plasma membrane which is the microvilli 
surface of the lumen and cluster of actin-based cell projections, which form the microvilli of the small intestine. 

Table 1.  Top five differentially expressed genes (DEGs) in intestinal duodenum tissues at the time of CeD 
diagnosis versus post-gluten free dietary management.

Top 5 up and down regulated genes

Gene ID LogFC T-test P-value FDR

Upregulated

LPL 4.36342621 5.51 2.50 × 10–5 8.33 × 10–5

CXCL11 3.44269906 5.20 4.95 × 10–5 8.25 × 10–5

MMP3 3.10503802 4.42 2.9 × 10–4 3.62 × 10–4

LCN2 2.61525006 4.94 8.92 × 10–5 1.78 × 10–4

MMP12 2.44493598 3.67 1.61 × 10–3 3.22 × 10–3

Downregulated

APOA1 −4.3448706 −5.38 3.33 × 10–5 8.32 × 10–5

HMGCS2 −3.5650963 −5.55 2.29 × 10–5 1.14 × 10–4

CYP3A4 −3.1418 −5.23 4.59 × 10–5 9.18 × 10–5

DGAT2 −2.803011 −6.80 1.64 × 10–6 1.64 × 10–5

APOC3 −2.7603543 −4.35 3.36 × 10–4 3.74 × 10–4

https://www.kegg.jp/kegg/kegg1.html
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Figure 1.  The differentially expressed genes (DEGs) analysis of duodenum tissue at the time of CeD diagnosis 
in comparison to gluten restricted dietary managament. (A) Volcano plots of Log fold change of gene 
expression. (B) Heatmap of the DEGs with a LogFC > 1.5. Red: up-regulation; green: down-regulation. (C) 
Circos view of localization of DEGs on chromosomes (first track-chromosome number, second track- DEGs, 
Third track Up (Red) and Down (Blue) genes) (Circos figure generated using: https ://maria natte stad.com/chord 
ial).

https://marianattestad.com/chordial
https://marianattestad.com/chordial
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Figure 2.  Overview of PPI network constructed using Cytoscape STRING database. (A) upregulated (B) down 
regulated PPI network, the density of the network nodes is based on string confidence score > 0.7 (Network 
Figures generated using https ://cytos cape.org/).

https://cytoscape.org/
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Figure 3.  Enriched Immune system groups using the ClueGo and CluePedia plugins of Cytoscape. (A) GO/
immune pathwy terms specific for upregulated genes. (B) An overview pie chart with functional groups, 
including specific terms for the upregulated proteins in the immune pathways. (C) The bars represent the 
number of genes associated with the immune pathway (A–D Figures generated using https ://cytos cape.org/).

https://cytoscape.org/
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KEGG pathways highlighted mineral absorption, drug metabolism, vitamin digestion and absorption (Fig. 4 
and Supplementary data S9, S10). 

Cluster networks and hub genes identification using MCODE scores. Protein interaction network 
clusters are a group of proteins with great functional similarity than proteins in different clusters, whereas hub 
genes are functionally significant interconnected nodes in a cluster. MCODE is a Cytoscape plugin that searches 
for clusters (highly interconnected regions) in a protein interaction network. The PPI network analysis of up 
and down-regulated DEGs revealed two significant cluster networks from each category (MCODE score of > 5). 
From the upregulated PPI network, cluster 1, showed 28 nodes linked via 365 edges with an MCODE score 
of 27.037. The top nodes in this cluster showing MCODE scores of > 23 (PTTG1, CDC20, TTK, BIRC5 and 
DEPDC1) were identified as hub genes for CeD. The cluster 2 shows 15 nodes linked via 80 edges with MCODE 
score of 11.429. In cluster 2, the top 4 genes (CXCL9, CXCL10, IRF1 and STAT1) with MCODE scores > 7 were 
identified as hub genes for CeD. For the downregulated PPI network, the cluster 1, shows 9 nodes linked via 
32 edges; of which 5 (55.5%) were identified as hubs with MCODE score of 5.8. The top 3 hub genes (MT1H, 
MT1G and MT1E) identified for CeD from this cluster had an MCODE score of > 5.2. The second cluster has an 
MCODE score of 5.4 and is characterized by 31 nodes linked to 81 edges (Fig. 5). The top 2 hub genes showing 
an MCODE score of > 6 from this cluster were IGFBP3 and APOA1.

GO annotations of network clusters. The top cluster networks from MCODE were used as input for 
analyzing the PPI functional enrichment maps using ClueGo and CluePedia plugins. Tables  2 and 3 shows, 
highly significant GO annotation clusters with an p-value of < 1.35 × 10–2. The cluster 1 from upregulated DEGs 
network in BP ontology source has projected mitotic nuclear division and sister chromatid segregation as top 
GO terms. In MF ontology source, the top GO term was cyclin-dependent protein serine/threonine kinase 
regulator activity. For CC ontology source, the significant GO terms were related to kinetochore and spindle 
microtubule. KEGG pathway ontology source included cell cycle and p53 signalling pathway as significant GO 
terms, whereas cluster-2 was related to immune system processes. From BP ontology source, the top GO terms 
were cellular response to interferon-gamma and its interferon-gamma signalling pathway. These two GO terms 
were also seen to be significant under ISP ontology source. MF ontology source highlighted CXCR chemokine 
receptor binding especially CXCR3 as top GO terms. 

Cluster-1 of downregulated DEGs showed that the genes in this cluster were particularly related to mineral 
absorption and detoxification. The BP ontology source highlighted the detoxification of inorganic compound and 
stress response to metal ions as top GO terms. While the KEGG ontology source identified mineral absorption 
pathway as the significant GO term. The cluster-2 (from downregulated DEGs) was related to metabolism and 
absorption of diverse sets of molecules. BP highlighted GO terms like terpenoid metabolic process which is an 
organic compound and intestinal absorption. MF ontology source showed modified amino acid transmembrane 
transporter activity and dicarboxylic acid transmembrane transporter activity as top GO terms. CC ontology 
source has highlighted lipid absorption and metabolism-related GO annotations including chylomicron which 
are responsible for lipid transport and very-low-density lipoprotein particle. KEGG underlined GO terms like 
vitamin digestion and absorption as well as cholesterol metabolism.

Discussion
CeD is a complex multifactorial enteropathy where transglutaminase-deamidated gliadin peptides act as just 
initial event, but the actual anatomical and histological presentation of the disease is determined by multiple 
genomic and proteomic alterations taking place in a complex biological  network24. Thus, global gene expression, 
which involves studying expression changes in both immune response genes as well as non-immune response 
genes controlling the gliadin peptide recognition is an attractive strategy to identify the potential molecular 
pathological networks involved in CeD development. Several gene expression studies have investigated biological 
pathways essential for the development of CeD in intestinal  tissues40,41 and specific cell  types42. By integrating 
gene expression data with protein interaction network concepts, this study has identified the contribution of 
dysregulated immune system genes in the intestinal mucosa of CeD. Furthermore, this study reports that gene 
expression alterations in pathways connected to cell division regulation may have a compensatory role to contain 
the intestinal mucosal injury due to prolonged autoimmune responses. The additional noteworthy finding is 
related to impeded absorption, metabolism, and transportation of mineral and vitamins in the intestinal tissues, 
which eventually increases the likelihood of malnutrition alongside the role of villus atrophy in  CeD43.

GO annotations interpret the association of gene products to certain pathways from published works  on dis-
ease etiology and development 44. Majority of the annotations are enriched in the up- and down-regulated PPI 
clusters represent the most interacting group of genes amongst the whole PPI networks; especially, hub genes, 
which showed highest connectivity and correlation to their modules. Diverse pathways of hub genes connected 
to dysregulation of the immune system in intestinal duodenum tissues were enriched in the overexpressed genes 
and subsequently in PPI networks and its functional clusters. In the upregulated DEGs, KEGG pathway (https 
://www.kegg.jp/kegg/kegg1 .html) identified the significant enrichment of signalling pathways like NOD-like 
receptors (NLRs) and Toll-like receptors (TLRs). Both NOD-like and Toll-like receptors take part in mediating 
immune recognition by initiating innate immunity and activating adaptive immunity. Specifically, NLRP3 inflam-
masome (a member of NLRs family) is associated with innate immunity in response to the wheat protein in CeD 
knockout  mice45. Other enriched pathways included genes controlling TNF and IL-17 signalling responses, as 
well as Th1, Th2 and Th17 differentiation. CD4 + T cells differentiation is directly correlated to autoimmunity, 
and it is induced by IFNγ and other cytokines including IL-17 and TNF  protein46. This differentiation is essen-
tial for cytotoxic T lymphocyte activation, leading to intestinal epithelial cell destruction and villus  atrophy47.

https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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GO annotations of the immune-related module included signalling pathway of interferon-gamma (IFNγ), a 
major proinflammatory cytokine implicated in CeD, is well known for its role in regulating immune responses 
to infections and autoimmune diseases. IFNγ is also known to be very essential for the development of histo-
pathological changes like villus atrophy, crypt hyperplasia in intestinal mucosa and production of CeD-associated 
antibodies, which mounts a strong adaptive immune response to develop  CeD47. The additional key pathway 
enriched is chemokine signalling PPI cluster, which consists of CXCL9, CXCL10 and CXCL11 as hub genes. 
Another important hub gene from the immune-related module is STAT1, which is a direct activator of IFN-
stimulated  cells48. STAT1 has been previously associated with type 1 diabetes, which is caused by pancreatic 
β-cells destruction via cytokine-mediated apoptosis. Moreover, JAK2 gene, one of the gene from our upregu-
lated PPI network, was previously reported to be overexpressed in intestinal tissues of adults and children CeD 
 patients49. JAK2 is also critical for interleukin 12 (IL-12) signalling, whose production is attributed to several hub 
genes of this module such as interferon regulatory factors genes (IRF1, IRF8 and IFNG). Both IFNG and IL-12 
contribute to T-helper1 cell differentiation and pathogenesis of systemic lupus  erythematosus50. This suggests 

Figure 4.  ClueGO analysis of the predicted Go Annotations. Functionally grouped network of enriched 
categories was generated for the target genes. GO terms are represented as nodes, and the node size represents 
the term enrichment significance. (A) Representative Biological Process (B) Molecular Function (C) KEGG 
Pathways (D) Cellular components interactions among predicted targets. (A–D Figures generated using https ://
cytos cape.org/).

https://cytoscape.org/
https://cytoscape.org/
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that dysregulated JAK-STAT cytokine signaling pathway mediates cascade of autoimmune reactions in CeD and 
other co-autoimmune  conditions51.

Another major finding from upregulated cluster through KEGG pathway enrichment analysis includes cell 
cycle and p53 signalling  pathways33,34, both of which are known play key role in the activation of intestinal 
mucosal cellular division and  apoptosis52. The hub gene GTSE1 negatively regulates the p53 activity, hence it 
controls the downstream effects of p53 signalling pathway mediated cell  cycle53. The Cyclin B2 (CCNA2) hub 
gene is directly involved in G2/M transition phase during the cell cycle and delays the cellular senescence and 
apoptosis by  p5354. Other upregulated pathways reported in dietary gluten restricted mouse model of CeD are 
apoptosis and DNA repair in lamina propria and epithelium of the small  intestine47. Upregulation of cell divi-
sion related processes is thought to be a compensatory mechanism to the continuous apoptosis. The persistent 
apoptosis without sufficient cellular regeneration, causes villus atrophy of intestinal tissues, subsequently lead-
ing to malabsorption, a known complication in CeD  patients55. The increased cellular division and abnormal 
activation of the immune system findings derived from the annotations of the upregulated PPI network and its 
clusters are consistent with the results of previous gene expression studies on  CeD24,56.

The downregulated PPI network cluster results highlights the contribution of impaired homeostasis, diges-
tion, metabolism and absorption pathways in CeD. Of these network clusters, mineral absorption pathway 
alterations including iron, copper, magnesium and zinc deficiencies are common clinical manifestations seen 
in CeD patients 57. This is finding is supported by the identification of the metallothionein genes as hub genes in 
the first downregulated clusters, which are involved in heavy metal  homeostasis58. Another identified pathway 
is vitamin digestion and absorption, enriched by the SLC19A1, SLC46A, and other hub genes in the second 
downregulated module. Downregulation of this pathway could explain a common CeD clinical symptom- the 

Figure 5.  The MCODE clusters and hub genes identified from DEGs in duodenum tissue of celiac patients. 
Upregulated (A) Cluster-1. (B) Cluster-2, and Downregulated (C) Cluster-1. (D) Cluster-2 classified based on 
MCC score > 5. (A-D Figures generated using https ://cytos cape.org/).

https://cytoscape.org/
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multivitamin  deficiency57. Along with the impaired vitamin absorption, folate (B9) is mainly absorbed in the 
duodenum, which is affected by villous atrophy, making the CeD patients five times more susceptible to folate 
deficiency than normal individuals. Lastly, cholesterol metabolism, fat digestion and absorption pathways are 
enriched in downregulated hub genes like APOA1, APOA4, and CD36. APOA1 is the major component of high-
density lipoprotein (HDL) which is strongly associated with coronary heart disease (CHD)59,60. Both low HDL 
levels and risk of CHD have been reported in CeD  patients61. GO annotations of the second cluster includes drug 
metabolism, metal ion homeostasis, lipid and other molecules transportation. Heme, bile acid and xenobiotic 
metabolism are downregulated in dietary gluten restricted mouse model of  CeD47.

conclusion
This study highlights the utility of diverse system biology approaches for studying the gene expression profile of 
duodenum tissues to gain a comprehensive understanding about the underlying molecular mechanisms of CeD. 
Key pathways connected to potential biological events like (a) dysregulated immune system processes (NOD-like 
receptor signalling pathway, Th1 and Th2 cell differentiation, IL-17 signalling pathway), (b) loss of regulated cell 
division (cell cycle, p53 signalling pathway) and (c) impaired absorption (mineral and vitamin digestion and 
absorption as well as drug metabolism) were identified through protein interaction networks. All those pathways 
are connected to an increased number of intraepithelial lymphocytes (IELs) and villous atrophy of the duodenal 
mucosa. Validation of these biological pathways through functional studies could further confirm the present 
study findings. Furthermore, functional studies can then be utilized to identify the sensitive biomarker panel 
for diagnosis, prognosis, and novel drug targets for CeD.

Table 2.  Functional enrichment of MCODE cluster networks of upregulated DEGs highlights GO terms 
related to cell division and immune system.

Upregulated DEG clusters Ontology source Term ID GO term Term P value FDR

Cluster-1

Biological Processes (BP)

GO:0,140,014 mitotic nuclear division 1.80 × 10–20 9.02 × 10–20

GO:0,000,819 sister chromatid segregation 1.17 × 10–17 2.92 × 10–17

GO:0,007,088 regulation of mitotic nuclear division 9.77 × 10–16 1.63 × 10–15

GO:0,000,070 mitotic sister chromatid segregation 3.72 × 10–15 2.24 × 10–14

GO:0,051,783 regulation of nuclear division 4.32 × 10–15 1.30 × 10–14

Molecular Functions (MF) GO:0,016,538 cyclin-dependent protein serine/threonine kinase regulator 
activity 1.70 × 10–4 2.13 × 10–4

Cellular Components (CC)

GO:0,000,776 Kinetochore 1.07 × 10–10 1.80 × 10–10

GO:0,000,777 condensed chromosome kinetochore 3.88 × 10–10 1.36 × 10–9

GO:0,000,779 condensed chromosome, centromeric region 1.12 × 10–9 2.63 × 10–9

GO:0,005,876 spindle microtubule 7.48 × 10–8 9.36 × 10–8

GO:0,000,307 cyclin-dependent protein kinase holoenzyme complex 7.84 × 10–5 1.09 × 10–4

KEGG Pathways (KP)

KEGG:04,110 Cell cycle 2.08 × 10–10 3.47 × 10–10

KEGG:04,114 Oocyte meiosis 8.49 × 10–7 1.70 × 10–6

KEGG:04,914 Progesterone-mediated oocyte maturation 1.29 × 10–5 2.07 × 10–5

KEGG:04,115 p53 signaling pathway 1.74 × 10–4 1.74 × 10–4

Cluster-2

Biological Processes (BP)

GO:0,071,346 cellular response to interferon-gamma 2.84 × 10–14 1.42 × 10–13

GO:0,060,333 interferon-gamma-mediated signaling pathway 1.78 × 10–12 4.45 × 10–12

GO:0,071,357 cellular response to type I interferon 1.80 × 10–8 2.52 × 10–8

GO:0,060,337 type I interferon signaling pathway 1.80 × 10–8 2.52 × 10–8

GO:0,034,340 response to type I interferon 2.27 × 10–8 6.81 × 10–8

Molecular Functions (MF)

GO:0,048,248 CXCR3 chemokine receptor binding 9.28 × 10–9 4.64 × 10–8

GO:0,045,236 CXCR chemokine receptor binding 1.32 × 10–7 2.20 × 10–7

GO:0,042,379 chemokine receptor binding 7.92 × 10–7 1.43 × 10–6

GO:0,008,009 chemokine activity 1.96 × 10–5 2.53 × 10–5

KEGG Pathways (KP)
KEGG:05,133 Pertussis 1.21 × 10–5 1.52 × 10–5

KEGG:05,140 Leishmaniasis 3.83 × 10–4 3.83 × 10–4

Immune System Processes (ISP)

GO:0,071,346 cellular response to interferon-gamma 2.30 × 10–8 5.77 × 10–8

GO:0,060,333 interferon-gamma-mediated signaling pathway 7.28 × 10–8 9.11 × 10–8

GO:0,071,357 cellular response to type I interferon 3.31 × 10–5 6.63 × 10–5

GO:0,060,337 type I interferon signaling pathway 3.31 × 10–5 6.63 × 10–5

GO:0,034,340 response to type I interferon 4.15 × 10–5 4.98 × 10–5
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