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Deep learning based discrimination 
of soft tissue profiles requiring 
orthognathic surgery by facial 
photographs
Seung Hyun Jeong1,4, Jong Pil Yun1,4, Han‑Gyeol Yeom2, Hun Jun Lim3, Jun Lee3 & 
Bong chul Kim3*

facial photographs of the subjects are often used in the diagnosis process of orthognathic surgery. 
the aim of this study was to determine whether convolutional neural networks (cnns) can judge 
soft tissue profiles requiring orthognathic surgery using facial photographs alone. 822 subjects with 
dentofacial dysmorphosis and / or malocclusion were included. facial photographs of front and right 
side were taken from all patients. Subjects who did not need orthognathic surgery were classified as 
Group I (411 subjects). Group II (411 subjects) was set up for cases requiring surgery. CNNs of VGG19 
was used for machine learning. 366 of the total 410 data were correctly classified, yielding 89.3% 
accuracy. The values of accuracy, precision, recall, and F1 scores were 0.893, 0.912, 0.867, and 0.889, 
respectively. As a result of this study, it was found that CNNs can judge soft tissue profiles requiring 
orthognathic surgery relatively accurately with the photographs alone.

Dentofacial dysmorphosis (DFD) manifests itself in various aspects, including facial asymmetry, retrognathism, 
and  prognathism1. Various orthognathic surgery techniques are used to solve these skeletal  problems2. And 
diagnosis is important for DFD because it can predict the need for  surgery3. Meanwhile facial photographs of 
the subjects are often used in the early stages of the diagnosis process. In medical and dental field, deep learning 
network could be used for screening or provisional diagnosis rather than final diagnosis and final treatment plan. 
If patients complaining DFD can be automatically evaluated whether orthognathic surgery is needed by plain 
facial photographs, the deep learning network can be used as a useful screening tool in dental field.

Convolutional neural networks (CNNs) continue to advance and are being applied in a variety of dental and 
maxillofacial fields. This can perform radiographic detection of periodontal bone  loss4 and be used to diagnose 
cystic lesions using panoramic and cone beam computed tomographic  images5. Survival prediction of oral cancer 
patients are also  possible6. Perioperative blood loss in orthognathic surgery can be  predicted7. Automated skeletal 
classification is possible by lateral  cephalometry8.

However, to the best of our knowledge, CNNs have not been applied to the diagnosis of DFD using photo-
graphs of the subjects. Therefore, the aim of this study was to determine whether CNNs can judge soft tissue 
profiles requiring orthognathic surgery using facial photographs alone.

Results
The classification results for the dataset are shown in the confusion matrix in Table 1. 366 of the total 410 data 
were correctly classified, yielding 89.3% accuracy. The values of accuracy, precision, recall, and F1 scores were 
0.893, 0.912, 0.867, and 0.889, respectively. In addition, the visualization map of the classified pictures is over-
lapped with the original image. Lip, teeth, and chin are highlighted in the visualization map. Detailed photographs 
of subjects are not shown for anonymization.
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Discussion
The CNNs used in this study has two main characteristics. First, the backbone network extracts feature maps 
independently from the front and side facial photographs. And inference can be performed synthetically by 
combining the feature vectors before entering the fully connected layer. Second, high-level feature maps created 
after passing through the backbone network are vectorized through global pooling. So even if the size of the 
image is different, inference is possible.

Global pooling layer is a method recently used to replace the classifier structure that combines the composite 
product layer and the fully connected  layer9. The fully connected layer has a number of parameters, which require 
a long calculation time and a fixed input dimension. Therefore, this study used global pooling to eliminate this 
drawback.

The VisualBackProp method is used for  visualization10. This is averaged in the depth direction from the 
extracted feature map after passing through each pooling layer. And it starts with the final pooling map and 
deconvolutions to the original size of the image, multiplying the average feature map to visualize it. Lip, teeth, 
and chin are highlighted in the visualization map. As with maxillofacial surgeons, CNNs also observed these 
sites and evaluated the need for orthognathic surgery.

In general, when diagnosing DFD through photographs, the facial part is considered and evaluated. In 
addition, when taking a photograph of the patient’s face, all patients did not take the same range, therefore, 
the study was conducted by cropping only the facial area. Detailed photographs of subjects are not shown for 
anonymization.

Meanwhile, analysis of this study was based only on facial esthetics, from facial photos in two planes, without 
any functional consideration such as occlusion, breathing, and temporomandibular disorder, etc. This was the 
setting for the sake of the methodology. However, this is a very limited vision at the time of deciding whether 
an orthognathic surgery is required or not for a specific patient. Indeed, vast majority of patients referring to 
orthognathic surgeon present some degree of malocclusion, even if their main demand is esthetic.

However, this study revealed that CNNs can intuitively determine the necessity of orthognathic surgery to 
some extent by looking at facial photographs. This is the difference between human and CNNs. On the other 
hand, the analysis of this study revealed a certain level of false positives and false negatives. This is also a limita-
tion of the number of samples and the backbone network, but it can be interpreted as a result reflecting that soft 
tissue profiles alone cannot be used to determine all cases requiring orthognathic surgery.

Facial photographs of the subjects are commonly used in the diagnosis process of orthognathic surgery. As a 
result of this study, it was found that CNNs can judge soft tissue profiles requiring orthognathic surgery relatively 
accurately with the photographs alone.

Materials and methods
Datasets. In this study, transverse and longitudinal facial photographs of 822 patients who visited Daejeon 
Dental Hospital, Wonkwang University between January 2007 and December 2019 complaining DFD and/or 
malocclusion were used for training and testing a deep learning model. (mean age: 23.5 years, age range: 19 to 
28 years, 452 males, 370 females) Adolescents with incomplete facial growth or those with congenital deformity, 
infection, trauma and tumor history were excluded.

Facial photographs of front and right side were taken from all patients. To classify patients about the need 
for surgery, posteroanterior and lateral cephalometry were obtained using Planmeca Promax (Planmeca OY, 
Helsinki, Finland). All radiographic images were evaluated by two orthodontists, three maxillofacial surgeons 
and one maxillofacial radiologist. Point A-nasion-point B (ANB) and Wits appraisal were used for diagnosing 
the sagittal skeletal relationship. Jarabak’s ratio and Björk’s sum were used for determining the vertical skeletal 
relationship.

With consensus of 6 specialists, patients who did not need orthognathic surgery were classified as Group I 
(411 subjects). Group II (411 subjects) was set up for the patients requiring orthognathic surgery due to skeletal 
problems such as facial asymmetry, retrognathism, and prognathism. Although many factors other than the 
skeletal part (patient’s preference, patient’s soft tissue type, operator’s preference, etc.) are considered to deter-
mine the final treatment plan, this study classified patients about the need for surgery only by the skeletal factors 
obtained by cephalometry. Other than the facial photographs, no other diagnostic data were used to classify the 
two groups by CNNs.

preprocessing and image augmentation. The photographs were cropped based on the forehead, ear, 
and chin of subjects and used for training and test. The purified datasets were divided into training and test 
sets using a random sampling method so that the ratio of group I and group II was close to 1:1 (Table 2). Image 
augmentation was performed to help generalize learning. Since geometric information about face contours is 
important, the data set is 9 times larger than the original by resizing at intervals of 0.2 to 0.9 times with the 

Table 1.  Classification results.

Group I (ground truth) Group II (ground truth)

Normal (prediction) 177 (true positive; TP) 17 (false positive; FP)

Surgery (prediction) 27 (false negative; FN) 189 (true negative; TN)
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same horizontal and vertical ratios. This was doubled through left and right flips, creating a total of 18 times the 
dataset.

Architecture of the deep convolutional neural network. The CNNs used in this study is shown in 
Fig. 1. In order to determine the orthognathic surgery necessity, two independent facial photographs of the front 
and right side of the patient were used as input of CNNs. The proposed CNNs consists of the part of extracting 
the feature map from each of the front and side facial photographs, the part of vectorizing the extracted feature 
map, the part of combining the feature vectors, and the fully connected layer.

In this study, the CNNs of VGG19 was  used11. This model increases the recognition rate by deepening the 
CNNs. It passes through 19 weight layers. In this study, 16 weight layers are used since fully connected layer is 
excluded (Fig. 2). It has 16 convolutional layers and 5 pooling layers. The width, height, and depth dimensions 
of the final feature map are determined by the shape of the composite product neural network and the pooling 
layer. We used 3 by 3 product and 2 by 2 max pooling. Therefore, passing through the feature map extraction 
layer reduces the width and height by 32 times and extracts the final feature map with a depth of 512.

The extracted feature map is converted into a feature vector through the global pooling layer. The average 
value of each feature map was calculated and vectorized in the depth direction of the feature map generated 
by the feature extractor (Fig. 3). The feature vectors generated for each image are combined as shown in Fig. 1 
to classify groups through the fully connected layer. For the feature extractor, various models such as  VGG11, 
 ResNet12,  DenseNet13, and so on can be used. The accuracies according to various backbone network were sum-
marized in the supplement.

Visualization method.  The trained machine learning model was visualized so that the extracted part of 
the feature map of the front and side photographs could be identified. The VisualBackProp method was applied 
(Fig. 4)10. In this study, the final visualization map was created by resizing the pooling map instead of deconvolu-
tion.

Adam optimizer was used for  learning14. The size of the batch size is 1 and the learning rate is 0.00001. The 
number of epochs is fixed at 10 and no learning decay is used. Network weights were initialized to the values of 
the pre-trained VGG19 model. And Tensorflow was used for training and testing.

Statistical analysis. Statistical analysis was performed by calculating accuracy, precision, recall, and F1 
score based on the confusion matrix shown in Table 1. The accuracy, precision, recall, and F1 scores were calcu-
lated by the following equations.

Accuracy =
TP + TN

TP + TN + FN + FP

Table 2.  Dataset configuration.

Training Test

Group I (normal) 207 204

Group II (surgery) 205 206

Total 412 410

Figure 1.  CNNs classifier using independent front and lateral facial photographs.
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Precision =
TP

TP + FP

Recall =
TP

TP + FN

Figure 2.  Feature extractor architecture using VGG19 network.

Figure 3.  Global pooling.

Figure 4.  Feature visualization based on VisualBackProp.
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ethical approval and informed consent. This study was performed within the guidelines of the World 
Medical Association Helsinki Declaration for biomedical research involving human subjects and was approved 
by the Institutional Review Board of Daejeon Dental Hospital, Wonkwang University (W2002/001-001). 
Informed consents were obtained from the subjects.

Data availability
Data used in this study can be made available if needed within data protection regulation boundaries.
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