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the rapid “teabag” method 
for high‑end purification 
of membrane proteins
Jenny Hering1,2,7, Julie Winkel Missel3,7, Liying Zhang3, Anders Gunnarsson1, Marie Castaldo4, 
Per Amstrup Pedersen5, Margareta Ek1, Pontus Gourdon3,6 & Harm Jan Snijder4*

Overproduction and purification of membrane proteins are generally challenging and time‑consuming 
procedures due to low expression levels, misfolding, and low stability once extracted from the 
membrane. Reducing processing steps and shortening the timespan for purification represent 
attractive approaches to overcome some of these challenges. We have therefore compared a fast 
“teabag” purification method with conventional purification for five different membrane proteins 
(MraY, AQP10, ClC‑1, PAR2 and KCC2). Notably, this new approach reduces the purification time 
significantly, and the quality of the purified membrane proteins is equal to or exceeds conventional 
methods as assessed by size exclusion chromatography, SDS‑PAGE and downstream applications 
such as ITC, crystallization and cryo‑EM. Furthermore, the method is scalable, applicable to a range 
of affinity resins and allows for parallelization. Consequently, the technique has the potential to 
substantially simplify purification efforts of membrane proteins in basic and applied sciences.

Membrane proteins play a crucial role in many essential physiological functions in all organisms—including 
signal transduction, molecular recognition and ion transport to control cellular responses in health and disease 
 states1. Modulating these pathways is attractive as therapeutic intervention, and around 50% of current drugs 
on the market target membrane  proteins2,3, demonstrating the pharmacological importance of this protein class. 
However, membrane proteins are challenging to express and purify in functional form. Thus, drug discovery 
approaches for membrane proteins rely to large extent on phenotypic screening or target directed cell-based 
screening, while structure-based drug discovery, biochemical high-throughput screening and biophysical appli-
cations remain demanding.

Multiple hurdles exist for production of high quality membrane protein samples: natural abundance is typi-
cally low, and recombinant overexpression often leads to aggregation, misfolding or toxicity  issues4, and as con-
sequence levels of correctly inserted membrane proteins are often modest. Ironically, the next stumbling block 
arises as correctly inserted membrane protein targets require to be extracted from their membrane environment 
for purification and downstream applications, while maintaining their active  form5. Once extracted, membrane 
proteins are often aggregation-prone and show reduced stability and activity.

A wide range of strategies are emerging to address stability issues of extracted membrane proteins including 
novel  detergents6,7 and  polymers8,9, methods for rapid screening of buffer conditions and solubilization  agents10–12, 
use of ligands or lipids to increase  stability13,14, and mutagenesis  approaches15,16. Despite these measures, short 
purification procedures (minimizing the time between membrane protein extraction and the application) are 
essential to maximize the potential outcome in i.e. biophysics, structure determination and biochemical assays.

Previously, we have developed a “teabag” purification system for fast and easy purification of secreted 
 proteins17. For “teabag” purification, the affinity resin is contained in a porous bag, which can be incubated in 
growth-broth containing cells or unclarified lysate, to efficiently capture target proteins. In this work, we have 
evaluated the “teabag” purification system for five different membrane proteins: the Clostridium bolteae MraY 
enzyme involved in bacterial cell wall synthesis that has been heterologously expressed in Escherichia coli, the 
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human AQP10 water channel and the human chloride ion conducting ClC-1 channel (the E232A mutant form 
targeting a central gate-residue) expressed in yeast Saccharomyces cerevisiae, as well as the human PAR2 GPCR, 
and Monodelphis domestica KCC2 ion channel both heterologously expressed in insect cells. For the selected 
targets, purification results in purity and quality of samples that are identical to or exceed the established strate-
gies, while enabling a significantly reduced purification time (Fig. 1). We further show that “teabag” purified 
membrane proteins are compatible with downstream applications, such as enzymatic assays, reconstitution into 
liposomes, ITC, crystallization and cryo-EM.

Results
Purity, yield and chromatographic behavior.  In order to evaluate the capability of the teabag sys-
tem, we have expressed different membrane protein targets and purified each of them side-by-side with teabags 
and conventional purification methods. For adequate comparison, conventional and teabag purifications were 
performed in parallel using the same cell or membrane preparations. The purity of the proteins visualized by 
SDS-PAGE and size exclusion elution profiles are shown in Fig. 2, while yield, resin and purification times are 
listed in Table 1. 

With respect to purity, only minor differences are observed between the purification methods. The SDS-
PAGE in Fig. 2a shows that for teabag purified ClC-1 an additional lower molecular weight band occurs that 
is absent after conventional purification. For PAR2 and KCC2, the purity as judged by SDS-PAGE (Fig. 2b,c) is 
equal between the purification methods. However, for both MraY (Fig. 2d) and hAQP10 (Fig. 2e), the teabag 
material appears to be more pure.

While protein purity is an important criterion, size-exclusion profiles are considered the golden standard for 
membrane protein quality control. The ClC-1 E232A variant displays a large void peak (Fig. 2a), with a shoulder 
at 10 mL corresponding to the fraction of interest. For the teabag purified ClC-1, this shoulder is better resolved 
from the void peak and the ratio peak-of-interest/void is higher as compared to the conventionally purified 
ClC-1. In case of MraY (Fig. 2d) and hAQP10 (Fig. 2e) the size exclusion profiles show sharper protein peaks, 
indicating improved sample quality. For KCC2 (Fig. 2c), size exclusion profiles also indicate quality improvement 
when using teabag purification. Conventional purification of KCC2 results in three large SEC peaks at 8 mL, 
12 mL and 13.6 mL, respectively. These present aggregated KCC2 (8 mL), a non-ligand binding competent form 
(12 mL) and ligand binding competent KCC2 (13.6 mL). For teabag purified KCC2, the SEC profile shows smaller 
peaks at 8 and 12 mL, while the 13.6 mL feature is sharper and higher. Thus, the relative fraction of ligand binding 
competent KCC2 after teabag purification is substantially larger.

As listed in Table 1, the overall yield for the tested targets was lower for the teabag method in comparison to 
the conventional purification and varied for the different membrane proteins. Nevertheless, yields in the mg range 
were obtained in all cases, sufficient for downstream applications. The teabag purification was significantly faster 
for all tested targets as listed in Table 1. In case of KCC2, the purification time was considerably shortened from 
approximately 12 to 6 h with the teabag purification procedure. Similarly, the other protocols were shortened so 
that the total purification time became well manageable within a single working day.

Figure 1.  Overview and comparison of the conventional and teabag purification. Considerable time is saved 
with maintained protein quality using the purification procedures presented in this work. Teabag purification 
can be applied at various stages indicated by arrows a, b, and c, respectively for solubilization from whole cells, 
solubilization from membranes, and for purification after solubilization.
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Downstream applications.  In order to further evaluate quality, functionality and stability of the teabag 
samples, we have analyzed selected targets in functional assays in comparison to conventionally purified proteins 
and assessed their usability in downstream applications. In case of MraY, we have determined its thermal stabil-
ity and enzymatic activity from teabag material using a FRET-based activity  assay18,19. We observed membrane 
protein samples of MraY showing equal specific enzymatic activity (Fig. 3b), and a melting curve that was iden-
tical to samples obtained with the conventional purification (Fig. 3a). The teabag samples were further used in 
ITC experiments in order to determine the dissociation constant  Kd for the MraY inhibitor tunicamycin with 
a measured  Kd value of 233 nM, identical to conventional purified MraY (Fig. 3c). In addition, we reproduced 
initial crystal hits with mg-amounts of MraY purified with the teabag system.

Following size exclusion of hAQP10, we performed crystallization trials as previously  reported20 along with 
reconstitution experiments into liposomes for activity measurements. Glycerol and water flux through reconsti-
tuted hAQP10 purified using teabag are in agreement with conventionally purified hAQP10 (Fig. 4a,b). Crystal-
lization experiments yielded large rod-shaped crystals (Fig. 4c) with a slightly different morphology compared to 
the thin needle shaped hAQP10 crystals when using the classical purification procedure (Fig. 4d). This variance 

Figure 2.  Comparison of conventional and teabag purification of five different membrane proteins. Each panel 
shows the results from side-by-side comparison of conventional and teabag purifications, respectively. SDS-
PAGE with conventional (left) and teabag (right) purification, and SEC profiles with conventional purification 
(blue) and teabag purification (red). (a) Human ClC-1 chloride channel; (b) human PAR2; (c) Monodelphis 
domestica KCC2; (d) Clostridium bolteae MraY; (e) human AQP10. For each pairs of SDS-PAGE images, 
comparable amounts of protein have been loaded and the brightness and contrast is equal and applied across the 
entire image, non-cropped SDS-PAGE images are provided in the Supplementary Material.
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may be caused by the changed purity of the hAQP10 sample, possibly altering the lipid and/or detergent content 
of the sample. The diffraction of both types of crystals yielded diffraction to 2.0–2.5 Å (Fig. 4e,f), like what has 
already been  reported20.

We have analyzed E232A ClC-1 purified protein samples using electron microscopy. Negative stained electron 
micrographs revealed that the particles from the teabag samples were evenly distributed (as for the previously 
reported wild-type  protein21), while the particles from the conventional purification were more heterogeneous 
both in terms of particle shape and particle distribution (Fig. 5a,b). Thus, despite a slightly lower purity judged 
by SDS-PAGE (Fig. 1a), the teabag purified ClC-1 may be the preferred specimen for cryo-EM procedures due 
to the higher homogeneity, although the conventionally purified wild-type ClC-1 samples already has resulted 
in a cryo-EM structure 21.

For KCC2 direct ligand binding was measured using surface plasmon resonance (SPR). Teabag purified 
KCC2 showed saturated binding of compound  VU046327122 with a  Kd of 750 ± 250 nM (Fig. 6) and the data 
were comparable to SPR binding data for conventionally purified KCC2 (data not shown).

Discussion
Despite recent advances in the field, the production and purification of membrane proteins in their active forms 
remain a major challenge, and consequently e.g. high-resolution structures of membrane proteins are significantly 
under-represented in the structural protein database  PDB23. To address such membrane protein purification 
issues, we have successfully applied the teabag purification method to membrane protein targets. The technique 
is straightforward, inexpensive and significantly shortens the purification procedure, and established protocols 
can easily be adapted to teabag purification.

Using the teabag system, we have purified five membrane proteins, covering different target families, expres-
sion systems and detergent classes. We purified all examined membrane proteins to high quality using the teabag 
system on a substantially shorter time-scale compared to conventional purification methods. Despite subtle 
effects on the overall yield for teabag purification, we obtained sufficient amounts of purified membrane proteins 
for use in crystallization trials and ITC experiments (hAQP10 and MraY), which are techniques that consume 
mg-amounts of sample. Furthermore, lower purification yields may well be acceptable, when this is accompanied 

Table 1.  Summary of purification results.

Target Expression host
Teabag purification resin and 
method Yield (mg/L) Conventional yield (mg/L)

Purification time teabag/
conventional (hrs) QC & application

MraY E. coli IMAC
Talon 0.7 1.1 16/24 SEC, enzymatic assay, nanoDSF, 

ITC

ClC-1 S. cerevisiae IMAC
Ni–NTA 0.8 1.0 8/14 SEC, negative staining

hAQP10 S. cerevisiae IMAC
Ni–NTA 1.2 1.8 8/14 SEC, proteoliposomes, crystal-

lization

PAR2 Sf9 insect cells IMAC
Ni–NTA 0.6 0.7 7/10 SEC

KCC2 Sf9 insect cells FLAG 0.5–1.0 1.5 6/12 SEC, ligand binding by SPR

KCC2 Sf9 insect cells FLAG insoluble fraction not 
removed 0.5–1.0 1.5 6/12 SEC, ligand binding by SPR

Figure 3.  Quality assessment of purified MraY and comparison between conventional (blue) and teabag 
purification (red). (a) Nano DSF thermal stability; (b) FRET based activity assay; (c) Tunicamycin binding as 
measured by ITC.
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Figure 4.  Quality assessment of purified hAQP10 using a liposome assay and crystallization. (a) Water efflux 
assay of hAQP10 reconstituted proteoliposomes. Almost identical traces of conventional (blue) and teabag (red) 
purified samples, using empty liposomes as control (black); (b) glycerol efflux assay of hAQP10 reconstituted 
proteoliposomes. Almost identical traces of conventional (blue) and teabag (red) purified samples, using empty 
liposomes as control (black); (c) crystals produced from teabag purified hAQP10, showing rod-shaped crystal 
morphology; (d) crystals produced from conventionally purified hAQP10, showing needle-shaped crystal 
morphology; (e) diffraction pattern of conventionally purified hAQP10, showing a diffraction to approximately 
2 Å; (f) diffraction pattern of teabag purified hAQP10, showing a diffraction to approximately 2 Å.
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by improved quality of the membrane protein. This is particularly demonstrated for ClC-1, where negative 
staining EM after size exclusion verified a more homogeneous and better quality of the teabag purified sample.

Analysis of the size exclusion profiles for all tested targets suggests that teabag purification results in equal 
or better quality of the membrane proteins as shown by smaller fractions of the void and sharper elution peaks, 
which indicates less aggregation material in the teabag samples. In agreement with this notion, the size exclu-
sion profile of the teabag purified E232A ClC-1 variant indicates improved stability of the sample as compared 
to the conventionally purified sample.

The teabag system seems to enable a milder purification for membrane proteins, while the underlying mecha-
nisms are not fully clear to the authors. The shorter purification times could be the prime cause for the observed 
improvement in quality and stability of some membrane proteins. Additionally, more delicate purification con-
ditions could contribute to improved quality; during teabag purification, the immobilized membrane proteins 
are maintained under gentle stirring without applying any pressure or force, in contrast to standard purifica-
tion using gravity flow columns and/or automated HPLC systems. The teabag purification may also shift the 
equilibrium during solubilization, reducing the pool available for affinity-binding of solubilized protein, and/
or prevent aggregation, as immobilization of the targets on the purification resin permits rapid separation of 
the target protein from cell debris, filamentous and aggregated material that may otherwise form nuclei for 
further aggregation. Another aspect is the critical effect of lipids on the functionality of membrane proteins. 
Recent studies suggest slow kinetics for de-lipidation of membrane proteins relative to the faster solubilization 
 process24. This may imply that the samples from conventional purification can be delipidated to a larger extent 
compared to the teabag samples due to the longer purification time. Removal of lipids could result in reduced 
quality and poorer behavior of the membrane protein preparation. Although these hypotheses are speculative, 

Figure 5.  Quality assessment of purified ClC-1 using negative staining EM. (a) Conventionally purified ClC-1, 
showing higher degree of aggregation and increased heterogeneity in particle size and distribution; (b) teabag 
purified ClC-1, showing evenly distributed particles.

Figure 6.  Direct ligand binding assays of the teabag purified KCC2 by surface plasmon resonance (SPR). 
Concentration–response and corresponding Langmuir steady state fit of VU0463271 injected onto covalently 
immobilized KCC2. Inset: sensorgram of binding of (from bottom to top) 0, 0.1, 0.3, 1, 3, 10, 30 µM compound.
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understanding the basis for improved purification and kinetics of delipidation in various purification methods 
are interesting avenues for future studies.

Certainly our teabag purification may not be the only method to generate highly pure protein without the 
requirement for ultracentrifugation or with the potential for short purification protocols. Could resin beads 
be used without being confined in a teabag mesh, and simply being filtered from a crude solubilization mix-
ture? We however foresee concerns with beads adhering to cell debris and aggregates, incomplete separation of 
aggregates/debris, and clogging during filtering, which all may affect yield and preparation quality. Magnetic 
beads have successfully been applied to capture CCR5 and CXCR4 from clarified mammalian cell lysates and 
subsequently reconstituted to form magnetic  proteoliposomes25,26. Magnetic beads have further been employed 
for rapid screening of solubilization  conditions27. Nevertheless, modest protein binding capacity combined with 
relatively high cost of magnetic beads has so far limited application for mg-scale membrane protein purification. 
Phase-separation represents another interesting alternative to chromatography-based methods, with a number 
of advantages in common with the teabag method, such as relatively simple protocols, no complex laboratory 
equipment is required, easily scalable and that solubilization and purification can be  combined28. However, phase 
separation require typical high detergent concentrations, temperatures that may be incompatible with membrane 
protein stability, and protocols are highly detergent specific, necessitating optimization of the procedures for 
novel detergents such as maltose-neopentyl glycol  amphiphiles29.

Transmembrane proteins are attractive drug discovery targets, but notoriously difficult to work with. In case 
of hAQP10 and MraY, we verified the functionality of the samples produced with teabags in separate activity 
assays. We demonstrated MraY enzymatic activity and its binding to the inhibitor tunicamycin using a FRET-
assay and ITC experiments; similarly, we showed water and glycerol conductance across liposomes for hAQP10. 
The fact that it was so straightforward to apply the teabag system to purification of these proteins without further 
optimization—while maintaining the quality of the protein—demonstrates the strength of this method.

Collectively, we provide a package that shows the applicability of the teabag method for a variety of mem-
brane proteins—and expression systems—including pharmaceutically relevant and challenging targets. We also 
provide quality control of their maintained functionality and stability. In our study, we could show that the 
teabag system allows a wide range of downstream applications, including biochemical and biophysical assays, 
ITC, X-ray crystallography and cryo-EM.

In conclusion, the teabag system provides a novel membrane protein purification method that results in the 
isolation of high-quality samples without the need for ultracentrifugation. The method is scalable, resin inde-
pendent and allows for parallelization. The teabag system can aid membrane protein research as it allows the 
purification of high-quality samples in a cheap, fast, and easy way that can be used for subsequent functional 
and structural studies.

Material and methods
Construction of teabags.  The teabags were prepared as described  previously17 from a PET mesh (Sefar 
Petex 40 µm) using varying sizes according to the amount of affinity resin used. After filling and heat sealing, the 
teabags were washed with water and equilibrated with purification buffer prior to use or stored in 20% ethanol.

E. coli expression and purification of MraY.  The MraY protein was overexpressed according to previous 
 methods18, MraY was expressed in E. coli BL21(gold)DE3 cells in SB medium as 500-mL cultures with 0.1 mg/
mL kanamycin and 20 mM d-(+)-glucose in flasks. Cells were grown to  OD600 = 0.7–0.9 at 37 °C and 210 rpm. 
Protein expression was induced with 0.1 mM IPTG at 18 °C for 17–18 h. Cells were resuspended in lysis buffer 
[25 mM HEPES pH 7.5, 150 mM NaCl, 10% (v/v) glycerol, 1 mM  MgCl2, 0.1 mg/mL lysozyme, 1 mM TCEP, 
1 mM PMSF, complete protease inhibitor (Roche) and 0.3 μL/mL Benzonase (Sigma)]. All further steps were 
carried out at 4 °C. Cells were lysed in a Constant System cell disruptor at 28 kpsi and protein was extracted from 
the crude lysate by addition of 40 mM dodecyl-maltoside (DDM). Insoluble fractions were removed by centrifu-
gation. A teabag containing 3 mL cobalt Talon resin was added to the supernatant (400 mL) and incubated under 
gentle stirring overnight. The teabag was transferred to a 50 mL Falcon tube during each washing step for 5 min 
and was finally eluted in 5 CV elution buffer [20 mM HEPES pH 7.5, 150 mM NaCl, 3 mM decyl-maltoside 
(DM), 140 mM imidazole, 0.1 mM PMSF] for 5 min. The protein was subsequently concentrated using spin con-
centrators with 50 kDa cutoff and size-exclusion chromatography was carried out using a Superdex 200 10/30 
column (GE Healthcare) in a mobile phase of 20 mM HEPES pH 7.5, 150 mM NaCl, 3 mM DM, 1 mM TCEP.

Sf9 expression and purification of PAR2.  PAR2 was expressed and purified according to Cheng et al.30. 
In brief, stabilized PAR2 receptor was expressed in Sf9 cells and harvested 48 h after infection. Cells were lysed 
in 50 mM HEPES pH 7.5, 250 mM NaCl with protease inhibitor cocktail using a Constant System cell disrup-
tor at 25 kpsi. Membranes were collected by ultra-centrifugation and homogenized into 50 mM HEPES pH 7.5, 
250 mM NaCl buffer and stored at − 80 °C. Thawed membranes were incubated with the AZ8838 ligand (final 
concentration 84 µM) and solubilized by the addition of 1% (w/v) lauryl maltose neopentyl glycol (LMNG)/0.1% 
(w/v) cholesteryl hemisuccinate (CHS) mixture. After 1.5 h, the mixture was split in three equal volumes. For 
one of the aliquots insoluble material was removed by ultracentrifugation for 30 min at 205,000 × g in a Beck-
man Ti45 rotor, and 0.5 mL teabags were added (Petex 40 µm mesh, Sefar 07-40/25) ~ 1 × 2 cm filled with 0.5 mL 
Ni-NTA resin Qiagen Superflow Material no. 1018401, lot 136232607) to the soluble fraction. The two other 
aliquots of membrane solubilizate were not ultracentrifuged, and 0.5  mL teabags were added directly to the 
membrane mixture. PAR2 protein was incubated with the teabags under extensive mixing using a magnetic stir-
rer for 4 h. After incubation, teabags were transferred to new tubes and washed five times with 10–15 mL wash-
ing buffer [50 mM HEPES pH 7.5, 250 mM NaCl, 0.01% (w/v) LMNG, 0.002% (w/v) CHS, 50 µM AZ8838 and 
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40 mM imidazole] for 5 min with rolling. PAR2 was eluted from the teabags with three consecutive 5 mL elutions 
with buffer [50 mM HEPES pH 7.5, 250 mM NaCl, 0.01% (w/v) LMNG, 0.002% (w/v) CHS, 50 µM AZ8838 and 
300 mM imidazole] for 15 min with rolling. The eluates were concentrated to 0.5 mL using an Amicon Ultra-15 
concentrator (100 kDa molecular weight cut-off). Aggregated material was removed by ultra-centrifugation at 
135,520×g for 10 min in a Beckman Coulter bench-top centrifuge using the TLA-55 rotor. The samples were 
subjected to size-exclusion chromatography in 50 mM HEPES pH 7.5, 150 mM NaCl, 0.004% LMNG, 0.002% 
CHS, 50 μM AZ8838 or 5 μM AZ3451 on an Enrich 650 column (Bio-Rad).

Sf9 expression and purification of KCC2.  KCC2 was expressed with an N-terminal His and FLAG tag 
in Sf21 cells using a 20 L culture volume, and harvested 48 h after infection and frozen in − 80 °C. All further 
steps were carried out on ice or at 4 °C. For membrane preparation, cells were resuspended in an isotonic lysis 
buffer (10 mM HEPES pH 7.5, 20 mM NaCl, 1 mM KCl, 1 mM PMSF), and protease inhibitors (Roche Com-
plete EDTA free protease inhibitor tablets). Cells were lysed by mechanical sheering using an Ultra-turrax with 
a 25 mm cutting head at a speed of 19,000 rpm for 2 × 20 s. Unbroken cells and debris were removed by cen-
trifugation at 500×g for 15 min. Membranes were harvested by ultracentrifugation at 44,000 rpm in a Ti45 rotor 
(Beckman Coulter) for 30 min. Subsequently, membranes were washed with a high salt buffer (20 mM HEPES 
pH 7.5, 1 M NaCl and 10 mM KCl) and finally homogenized in a buffer containing 10 mM HEPES pH 7.5, 
10 mM NaCl, 10 mM MgCl2, 10 mM KCl, and 40% glycerol. Membranes were flash frozen in liquid nitrogen 
and stored at − 80 °C until use.

KCC2 was solubilized in a buffer containing 1% (w/v) Fos-choline C14 (FC14, Anatrace #F312S), 300 mM 
NaCl, 480 mM KCl, 20 mM HEPES pH 7.5, 1 mM PMSF, 2 protease inhibitor tablets for 3–4 h. Four teabags, 
each containing 1 mL anti-FLAG M2 affinity gel, were added 15 min after initiation of solubilization. While for 
conventional purification 4 mL resin (anti-FLAG M2 affinity gel) was added after solubilization and separation of 
insoluble material by ultracentrifugation. For conventional purification, gravity flow separation was performed 
using Bio-Rad 7311550 polypropylene columns. The teabags were transferred to a 50 mL Falcon tube during 
washing in washing buffer [20 mM HEPES pH 7.5, 300 mM NaCl, 480 mM KCl, 1 mM TCEP, 0.01 mg/mL 
lipids (POPC:POPE:POPG, 3:1:1), 0.05% (w/v) FC14] for 15 min and was finally eluted in 3 × 1 CV wash buffer 
supplemented with 0.1 mg/mL FLAG-peptide (Sigma F3290-4 mg) for 15 min. The protein was subsequently 
concentrated using spin concentrators with 100 kDa cutoff and size-exclusion chromatography was carried out 
using a Superose-6 10/300 column (GE Healthcare) in a mobile phase of 20 mM HEPES pH 7.5, 300 mM NaCl, 
480 mM KCl, 1 mM TCEP, 0.01 mg/mL lipids (POPC:POPE:POPG, 3:1:1), 0.05% (w/v) FC14.

Reproducibility of the teabag protocol was assessed using three technical replicates for PAR2 and KCC2; the 
purity of each of the three repeats was virtually identical, while the protein yield showed some variation in the 
range of the conventional purification protocols. For PAR2, the yield of purified protein per liter culture showed 
a relative standard deviation from the teabag purification of 25% compared to 18% for conventional methods, 
while for KCC2 these figures were 11% and 13%, respectively.

S. cerevisiae expression and purification of hAQP10.  The purification protocol of hAQP10 is based 
on work by Bjoergskov et al. and Gotfryd et al.20,31. The hAQP10 protein was overexpressed in S. cerevisiae in 
6 L amino acid-supplemented minimal medium (3% glucose and 3% glycerol) with 0.1 mg/mL ampicillin and 
V200 (4.0 mg/L Biotin, 400 mg/L d-Pantothenic Acid, 0.4 mg/L Folic Acid, 2000 mg/L Myo-Inositol, 80 mg/L 
Niacin, 40 mg/L p-Aminobenzoic Acid, 80 mg/L Pyridoxin, 40 mg/L Riboflavin, 80 mg/L Thiamin) diluted 200 
times in the flasks. Cells were grown to  OD600 = 1.0–1.5 at 30 °C and 100 rpm. Protein expression was induced 
with 2% galactose at 15 °C for 24 h, then harvested and placed at − 80 °C to facilitate cell lysis. All further steps 
were carried out at 4 °C. Cells were resuspended in 25 mM Tris–HCl pH 7.5, 500 mM NaCl, 20% v/v glycerol, 
5 mM BME, 1 mM PMSF and LPC protease inhibitors, and lysed using a bead beating system with glass beads. 
The cell suspension was first separated using 3000 rpm where the lysate was further spun down at 190,000×g for 
3 h in a Beckman Ti45 rotor. The membranes were resuspended in 20 mM Tris–HCl pH 7.5, 200 mM NaCl, 20% 
v/v glycerol, 5 mM BME, 1 mM PMSF and LPC protease inhibitors at 0.2 g membranes per mL (buffer), and 
solubilized in 2% w/v DM (Anatrace, Maumee, OH, USA) for 4 h. The membrane suspension was diluted to 1% 
DM. Two teabags containing in total 5 mL Ni–NTA resin were added to the supernatant and incubated under 
gentle stirring for 4 h. The teabags were transferred to a 50 mL Falcon tube during washing in washing buffer 
(20 mM Tris–HCl pH 7.5, 200 mM NaCl, 20% v/v glycerol, 5 mM BME, 50 mM imidazole pH 7.5, 0.2% DM) for 
5 min, and was finally eluted in 5 CV elution buffer (20 mM Tris–HCl pH 7.5, 200 mM NaCl, 20% v/v glycerol, 
5 mM BME, 500 mM imidazole pH 7.5, 0.2% DM) for 5 min. The protein was subsequently concentrated using 
spin concentrators with 100 kDa cutoff and size-exclusion chromatography was carried out using a Superdex 200 
increase 10/300 column (GE Healthcare) in a mobile phase of 20 mM Tris–HCl pH 7.5, 100 mM NaCl, 10% v/v 
glycerol, 2 mM BME, 0.4% Nonyl Glucopyranoside (NG) (Anatrace, Maumee, OH, USA).

S. cerevisiae expression and purification of hClC‑1.  The purification protocol for ClC-1 is similar 
to the one of hAQP10 and based on previous work by Wang et al.21. E232A ClC-1 was also overexpressed in S. 
cerevisiae in 2 L minimal medium in a bioreactor with 0.1 mg/mL ampicillin and V200 (see hAQP10 methods). 
Cells were grown until stagnation. Protein expression was induced with 2% galactose at 15 °C for 48 h then 
harvested. All further steps were carried out at 4 °C. Cells were resuspended in 25 mM imidazole pH 7.5, 1 mM 
EGTA, 1 mM EDTA, 10% v/v glycerol, 5 mM BME, 1 mM PMSF and LPC protease inhibitors and lysed using 
a bead beating system with glass beads. The cell suspension was first separated using 1000×g for 10 min where 
the lysate was further spun down at 190,000×g for 90 min in a Beckman Ti45 rotor. The membranes were resus-
pended in 50 mM Tris–HCl pH 7.5, 300 mM NaCl, 10% v/v glycerol, 5 mM BME, 1 mM PMSF and LPC protease 
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inhibitors, and solubilized in 1% w/v DDM and 0.33% CHS (Anatrace, Maumee, OH, USA) for 4 h. Two teabags 
containing in total 5 mL Ni–NTA resin were added to the supernatant and incubated under gentle stirring for 
4 h after addition of 30 mM imidazole pH 7.5. The teabags were transferred to a 50 mL Falcon tube during 
washing with high salt buffer (50 mM Tris–HCl pH 7.5, 800 mM NaCl, 5% v/v glycerol, 5 mM BME, 0.4 mg/
mL DDM and 0.04 mg/mL CHS) for 5 min, followed by washing with low salt buffer (50 mM Tris–HCl pH 7.5, 
300 mM NaCl, 5% v/v glycerol, 5 mM BME, 0.4 mg/mL DDM and 0.04 mg/mL CHS) for 5 min. Subsequently, 
the protein was eluted using 5 CV elution buffer (50 mM Tris–HCl pH 7.5, 300 mM NaCl, 5% v/v glycerol, 
5 mM BME, 0.4 mg/mL DDM and 0.04 mg/mL CHS, 200 mM imidazole pH 7.5). The top fractions were subse-
quently concentrated using spin concentrators with 100 kDa cutoff to 1 mL. Amphipols PMAL-8 was then added 
in a 1:5 w/w ratio and incubated overnight. Next, the sample was dialyzed overnight in a Slide-A-Lyzer, 20 K 
MWCO, (Pierce, USA) against 0.2 g Bio-Beads (Bio-Rad) to remove detergents and 40 mL of the final cryo buffer 
(20 mM Tris–HCl pH 7.5, 100 mM NaCl, 0.2 mM TCEP). Size-exclusion chromatography was carried out using 
a Superdex 200 increase 10/300 column (GE Healthcare) in a mobile phase of 20 mM Tris–HCl pH 7.5, 100 mM 
NaCl and 0.2 mM TCEP. The sample was concentrated to 0.7 mg/mL using a VivaSpin 100 MWCO (Sartorius, 
Germany) for negative staining. Purified ClC-1 solutions were diluted to10 μg/mL with the same buffer as for 
gel filtration. 3.5 μL diluted sample were applied to glow-discharged, 400 mesh carbon-coated grids (Tem-Sem, 
China) and incubated for 1 min. The grids were washed twice with 4 μL of staining solution (2% uranyl acetate) 
and then stained with 4 μL of staining solution for 1 min. Negative stain micrographs were taken on a transmis-
sion electron microscope operated at 100 kV (Philips CM 100) at a magnification of 69,000.

Functional  assay MraY.  Activity of MraY was investigated using a previously published FRET-based 
 assay19. Briefly, the assay was performed in 384 well black polystyrene assay plates in a total volume of 9 μL. An 
assay buffer containing 50 mM Tris–HCl pH 7.5, 0.5 M trehalose, 150 mM KCl, 50 mM  MgCl2, 1 mM DTT, 
0.05% Triton X-100 was used. 122 nM purified MraY protein was incubated with 20 μM undecaprenyl phos-
phate (C55P) and 24 μM 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sul-
fonyl) (LRPE) in assay buffer for 30 min. The reaction was initiated with 2 μM UDP–MurNAc-l-Ala-γ-D-Glu-
m-DAP-D-Ala-D-Ala labeled with BODIPY–FL–sulfosuccinimidyl ester (B-UNAM-pp) and 0 mM or 5 mM 
uridine 5′-monophosphate (UMP). Fluorescence was excited at 485 nm and detected simultaneously at 520 nm 
and 590 nm every minute for 30 min in a PheraStar plate reader (BMG Labtech, Cary, NC, USA).

The ITC titration experiments were conducted on a MicroCal Auto-200 system (GE Healthcare) using 15 µM 
MraY in a buffer containing 20 mM HEPES pH 7.5, 150 mM NaCl, 3 mM DM and 1 mM TCEP. Tunicamycin 
(200 µM) was added by injecting 13 × 3 µL at 25 °C with 150 s waiting time between subsequent injections. All 
measurements were performed in triplicates and the  Kd value is 233 ± 30 nM.

Differential scanning fluorimetry (DSF) measurements were performed on a Prometheus NT.48 (NanoTem-
per Technologies). MraY protein samples were prepared at a concentration of 0.5 mg/mL protein and 50 µM 
compound (or 5% DMSO as a control) in a buffer containing 20 mM HEPES pH 7.5, 150 mM NaCl, 3 mM DM, 
1 mM TCEP. Technical duplicates were prepared and loaded in glass capillaries that were positioned on the deck 
of the DSF instrument for analysis, each experiment was conducted two times. Melting curves were performed 
from 20 to 95 °C with a ramping of 0.5 °C/min at 60% excitation power. The PR.ThermControl software was used 
to perform the experiment and to analyze the data. To determine  Tm1/2, the maximum of the first derivative of 
the 330 nm wavelength was used.

Functional assay AQP10.  For liposome production E. coli polar lipid extract (Avanti polar lipids) were dis-
solved in chloroform in a glass vial to a concentration of 25 mg/mL, followed by removal of the chloroform using 
a light stream of nitrogen gas. The vial with the resulting lipid film was then placed in a desiccator overnight. The 
lipid film from the glass vial was rehydrated to a lipid concentration of 20 mg/mL using reconstitution buffer 
(20 mM Tris–HCl pH 7.5, 200 mM NaCl) with 10 mM fluorophore ((5)6-carboxyfluorescein (Sigma)) added. 
The resuspended lipid solution was sonicated using a bath sonicator for 3 × 15 min. Next, the lipid solution was 
flash-frozen 3 times in liquid nitrogen. Once thawed at room temperature, the lipid solution was passed through 
a 200 nm polycarbonate filter 11 times, using an extruder (Mini-Extruder, Avanti). Subsequently, the lipids were 
diluted to 4 mg/mL using reconstitution buffer with 25% glycerol, 0.4% NG and 0.02% Triton X-100 added. The 
purified hAQP10 was added to the lipid solution using a lipid-to-protein ratio of 25 (weight:weight). The sample 
was dialyzed overnight at 4 °C against reconstitution buffer. The samples were centrifuged at 57,000×g (1.5 h), 
and the resulting pellets were dissolved in resuspension buffer (20 mM Tris–HCl pH 7.4, 200 mM NaCl and for 
the glycerol measurements 500 mOsm glycerol was added to the resuspension buffer). The stopped-flow experi-
ments were performed using an SX-20 Stopped-Flow Spectrometer system (Applied Photophysics) in which the 
liposomes were rapidly mixed with a reaction buffer (resuspension buffer with 500 mOsm Sucrose added). The 
data were collected with the excitation wavelength of 495 nm, and measured for 5 s for water flux measurements 
and 10 s for glycerol flux. All data were collected at room temperature. Empty liposomes were used as a negative 
control and their flux rates subtracted from the flux rates of the AQP10 containing liposomes. The data were ana-
lyzed and plotted using GraphPad Prism 8. Each sample was measured 10 times, then averaged and normalized.

Surface plasmon resonance.  Measurements were performed on a BIAcore S200 (GE healthcare) at 20 °C 
using running buffer; 20 mM HEPES, 480 mM KCl, 300 mM NaCl, 1 mM TCEP, 0.05% FC14, 10 mg/L lipids 
(POPC:POPE:POPG, 3:1:1), 0.5% DMSO. Purified KCC2 was covalently immobilized on EDC/NHS activated 
NID500L chip (Xantec) utilizing the 6His-tag for pre-concentration of protein on the chip to a final level of 
3000 ± 500 RU. Concentration series of compounds (n = 3) were dispensed using a Digital dispenser (Tecan), 
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normalized to 0.5% DMSO and injected at 30 μL/min for 1 min. Binding levels were fitted to a Langmuir 1:1 
interaction model to extract steady state affinity  (Kd).

Crystallization.  hAQP10 crystals were produced by hanging-drop vapor diffusion at 18 °C by mixing pro-
tein solution (~ 4 mg/ mL) with a reservoir solution (100 mM MES-monohydrate-NaOH pH 6.0, 19% PEG 2K 
MME, 5% glycerol) in a 1:1 ratio. The crystals appeared after 1–2 days and were harvested followed by flash 
freezing in liquid nitrogen. X-ray diffraction data were collected using an EIGER detector at the Paul Scherrer 
Institut, Villigen, Switzerland, beam line X06SA.

Received: 1 June 2020; Accepted: 10 September 2020

References
 1. von Heijne, G. The membrane protein universe: What’s out there and why bother?. J. Intern. Med. 261, 543–557. https ://doi.org/

10.1111/j.1365-2796.2007.01792 .x (2007).
 2. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there?. Nat. Rev. Drug. Discov. 5, 993–996. https ://

doi.org/10.1038/nrd21 99 (2006).
 3. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34. https ://doi.org/10.1038/

nrd.2016.230 (2017).
 4. Drew, D., Froderberg, L., Baars, L. & de Gier, J. W. Assembly and overexpression of membrane proteins in Escherichia coli. Biochim. 

Biophys. Acta 1610, 3–10. https ://doi.org/10.1016/s0005 -2736(02)00707 -1 (2003).
 5. Garavito, R. M. & Ferguson-Miller, S. Detergents as tools in membrane biochemistry. J. Biol. Chem. 276, 32403–32406. https ://

doi.org/10.1074/jbc.R1000 31200  (2001).
 6. Seddon, A. M., Curnow, P. & Booth, P. J. Membrane proteins, lipids and detergents: Not just a soap opera. Biochim. Biophys. Acta 

1666, 105–117. https ://doi.org/10.1016/j.bbame m.2004.04.011 (2004).
 7. Stetsenko, A. A. G. A. An overview of the top ten detergents used for membrane protein crystallization. Crystals https ://doi.

org/10.3390/cryst 70701 97 (2017).
 8. Dorr, J. M. et al. The styrene-maleic acid copolymer: A versatile tool in membrane research. Eur. Biophys. J. 45, 3–21. https ://doi.

org/10.1007/s0024 9-015-1093-y (2016).
 9. Knowles, T. J. et al. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copoly-

mer. J. Am. Chem. Soc. 131, 7484–7485. https ://doi.org/10.1021/ja810 046q (2009).
 10. Backmark, A. E. et al. Fluorescent probe for high-throughput screening of membrane protein expression. Protein Sci. 22, 1124–1132. 

https ://doi.org/10.1002/pro.2297 (2013).
 11. Hattori, M., Hibbs, R. E. & Gouaux, E. A fluorescence-detection size-exclusion chromatography-based thermostability assay for 

membrane protein precrystallization screening. Structure 20, 1293–1299. https ://doi.org/10.1016/j.str.2012.06.009 (2012).
 12. Kotov, V. et al. High-throughput stability screening for detergent-solubilized membrane proteins. Sci. Rep. 9, 10379. https ://doi.

org/10.1038/s4159 8-019-46686 -8 (2019).
 13. Magnani, F. et al. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural 

studies. Nat. Protoc. 11, 1554–1571. https ://doi.org/10.1038/nprot .2016.088 (2016).
 14. Mitchell, D. C. Progress in understanding the role of lipids in membrane protein folding. Biochim. Biophys. Acta 951–956, 2012. 

https ://doi.org/10.1016/j.bbame m.2011.12.029 (1818).
 15. Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277. https ://doi.org/10.1038/natur 

e1741 4 (2016).
 16. Lebon, G., Bennett, K., Jazayeri, A. & Tate, C. G. Thermostabilisation of an agonist-bound conformation of the human adenosine 

A(2A) receptor. J. Mol. Biol. 409, 298–310. https ://doi.org/10.1016/j.jmb.2011.03.075 (2011).
 17. Castaldo, M., Barlind, L., Mauritzson, F., Wan, P. T. & Snijder, H. J. A fast and easy strategy for protein purification using “teabags”. 

Sci. Rep. 6, 28887. https ://doi.org/10.1038/srep2 8887 (2016).
 18. Hakulinen, J. K. et al. MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat. Chem. Biol. 13, 265–267. https 

://doi.org/10.1038/nchem bio.2270 (2017).
 19. Shapiro, A. B., Jahic, H., Gao, N., Hajec, L. & Rivin, O. A high-throughput, homogeneous, fluorescence resonance energy trans-

fer-based assay for phospho-N-acetylmuramoyl-pentapeptide translocase (MraY). J. Biomol. Screen 17, 662–672. https ://doi.
org/10.1177/10870 57112 43688 5 (2012).

 20. Gotfryd, K. et al. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat. Commun. 9, 4749. https ://doi.org/10.1038/
s4146 7-018-07176 -z (2018).

 21. Wang, K. et al. Structure of the human ClC-1 chloride channel. PLoS Biol. 17, e3000218. https ://doi.org/10.1371/journ al.pbio.30002 
18 (2019).

 22. Delpire, E. et al. Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: Development of a highly selective and 
more potent in vitro probe. Bioorg. Med. Chem. Lett. 22, 4532–4535. https ://doi.org/10.1016/j.bmcl.2012.05.126 (2012).

 23. Bill, R. M. et al. Overcoming barriers to membrane protein structure determination. Nat. Biotechnol. 29, 335–340. https ://doi.
org/10.1038/nbt.1833 (2011).

 24. Montigny, C. et al. Slow phospholipid exchange between a detergent-solubilized membrane protein and lipid-detergent mixed 
micelles: Brominated phospholipids as tools to follow its kinetics. PLoS One 12, e0170481. https ://doi.org/10.1371/journ 
al.pone.01704 81 (2017).

 25. Mirzabekov, T., Kontos, H., Farzan, M., Marasco, W. & Sodroski, J. Paramagnetic proteoliposomes containing a pure, native, and 
oriented seven-transmembrane segment protein, CCR5. Nat. Biotechnol. 18, 649–654. https ://doi.org/10.1038/76501  (2000).

 26. Babcock, G. J., Mirzabekov, T., Wojtowicz, W. & Sodroski, J. Ligand binding characteristics of CXCR4 incorporated into paramag-
netic proteoliposomes. J. Biol. Chem. 276, 38433–38440 (2001).

 27. DesuzingesMandon, E., Agez, M., Pellegrin, R., Igonet, S. & Jawhari, A. Novel systematic detergent screening method for membrane 
proteins solubilization. Anal. Biochem. 517, 40–49. https ://doi.org/10.1016/j.ab.2016.11.008 (2017).

 28. Arnold, T. & Linke, D. Phase separation in the isolation and purification of membrane proteins. Biotechniques 43, 427–440. https 
://doi.org/10.2144/00011 2566 (2007).

 29. Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane 
proteins. Nat. Methods 7, 1003–1008. https ://doi.org/10.1038/nmeth .1526 (2010).

 30. Cheng, R. K. Y. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115. https ://
doi.org/10.1038/natur e2230 9 (2017).

https://doi.org/10.1111/j.1365-2796.2007.01792.x
https://doi.org/10.1111/j.1365-2796.2007.01792.x
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nrd.2016.230
https://doi.org/10.1038/nrd.2016.230
https://doi.org/10.1016/s0005-2736(02)00707-1
https://doi.org/10.1074/jbc.R100031200
https://doi.org/10.1074/jbc.R100031200
https://doi.org/10.1016/j.bbamem.2004.04.011
https://doi.org/10.3390/cryst7070197
https://doi.org/10.3390/cryst7070197
https://doi.org/10.1007/s00249-015-1093-y
https://doi.org/10.1007/s00249-015-1093-y
https://doi.org/10.1021/ja810046q
https://doi.org/10.1002/pro.2297
https://doi.org/10.1016/j.str.2012.06.009
https://doi.org/10.1038/s41598-019-46686-8
https://doi.org/10.1038/s41598-019-46686-8
https://doi.org/10.1038/nprot.2016.088
https://doi.org/10.1016/j.bbamem.2011.12.029
https://doi.org/10.1038/nature17414
https://doi.org/10.1038/nature17414
https://doi.org/10.1016/j.jmb.2011.03.075
https://doi.org/10.1038/srep28887
https://doi.org/10.1038/nchembio.2270
https://doi.org/10.1038/nchembio.2270
https://doi.org/10.1177/1087057112436885
https://doi.org/10.1177/1087057112436885
https://doi.org/10.1038/s41467-018-07176-z
https://doi.org/10.1038/s41467-018-07176-z
https://doi.org/10.1371/journal.pbio.3000218
https://doi.org/10.1371/journal.pbio.3000218
https://doi.org/10.1016/j.bmcl.2012.05.126
https://doi.org/10.1038/nbt.1833
https://doi.org/10.1038/nbt.1833
https://doi.org/10.1371/journal.pone.0170481
https://doi.org/10.1371/journal.pone.0170481
https://doi.org/10.1038/76501
https://doi.org/10.1016/j.ab.2016.11.008
https://doi.org/10.2144/000112566
https://doi.org/10.2144/000112566
https://doi.org/10.1038/nmeth.1526
https://doi.org/10.1038/nature22309
https://doi.org/10.1038/nature22309


11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16167  | https://doi.org/10.1038/s41598-020-73285-9

www.nature.com/scientificreports/

 31. Bjorkskov, F. B. et al. Purification and functional comparison of nine human Aquaporins produced in Saccharomyces cerevisiae 
for the purpose of biophysical characterization. Sci. Rep. 7, 16899. https ://doi.org/10.1038/s4159 8-017-17095 -6 (2017).

Acknowledgements
The PhD studies of LZ were supported by the China Scholarship Council. PG is financed by the Lundbeck 
Foundation (R133-A12689 and R313-2019-774) as well as the Knut and Alice Wallenberg Foundation (KAW 
2015.0131). Funding is also obtained from The Independent Research Fund Denmark (8022-00368, 6108-00479 
and 9039-00273), the Swedish Research Council (2016-04474), NordForsk (82000) and by the European Union’s 
Horizon 2020 research and innovation program under the Marie Sklodowska-Curie agreement No 637295 
(X-probe). The funders had no role in study design, data collection and analysis, decision to publish, or prepara-
tion of the manuscript.

Author contributions
J.H., J.W.M., M.C., P.A.P., P.G., H.J.S. conceptualization and design of the experiments; J.H., J.W.M., L.Z., A.G., 
H.J.S. performed experiments; J.H., J.W.M., H.J.S. wrote the manuscript; J.H., J.W.M., M.C., M.E., P.A.P., P.G., 
H.J.S. were involved in data analysis and review of the manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information  is available for this paper at https ://doi.org/10.1038/s4159 8-020-73285 -9.

Correspondence and requests for materials should be addressed to H.J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-017-17095-6
https://doi.org/10.1038/s41598-020-73285-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The rapid “teabag” method for high-end purification of membrane proteins
	Results
	Purity, yield and chromatographic behavior. 
	Downstream applications. 

	Discussion
	Material and methods
	Construction of teabags. 
	E. coli expression and purification of MraY. 
	Sf9 expression and purification of PAR2. 
	Sf9 expression and purification of KCC2. 
	S. cerevisiae expression and purification of hAQP10. 
	S. cerevisiae expression and purification of hClC-1. 
	Functional assay MraY. 
	Functional assay AQP10. 
	Surface plasmon resonance. 
	Crystallization. 

	References
	Acknowledgements


