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Heat transfer flow of Maxwell 
hybrid nanofluids due to pressure 
gradient into rectangular region
Yu‑Ming Chu1,2, Rizwan Ali3, Muhammad Imran Asjad3, Ali Ahmadian4,5* & Norazak Senu6

In this work, influence of hybrid nanofluids (Cu and Al
2
O
3
 ) on MHD Maxwell fluid due to pressure 

gradient are discussed. By introducing dimensionless variables the governing equations with all levied 
initial and boundary conditions are converted into dimensionless form. Fractional model for Maxwell 
fluid is established by Caputo time fractional differential operator. The dimensionless expression for 
concentration, temperature and velocity are found using Laplace transform. As a result, it is found 
that fluid properties show dual behavior for small and large time and by increasing volumetric fraction 
temperature increases and velocity decreases respectively. Further, we compared the Maxwell, 
Casson and Newtonian fluids and found that Newtonian fluid has greater velocity due to less viscosity. 
Draw the graphs of temperature and velocity by Mathcad software and discuss the behavior of flow 
parameters and the effect of fractional parameters.

In industry and engineering many physical methods exist who have incomplete viscoelastic fluid, most common 
of these are molten plastics, synthetic propellants, exotic lubricants, suspension solutions, polymer solutions 
food stuffs, and so many other examples of viscoelastic fluid. These fluids have been modeled in a number of 
different behaviors with their constitutive equations varying greatly in complexity, among which the viscoelastic 
Maxwell fluid model has been studied widely Fetecau and  Fetecau1, Tan and  Masuoka2, Jamil et al.3 and Abbas-
bandy et al.4.  Christensen5 give the Maxwell model can be represented by a purely viscous damper and a purely 
elastic spring connected in series, which has been proposed to describe the behavior of viscoelastic fluids, and 
has some success in describing polymeric liquids, it being more amenable to analysis and more importantly 
experimental. Rheological constitutive equations with fractional derivatives  Podlubny6, Song and  Jiang7 and 
Imran et al.8 have been proved to be a valuable tool to describe the behaviors of viscoelastic properties. The 
fractional derivative models of the viscoelastic fluids are derived from classical equations, which are modified 
by replacing the time derivative of an integer order by precisely non-integer order integrals or derivatives. Song 
and  Jiang7 for the analysis of viscoelastic gum, experimental data used the fractional calculus method and by this 
method more reliable results were gained. Fetecau et al.9 studied the unsteady fluid flow of a second-grade cause 
by the time-dependent motion of a plate between two side walls perpendicular to the plate. Xue et al.10 and Xue 
and  Nie11 discussed the Rayleigh Stokes problem and find out the solutions by heating the viscoelastic fluid in 
a porous half-space. Jamil et al.3 find out the irregular flow of an condensed Maxwell fluid in which fractional 
derivative were produced by a sudden moved plate, and find out the effect on fluid motion by fractional limits 
and by materials. Qi and  Guo12 studied a new equation based on heat conduction and that equation was based on 
time-nonlocal generalized of Fourier law, the perfect solution of an initial-boundary value problem was studied 
and presented by series forms. Fan et al.13 introduced a converse issue to find out parameters in establishing 
fractional Zener model based on the Bayesian method, and for the justification of the method some examples 
were performed. Imran et al.8 investigated differnent fluids and find out their convection flow by using Caputo 
fractional derivatives, and by finding the fluid velocity using the Laplace transform method.

Magnetohydrodynamics (MHD) is the study of the behavior of electrically conducting fluids, i.e. a plasma or 
some other collection of charged particles, in a magnetic field. The collective motion of the particles gives rise to 
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an electric field that interacts with the magnetic field and causes the plasma motion to alter. This coupling between 
hydrodynamic forces and magnetic forces means that the magnetic field is effectively ‘frozen into’ the plasma; the 
field lines flow with the plasma, and can be stretched, squeezed, or looped. One consequence is that the frozen-in field 
lines of two plasmas prevent them from mixing. MHD has contributed to the understanding of the solar wind and 
its interaction with planetary magnetospheres, of solar flares and prominence. It was assumed that a liquid bond to a 
solid boundary and that condition called no-slip boundary is proved insufficient in many cases such as the mechanics 
of thin fluids. The large number of models have been proposed to explain the slip that on solid boundaries. In recent 
years, Zheng et al.14 find out the exact solutions of generalized Oldroyd-B fluid flow with the slip things. Han et al.15 
presented a slip flow of a generalized Burger’s fluid between two side walls generalized by an exponential accelerat-
ing plate and a constant pressure, the analytical solutions are established and analyzed. Akbar and  Khan16 given 
the numerical study of carbon nanotubes postponed magnetohydrodynamics (MHD) stagnation point flow over a 
stretching sheet with convective slip. Shakeel et al.17 studied the flows of an Oldroyd-B fluid under the consideration 
of slip condition at the boundary, the fluid motion is generated by the flat plate which has a translational motion in 
its plane with a time-dependent velocity. Hayat et al.18 find out the unstable flow of magnetohydrodynamics (MHD) 
over stretching sheet with velocity and thermal slip boundary conditions, and many different boundaries were find 
out on to calculate velocity and temperature. Ji et al.19 report on Dirac monopoles with a polar-core vortex induced 
by spin-orbit coupling in ferromagnetic Bose-Einstein condensates. Ji et al.20 working at three-dimensional study of 
the ring vortex solitons is conducted for both attractive and repulsive Bose-Einstein condensates subject to harmonic 
potential confinement. The localized nonlinear matter waves of the quasi-two-dimensional Bose-Einstein condensates 
with spatially modulated nonlinearity in the harmonic potential investigated by Shan et al.21. Wen et al.22 study the 
matter rogue wave in Bose–Einstein condensates with attractive interatomic interaction analytically and numerically. 
Fei et al.23 working at the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-
molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. Fei et al.24 
explore the rotating spin-1 Bose-Einstein condensates with anisotropic spin-orbit coupling by using the damped 
projected Gross-Pitaevskii equation. Some other references on Bose-Einstein condensates can be seen  in25–28.

Hybird materials were defined by Yamada et al.29 as combination of two or more than two constituents at molecu-
lar level and out of these two substances one is inorganic and other is organic, for example the covalent of bonds 
between silanol molecular inorganic / organic hybrids and polymers.  Makishma30 divided the substances in three 
groups according to their chemical modes (i.e. metals). Baghbanzadeh et al.31 find out the position of rheological 
properties of water based nanofluids and multi wall carbon nanotubes (MWCNTs). By a new designed concept of 
 Niihara32 exhibited the nanoparticles that enhanced thermal and mechanical properties. The things discussed above 
are primarily based on experimental study of hybrid nanoparticles. Since then, a few more practical studies have been 
done in this area. Iqbal et al.33 find the rotating oscillating vertical channel of the hybrid nanofluids. They supposed 
hall current thermal radiation with three different shapes of nanoparticles. They discovered that the platelet shapes 
of hybrid nanoparticles and heat transfer augments with volume fraction are found to have the highest temperature.

In complex dynamics, many cases of physical sciences and engineering cannot represent the classical or integer 
order derivative. Fractional calculus plays an important role in signal handling, chemical reactions, biomedical sci-
ences, viscoelastic flows etc. the integer order derivative in fractional calculus is interchanged with non integer order 
derivative will show the characteristics of memory influence of flow. In literature fractional models can be create in 
power law model, fractional statistical models, fluid dynamics, geophysics, fractional wavelet  model34,36,37. Vieru 
et al.38 by using the concept of Caputo time fractional derivatives studied the time fractional free convection flow of 
a generalized viscous fluid. Khan et al.39 using the Caputo fractional operator to made the model of Casson fluid .

The above researchers does not find the hybrid Maxwell nanofluid due to pressure gradient. In this work we 
find the effect of hybird nanofluids (Cu and Al2O3 ) on MHD Maxwell nanofluid due to pressure gradient and this 
is a new trend. The governing equations are obtained by introducing the dimensionless variables. Caputo time 
fractional derivative operator developed fractional model of hybrid Maxwell nanofluids with sodium alginate 
base fluid. Due to higher thermal conductivities Copper and Aluminium Oxide are considered as the nanopar-
ticles. With the help of Laplace transform to find the solutions of temperature and velocity. The inverse Laplace 
transform are obtained by using Stehfest’s and Tzou’s algorithmic. Using Mathcad’s software analytical solutions 
are designed graphically for fractional and flow parameters.

Statement of the problem
Let the unsteady flow of sodium alginate based hybrid nanofluid (Cu and Al2O3 ) in a vertical channel. Let the 
distance d between two parallel plates. The x-axis is taken along one of the plate which is fixed in the vertically 
upward direction and y-axis is normal to the plate. Initially, at time t = 0 , both the plates and the fluid are con-
sidered to be at the temperature Td . At time t > 0 , the temperature of the fluid at y = 0 is raised to To , causing 
the flow of free convection currents as shown in Fig. 1.

The governing equations are

• The balance of linear momentum equation in the absence of body force is given by 

• The constitutive relation for Maxwell fluid is given by 

(1)
ρhbnf ∂t u(y, t) =−

∂p

∂x
+ ∂yτ1(y, t)+ (T − T0) g (ρβT )hbnf

+ (C − C0) g (ρβc)hbnf − σ
hbnf

B20 u(y, t),

(2)(1+ �1 ∂t)τ1(y, t)− µhbnf ∂yu(y, t) = 0,
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• The equation of thermal balance 

• The thermal flux equation find by Fourier’s law of heat conduction by  Haristov40 and  Povstenko41. 

• The equation of diffusion balance is 

• The equation of molecular diffusion is 

where u = u(y, t) , T = T(y, t) , C = C(y, t) , ρhbnf  , µhbnf  , σhbnf  , βT , βC , g, (ρcp)hbnf  , khbnf  and Dhbnf  are respectively 
fluid velocity in the x-direction, temperature, concentration, density, the dynamic viscosity, electrical conduc-
tivity of the base fluid, volumetric thermal expansion coefficient, gravitational acceleration, heat capacitance of 
nanofluids, thermal conductivity of nanofluid and thermal diffusion coefficient.

Appropriate initial and boundary conditions are:

These relations are taken  from35.

where φ1 and φ2 are the nanoparticles volume fraction, ρf  , ρs1 and ρs2 are the density of the base fluid and hybrid 
nanoparticles, βs1 , βs2 and βf  are the volumetric coefficient of thermal expansions of nanoparticles and base fluids, 

(3)(ρCp)hbnf ∂tT(y, t) = −∂yq1(y, t),

(4)q1(y, t)+ khbnf ∂yT(y, t) = 0,

(5)∂tC(y, t) = −∂yJ1(y, t),

(6)J1(y, t)+ D∂yC(y, t) = 0,

(7)u(y, 0) =0, u(0, t) = 0, u(d, t) = 0, 0 ≤ d ≤ 1,

(8)T(y, 0) =T0, T(0, t) = T0, T(d, t) = Td ,

(9)C(y, 0) =C0, C(0, t) = C0, C(d, t) = Cd .

(ρβ)hbnf =(1− φ2) (ρβ)f

{

(1− φ1)+ φ1

(

(ρβ)s1

(ρβ)f

)}

+ φ2 (ρβ)s2 ,

µhbnf =
µf

(1− φ2)2.5(1− φ1)2.5
,

(ρcp)hbnf =(1− φ2) (ρcp)f

{

(1− φ1)+ φ1

(

(ρcp)s1

(ρcp)f

)}

+ φ2 (ρcp)s2,

khbnf =

{

ks2 + (s − 1)kbf − (s − 1)φ2(kbf − ks2)

ks2 + (s − 1)kbf + φ2(kbf − ks2

}

kbf ,

kbf =

{

ks1 + (s − 1)kf − (s − 1)φ1(kf − ks1)

ks1 + (s − 1)kf + φ1(kf − ks1

}

kf .

Figure 1.  Physical model and Coordinate system.
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(Cp)s1 , (Cp)s2 and (Cp)f  are the specific heat capacities of nanoparticles and base fluids at constant pressure. Here 
kf  , ks1 and ks2 are thermal conductivities of base fluid and nanoparticles.

Introducing the non-dimensional variables and functions

into Eqs. (1)–(6) and ignore the star notation.

with dimensionless conditions

where

Basic definitions and fractional model. A generalized model of the classical constitutive relation of 
Maxwell fluid for shear stress by using the concept of Blair and  Caffyn43.

u∗ =
u

U0

, x∗ =
x

d
, t∗ =

tU0

d
, y∗ =

y

d
, p∗ =

d

µU0

p,

θ =
T − T0

Td − T0

,C∗ =
C − C0

Cd − C0

, ω∗ =
ωd

U0

,

−
∂p∗

∂x∗
= �

∗
0 + �

∗ exp(iω∗t∗), τ ∗1 =
τ1

τ0
, q∗1 =

q1

q0
, J∗1 =

J1

J0
.

(10)
a1 Re ∂tu(y, t) = H(t)

{

�0 + � exp(iω t)
}

+ L ∂yτ1(y, t)

+ a2 Gr θ(y, t)+ a3 Gm C(y, t)−Mu(y, t),

(11)(1+ �2 ∂t)τ1(y, t)− a0 ∂yu(y, t) = 0,

(12)∂tθ(y, t) = −r1 ∂yq1(y, t),

(13)q1(y, t)+ b0 ∂yθ(y, t) = 0,

(14)∂tC(y, t) = −r2 ∂yJ1(y, t),

(15)J1(y, t)+ c0 ∂yC(y, t) = 0,

(16)u(y, 0) =0 , u(0, t) = 0 , u(1, t) = 0,

(17)θ(y, 0) =0 , θ(0, t) = 0 , θ(1, t) = 1,

(18)C(y, 0) =0 , C(0, t) = 0 , C(1, t) = 1,

a1 =(1− φ2)

{

(1− φ1)+ φ1
ρs1

ρf

}

+ φ2
ρs2

ρf
,

a2 =

[

(1− φ2)

{

(1− φ1)+ φ1

(

(ρβT )s1

(ρβT )f

)}

+ φ2

(

(ρβT )s2

(ρβT )f

)]

,

a3 =

[

(1− φ2)

{

(1− φ1)+ φ1

(

(ρβc)s1

(ρβc)f

)}

+ φ2

(

(ρβc)s2

(ρβc)f

)]

,

a4 =

[

(1− φ2)

{

(1− φ1)+ φ1

(

(ρCp)s1

(ρCp)f

)}

+ φ2

(

(ρCp)s2

(ρCp)f

)]

,

Re =
U0 d

ν
, L =

dτ0

µU0

, �2 =
�1 U0

d
, Gr =

g βT d2(Td − T0)

ν U0

,

Gm =
g βc d

2(Cd − C0)

ν U0

, Pr =
(µcp)f

kf
,

a0 =
µhbnf U0

τ0 d
, b0 = Khbnf

(

Td − T0

q0d

)

,

c0 = D

(

Cd − C0

J0d

)

, r1 =
q0

(ρcp)f U0(Td − T0)a4
,

r2 =
J0

U0(Cd − C0)
, M =

σ B20 d
2

µf
.

(19)(1+ �2 ∂t)τ1(y, t) = a1−α
CD1−α

t

{

∂u(y, t)

∂y

}

, 0 < α ≤ 1,
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Clearly when relaxation parameter �2 = 0 , we get the generalized constitutive relation for Newtonian fluid.
Hristov40 and  Povstenko41 find the constitutive thermal flux equation generalized Fourier’s law

The constitutive equation for diffusion balance equation by Fick’s law

In the above relations α , β and γ are fractional parameters and CDα
t  is Caputo time fractional operator defined 

 as44,45 where
hα(t) =

t−α

Ŵ(1−α)
 is the singular power-law kernal, g ′(y, s) = ∂g(y,t)

∂t |t=s and c1−α , d1−β , e1−γ are the general-
ized material coefficients.

For α,β , γ = 1 reduce to the material coefficients c0, d0 and e0 . The Laplace transform of Caputo time frac-
tional operator is

where ’L’ is the Laplace operator and is defined  in46.
By using Eqs. (19), (20) and (21) into Eqs. (10), (12) and (14) the fractional differential equation of the 

mathematical model will be:

We apply left inverse operators I1−α
t (.), I

1−β
t (.) and I1−γ

t (.) to Eqs. (23), (24) and (25)

or equivalently

(20)q1(y, t) = −b1−β
CD

1−β
t

{

∂θ(y, t)

∂y

}

, 0 < β ≤ 1.

(21)J1(y, t) = −c1−γ
CD

1−γ
t

{

∂C(y, t)

∂y

}

, 0 < γ ≤ 1

(22)L{CDα
t g(y, t)} = sαL

{

g(y, s)
}

− sα−1g(y, 0),

(23)

a1 Re (1+ �2
∂

∂t
) ∂tu(y, t) = H(t)

{

�0 + � exp(iω t)
}

+ L∂y
{

a1−α
CD1−α

t ∂yu(y, t)
}

+ (1+ �2
∂

∂t
)

a2 Gr θ(y, t)+ (1+ �2
∂

∂t
) a3 GmC(y, t)−M (1+ �2

∂

∂t
) u(y, t),

(24)∂tθ(y, t) = −P1∂y

{

−b1−β
CD

1−β
t ∂yθ(y, t)

}

,

(25)∂tC(y, t) = −P2∂y

{

−c1−γ
CD

1−γ
t ∂yC(y, t)

}

.

(26)

a1 Re (1+ �2
∂

∂t
) I1−α

t ∂tu(y, t) = H(t)
{

�0 + � exp(iω t)
}

+ L a1−α∂
2
y u(y, t)+ (1+ �2

∂

∂t
)a2 Gr

I1−α
t θ(y, t)+ (1+ �2

∂

∂t
) a3 Gm I1−α

t C(y, t)

−M (1+ �2
∂

∂t
) I1−α

t u(y, t),

(27)I
1−β
t ∂tθ(y, t) = r1b1−β∂

2
y θ(y, t),

(28)I
1−γ
t ∂tC(y, t) = r2c1−γ ∂2y C(y, t).

(29)
a1 Re (1+ �2

∂

∂t
) cDα

t u(y, t) = H(t)
{

�0 + � exp(iω t)
}

+ La1−α∂
2
y u(y, t)+ (1+ �2

∂

∂t
)

a2 Gr I
1−α
t θ(y, t)+ (1+ �2

∂

∂t
) a3 Gm I1−α

t C(y, t)−M (1+ �2
∂

∂t
) I1−α

t u(y, t),

(30)cDα
t θ(y, t) = r1b1−β∂

2
y θ(y, t),

(31)
cD

γ
t C(y, t) = r2c1−γ ∂2y C(y, t).

Note : I1−α
t ∂tu(y, t) =

c Dα
t u(y, t).
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Solution of the problem
In this section we find the solution of the initial and boundary value problem given in Eqs. (29)–(31) with the 
help of Laplace transform.

The solution of Eq. (31) subject to boundary conditions (18)2 − (18)3 with the help of Laplace transform 
technique.

where pγ = r2c1−γ , for γ → 1, pγ = r2c0 =
1
Sc

The solution of Eq. (30) subject to boundary conditions (17)2 − (17)3 with the help of Laplace transform 
technique.

where pβ = r1b1−β , for β → 1, pβ = r1b0 =
1

pr Re a4
.
khbnf
kf

The solution of Eq. (29) subject to boundary conditions (16)2 − (16)3 with the help of Laplace transform 
technique.

(32)C(y, s) =
1

s

{

∞
∑

n=0

e

√

sγ

pγ
(1+2n−y)

−

∞
∑

n=0

e

√

sγ

pγ
(1+2n+y)

}

,

(33)θ(y, s) =
1

s







∞
�

n=0

e

�

sβ

pβ
(1+2n−y)

−

∞
�

n=0

e

�

sβ

pβ
(1+2n+ y)







,

(34)

u(y, s) =

�

1

(1+ �2s)(a1Res +M)

��

�0

sα
+

�s1−α

s − ιω

�







−1+ e
−

�

(1+�2 s)+(a1Res+M)

pα s1−α





















e
y

�

(1+�2 s)+(a1Res+M)

pα s1−α
− e

−y

�

(1+�2 s)+(a1Res+M)

pα s1−α

e

�

(1+�2 s)+(a1Res+M)

pα s1−α
− e

−

�

(1+�2 s)+(a1Res+M)

pα s1−α















−
(1+ �2s) a2GrPβ

s
�

Pβa1Res(1+ �2s)+MPβ(1+ �2s)− Pαs1−α+β
�







∞
�

n=0

e

�

sβ

pβ
(2n)

−

∞
�

n=0

e

�

sβ

pβ
(2n+2)





















e
y

�

(1+�2 s)+(a1Res+M)

pα s1−α
− e

−y

�

(1+�2 s)+(a1Res+M)

pα s1−α

e

�

(1+�2 s)+(a1Res+M)

pα s1−α
− e

−

�

(1+�2 s)+(a1Res+M)

pα s1−α















−
(1+ �2s) a3GmPγ

s
�

Pγ a1Res(1+ �2s)+MPγ (1+ �2s)− Pαs1−α+γ
�

�

∞
�

n=0

e

�

sγ

pγ
(2n)

−

∞
�

n=0

e

�

sγ

pγ
(2n+2)

�















e
y

�

(1+�2 s)+(a1Res+M)

pα s1−α
− e

−y

�

(1+�2 s)+(a1Res+M)

pα s1−α

e

�

(1+�2 s)+(a1Res+M)

pα s1−α
− e

−

�

(1+�2 s)+(a1Res+M)

pα s1−α















+

�

1

(1+ �2s)(a1Res +M)

��

�0

sα
+

�s1−α

s − ιω

�







1− e
−

�

(1+�2 s)+(a1Res+M)

pα s1−α







+
(1+ �2s) a2GrPβ

s
�

Pβa1Res(1+ �2s)+MPβ(1+ �2s)− Pαs1−α+β
�







∞
�

n=0

e

�

sβ

pβ
(1+2n−y)

−

∞
�

n=0

e

�

sβ

pβ
(1+2n+y)







+
(1+ �2s) a3GmPγ

s
�

Pγ a1Res(1+ �2s)+MPγ (1+ �2s)− Pαs1−α+γ
�

�

∞
�

n=0

e

�

sγ

pγ
(1+2n−y)

−

∞
�

n=0

e

�

sγ

pγ
(1+2n+y)

�

.
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where pα = L a1−α , for α → 1, pα = L a0 =
1

(1−φ2)2.5(1−φ1)2.5
. Due to the complex nature of the problem, we are 

unable to find inverse Laplace transform. Therefore, for obtaining more accurate solution we applied some well 
known formulae to find inverse Laplace transform numerically.

The inverse Laplace transform of Eqs. (32)–(34) will be attained numerically by applying Tzou’s and Stehfest’s 
 algorithms47,48.

Table 1.  Thermophysical properties of nanofluids.

Physical properties ρ( km
m3 ) cp(

1

kg k ) σ( s
m ) k ( W

mk ) β × 10
5( 1k )

Sodium Alginate 989 4175 5.5 ∗ 10−6 0.6376 21

Copper φ1 8933 385 59.6 ∗ 106 400 1.67

Alumina φ2 3970 765 35 ∗ 106 40 0.85

Figure 2.  Concentration distribution against y due to γ for two dimensional graph, when: t = 3 and Sc = 6.

Figure 3.  Concentration distribution against y due to γ for three dimensional graph, when: t = 3 , Sc = 6 and 
γ = 0.6.
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Numerical results and discussion. In the present paper we discuss the hybrid Maxwell nanofluid in a 
rectangular region under the outcome of magnetohydrodynamics and pressure gradient. By applying Laplace 
transform method satisfying all initial and boundary conditions, this model has been solved analytically. For the 
influence of different parameters, concentration, temperature and velocity of the hybrid nanofluid are graphi-
cally discussed. By using Stehfest’s algorithm and Tzou’s algorithm to find the inverse Laplace transform and 
verify our obtained results. For graphical presentation, the thermophysical properties for base fluid and nano-
particles are taken from Table 1.

The effects of fractional parameter γ on concentration profiles is presented in Fig. 2. The concentration 
increases as we enhance the values of fractional parameter. Figure 3 represent the three dimensional graph of γ 
for concentration. The concentration comparison with Sidra et al.35 is shown in Fig. 4 and both results shows the 
good agreement with each other. In Fig. 5 by enhancing the values of fractional parameter β , the temperature 
increasing. This can be physically justified as when β is increased, the momentum and thermal boundary layer 
decreased and became thinnest at β = 1 as a result, the temperature profile decreased. The three dimensional 
graph of temperature for β is shown in Fig. 6. The influence of φ1 and φ2 on temperature profile are studied in 
Figs. 7, 8 and 9. The temperature profile increases with increase in φ1 and φ2 . The is due to the thermal conductiv-
ity increasing with the boost of φ1 and φ2 and the fluid showing more heat consequently, of heat transfer increases, 
which clues to an increase in the temperature profile. Figures 8, 9 and 10 signifies the three dimensional graph 
of temperature for φ1 and φ2 . Figure 11 represents the temperature comparison with Sidra et al.35 when N = 0 
and both results shows the good agreement.

Figure 4.  Concentration comparison of our result and Sidra et al.35, when: t = 0.1 , γ = 0.2 and Sc = 6.

Figure 5.  Temperature distribution against y due to β for two dimensional graph, when: t = 2 , φ1 = 0.6 , 
φ2 = 0.6 , Pr = 5 and Re = 1.
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Figure 12 is plotted to see the impact of fractional parameters. The fluid velocity reduces as we enhance the 
values of fractional parameters. This can be physically justified as when we increased fractional parameter, the 
momentum and thermal boundary layer decreased as a result the velocity profile decreased. The outcome of φ1 
and φ2 on the fluid velocity are presented in Figs. 13 and 14. The fluid velocity decreases with increasing φ1 and 
φ2 . This can be physically acceptable as the fluid became more viscous with increasing φ1 and φ2 , which clues to 
a decrease in the fluid velocity. The effect of Grashof number Gr is studied in Fig. 15. In this figure, it is detected 
that for larger values of Gr the the fluid velocity shows an increasing trend. This is because when Gr is increased 
the buoyancy forces become stronger due to which more convection takes place. As a result, the velocity profile 
increases. The velocity reduces as we rise the Magnetic parameter M in Fig. 16. Physically, it can occurs that 
answerable the drag force, which effects on the velocity field that faces the fluid motion, affects in reducing the 
velocity. Figure 17 shows that the velocity is a deceasing function of relaxation parameter �2 as we increased the 
magnitude of velocity. Figure 18 is presented the influence of Reynolds number Re and it can be seen that fluid 
velocity near the plate is maximum and decreases in its free stream region, as we increased the values of Reynolds 
number fluid velocity decreases. It is due to the fact that The Reynolds number (Re) helps predict flow patterns 

Figure 6.  Temperature distribution against y due to β for three dimensional graph, when: t = 2 , φ1 = 0.6 , 
φ2 = 0.6 , β = 0.1 , Pr = 5 and Re = 1.

Figure 7.  Temperature distribution against y due to φ1 for two dimensional graph, when: t = 0.1 , β = 0.4 , 
φ2 = 0.08 , Pr = 8 and Re = 1.5.
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in different fluid flow situations. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) 
flow, while at high Reynolds numbers flows tend to be turbulent. It is found that by increasing the values of Re 
the fluid velocity is also decreases for all fractional parameters. This happened due to the fact that Re is a dimen-
sionless number usually appear in fluid dynamics which characterized the flow behavior. It is ratio between 
inertial force and viscous force. It is the relative strength of inertial forces to viscous forces. The relative strength 
of these two actions their ratio does have a lot of influence on how the fluid flow behaves. Therefore, viscous 
force is more dominant is this case and responsible to slow down the fluid flow as well as reduce the boundary 
layer thickness between the models. Figure 19 depicts the impact of Schmidt number Sc on fluid velocity. By 
observing the figure we can see the increasing value of the Schmidt number with the decrease in the velocity 
profile due to the decrease in the molecular diffusivity, which turns to a decrease in the concentration and the 
thickness along the boundary layers of velocity. In order to check the validity of the present results of Maxwell 
fluid with the existing literature, we presented Fig. 20. It is found that when Casson parameter  in35 approaches 
to infinity and the relaxation parameter in the Maxwell fluid approaches to zero, both the obtained results are 
in good agreement. Further, an other comparison between the different fluids models like Maxwell, Casson and 
viscous fluid we plotted Fig. 21 and it is clear that viscous fluid has higher velocity than Maxwell and Casson 
fluids. It is due to the reason that viscous fluid has less viscosity than others thats why it flows with larger velocity.

Figure 8.  Temperature distribution against y due to φ1 for three dimensional graph, when: t = 0.1 , φ1 = 0.04 , 
φ2 = 0.08 , β = 0.4 , Pr = 8 and Re = 1.5.

Figure 9.  Temperature distribution against y due to φ2 for two dimensional graph, when: t = 0.1 , β = 0.4 , 
φ1 = 0.08 , Pr = 8 and Re = 1.5.
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Figure 22 shows the comparison of velocity in the absence of magnetohydrodynamics M = 0 and mass trans-
fer Gm = 0 , and compared with Rizwan et al.42 it is found that both results show the same behavior. In order 
to support the inversion algorithms of Laplace transform for temperature, concentration and velocity fields we 
have plotted Figs. 23, 24 and 25 and found that they are in good agreement.

Conclusions
In this paper we discuss the Maxwell hybrid nanofluids (Cu and Al2O3 ) due to pressure gradient into rectangular 
region using Caputo time fractional operator. Exact analytical solutions are setteled for concentration, tempera-
ture and velocity profiles via the Laplace transform technique. The influence of various parameters are numeri-
cally studied through graphs and discuss physically. The major points extracted from this study are as follows: 

1. Temperature and concentration showed dual behavior for fractional parameters β and γ for small and large 
time due to power law nature of the kernel.

2. Increasing the values of nanoparticles volume fraction φ1 and φ2 , consequently increases the temperature 
and decreases the velocity.

3. The values of fractional parameters Reynolds number Re , Schmdit number Sc, and magnetic parameter M 
increases, then velocity decreases.

4. We have compared the present results with the existing models and found that they are in good agreement.

Figure 10.  Temperature distribution against y due to φ2 for three dimensional graph, when: t = 0.1 , φ1 = 0.08 , 
φ2 = 0.08 , β = 0.4 , Pr = 8 and Re = 1.5.

Figure 11.  Temperature comparison of our result and Sidra et al.35, when: t = 1 , β = 0.2 , Re = 1 , Pr = 6 , 
φ1 = 0.04 and φ2 = 0.04.
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Figure 12.  Velocity distribution against y due to equal fractional parameters, when: t = 0.6 , φ1 = 0.04 , 
φ2 = 0.04 , Pr = 6 , �0 = 1.2 , � = 0.5 , ω = 0.5 , Sc = 0.1 , M = 0.5 , �2 = 1 , Gr = 0.0000005 , Gm = 0.5 and 
Re = 0.0005.

Figure 13.  Velocity distribution against y due to φ1 , when: t = 0.04 , φ2 = 0.8 , Pr = 6 , �0 = 1.2 , � = 0.5 , 
ω = 0.5 , Sc = 0.1 , M = 0.01 , �2 = 2 , Gr = 0.05 , Gm = 1 , Re = 0.1 , α = 0.2 , β = 0.2 and γ = 0.2.

Figure 14.  Velocity distribution against y due to φ2 , when: t = 0.04 , φ1 = 0.8 , Pr = 6 , �0 = 1.2 , � = 0.5 , 
ω = 0.5 , Sc = 0.1 , M = 1 , �2 = 2 , Gr = 0.05 , Gm = 1.5 , Re = 0.1 , α = 0.2 , β = 0.2 and γ = 0.2.
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Figure 15.  Velocity distribution against y due to Gr = 0.05 , when: t = 1.7 , φ1 = 0.8 , φ2 = 0.8 , Pr = 6 , 
�0 = 1.2 , � = 0.5 , ω = 0.5 , Sc = 1 , M = 0.5 , �2 = 2 , Gm = 0 , Re = 1.5 , α = 0.2 , β = 0.2 and γ = 0.2.

Figure 16.  Velocity distribution against y due to M, when: t = 1.7 , φ1 = 0.8 , φ2 = 0.8 , Pr = 6 , �0 = 1.2 , 
� = 0.5 , ω = 0.5 , Sc = 0.01 , Gr = 0.5 , �2 = 2 , Gm = 0 , Re = 1.5 , α = 0.2 , β = 0.2 and γ = 0.2.

Figure 17.  Velocity distribution against y due to �2 , when: t = 1.7 , φ1 = 0.8 , φ2 = 0.8 , Pr = 6 , �0 = 1.2 , 
� = 0.5 , ω = 0.5 , Sc = 1 , Gr = 1.95 , M = 0.5 , Gm = 0.001 , Re = 1.5 , α = 0.2 , β = 0.2 and γ = 0.2.
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Figure 18.  Velocity distribution against y due to Re , when: t = 0.08 , φ1 = 0.8 , φ2 = 0.8 , Pr = 6 , �0 = 1.2 , 
� = 0.5 , ω = 0.5 , Sc = 0.01 , Gr = 0.1 , M = 0.5 , Gm = 5 , �2 = 1 , α = 0.2 , β = 0.2 and γ = 0.2.

Figure 19.  Velocity distribution against y due to Sc, when: t = 1.8 , φ1 = 0.8 , φ2 = 0.8 , Pr = 6 , �0 = 1.2 , 
� = 0.5 , ω = 0.5 , Re = 1.5 , Gr = 0.1 , M = 0.5 , Gm = 12 , �2 = 2 , α = 0.2 , β = 0.2 and γ = 0.2.

Figure 20.  Velocity comparison of our result when �2 = 0 with Sidra et al.42 when β = 0.
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Figure 21.  Velocity comparison between Newtonian and non-Newtonian fluids models with fractional 
derivatives.

Figure 22.  Velocity comparison of our result with Rizwan et al.42, when: M = 0 and Gm = 0.

Figure 23.  Inverse Laplace transform of the concentration profile by Stehfest’s and Tzou’s algorithms.
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5. In comparison of Newtonian and non-Newtonian fluids models it is found that viscous fluid faster than 
Maxwell and Casson fluids.
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