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Assessing the prognostic value 
of stemness‑related genes in breast 
cancer patients
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Breast cancer (BC) is currently one of the deadliest tumors worldwide. Cancer stem cells (CSCs) 
are a small group of tumor cells with self‑renewal and differentiation abilities and high treatment 
resistance. One of the reasons for treatment failures is the inability to completely eliminate tumor 
stem cells. By using the edgeR package, we identified stemness‑related differentially expressed genes 
in GSE69280. Via Lasso‑penalized Cox regression analysis and univariate Cox regression analysis, 
survival genes were screened out to construct a prognostic model. Via nomograms and ROC curves, 
we verified the accuracy of the prognostic model. We selected 4 genes (PSMB9, CXCL13, NPR3, and 
CDKN2C) to establish a prognostic model from TCGA data and a validation model from GSE24450 
data. We found that the low‑risk score group had better OS than the high‑risk score group, whether 
using TCGA or GSE24450 data. A prognostic model including four stemness‑related genes was 
constructed in our study to determine targets of breast cancer stem cells (BCSCs) and improve the 
treatment effect.

Breast cancer (BC) is one of the most common tumors in females. In China, the number of new cases is 272,400, 
and the death toll is 69,500 every  year1. According to immunohistochemical analysis, BC can be divided into 
luminal-type, Her2-positive and triple-negative breast cancer (TNBC), of which TNBC has the worst  prognosis2,3. 
With improved treatment, the mortality rate of BC is decreasing year by  year4,5, but 70% of patients have recur-
rence and metastasis within 5 years6.

There is a small group of stem-like cells in tumors called cancer stem cells (CSCs). CSCs have the characteris-
tics of self-renewal and differentiation abilities and high drug  resistance7–11. Previous studies have indicated that 
this portion of breast cancer stem cells (BCSCs) is identified by cell surface markers, such as CD44, CD24, CD133 
and ALDH12,13. With changes in the tumor microenvironment, BC cells can differentiate into tumor stem-like 
 cells14,15. In BC-resistant cell lines and tissues, the CSC population is significantly increased by  chemotherapy16. 
Compared with other types of BC, TNBC has the highest expression of stem cell markers, which may be one of 
the reasons for TNBC having the worst  prognosis15,17. Previous studies have shown that stemness-related-gene 
expression can be used as a predictive biomarker for breast cancer patients. Akbar et al. identified a novel gene 
list (CNCL) that can discern the stemness and EMT phenotypic statuses of breast cancer, thereby tracking tumor 
cells and altering the response to tumor  treatment18.

Treatment for BCSCs has already emerged but is still immature. In our article, we hope to identify multiple 
stemness-related genes for determining BC prognosis by establishing a prognostic model. These genes may be 
potential targets for treating breast cancer, which may improve patient survival.
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Result
Selected stemness‑related differentially expressed genes (DEGs). Via edgeR, we identified 599 
stemness-related DEGs in GSE69280; among them, 255 genes were upregulated, and 344 genes were downregu-
lated, with thresholds of |log2 FC|> 1.0 and P < 0.05 (Fig .S2).

Identification of stemness‑related DEGs in the TCGA BC database. Coexpressed genes were 
obtained by intersection of TCGA and GSE24450 data. We obtained 566 genes by intersection the stemness-
related DEGs list and TCGA data. By Using edgeR, we identified 106 stemness-related DEGs in TCGA BC 
patients; among them, 54 genes were downregulated, and 52 genes were upregulated, with thresholds of |log2 
FC|> 1.0 and an adjusted P < 0.05 (Fig. 1A,B).

Construction of the stemness‑related‑gene prognostic model. By using univariate Cox regression 
analysis, we obtained the survival-associated genes shown in Fig. 2. Lasso-penalized Cox regression was per-
formed to identify the genes in the prognostic model. We constructed a prognostic model and used GSE24450 
to build a validation model. In TCGA prognostic model the expression of genes for each patient is shown in 
Fig. 3A, the distribution of different risk scores is shown in Fig. 3B, the distribution of different survival statuses 
(years) of TCGA patients is shown in Fig. 3C. In GSE24450 validation model the expression of genes for each 
patient is shown in Fig. 3D, the distribution of different risk scores is shown in Fig. 3E, the distribution of dif-
ferent survival statuses (years) of GSE24450 patients is shown in Fig. 3F. The risk score for the prognostic gene 
signature was calculated as follows: risk score = (expression level of PSMB9 × − 0.01623) + (expression level of 
CXCL13 × − 0.00335) + (expression level of NPR3 × 0.05481) + (expression level of CDKN2C × − 0.04691).

Figure 1.  The stemness-related differentially expressed genes of breast cancer patients. (A) Heatmap and (B) 
Volcano plot.

Figure 2.  The survival-associated stemness-related differentially expressed genes of breast cancer patients.
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We classified patients into low- and high-risk score groups based on the median risk score as the cut-off. 
Survival was analyzed by a Kaplan–Meier (KM) curve, and the low-risk-score group had better overall survival 
(OS) than the high-risk-score group (P < 0.001) (Fig. 4A). In the validation model, the low-risk-score group had 
better OS than the high-risk-score group (P = 0.0115) (Fig. 4B).

The clinical utility of the prognostic model. In the TCGA prognostic model, univariate Cox 
regression analyses (Fig. 5A) showed that older age (> 65) (hazard ratio [HR 1.532; 95% confidence interval 
[CI] = 1.117–2.047; P < 0.001), high American Joint Committee on Cancer (AJCC) stage (III-IV) (HR = 2.048; 
95% CI = 1.603–2.616; P < 0.001), high tumor (T) stage (3–4) (HR = 1.379; 95% CI = 1.101–1.729; P = 0.005), 
lymph node metastasis (positive) (HR = 1.572; 95% CI = 1.300–1.900; P < 0.001), and high risk score (HR = 3.108; 
95% CI = 2.049–4.715; P < 0.001) were significant risk factors for poor prognosis. In the multivariate Cox regres-

Figure 3.  Establishment of the stemness-related prognostic model. (A) Heatmap of four genes in the TCGA 
model. (B) Rank of risk score and distribution of groups in the TCGA data. (C) Survival status of TCGA BC 
patients in different groups. (D) Heatmap of four genes in the GSE24450 model. (E) Rank of risk score and 
distribution of groups in the GSE24450 data. (F) Survival status of GSE24450 BC patients in different groups.

Figure 4.  Survival analysis of the prognostic models. (A) The KM curve of the TCGA model. (B) The KM 
curve of the GSE24450 model.
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sion analysis (Fig. 5B), older age (> 65) (HR = 1.634; 95% CI = 1.319–2.048; P < 0.001), high AJCC stage (III–IV) 
(HR = 2.101; 95% CI = 1.244–3.549; P = 0.005) and high risk score (HR = 3.324; 95% CI = 2.010–5.497; P < 0.001) 
were found to be independently associated with poor OS. The risk scores were significantly higher for patients 
with higher AJCC stage (III-IV) (Fig. 6C) and older age (> 65) (Fig. 6D). The risk score was significantly higher 
in TNBC patients than in luminal-type patients (Fig. 6E). The risk scores for different T stages (Fig. 6A) and 
different lymph node statuses (Fig. 6B) were not statistically significantly different. The risk scores in luminal-
type patients and HER2-positive patients were not statistically significantly different (Fig. 6E). The risk scores in 
HER2-positive patients and TNBC patients were not statistically significantly different (Fig. 6E).

Verification of the accuracy of the prognostic model. To further verify the accuracy of the prognos-
tic model, we constructed a nomogram and ROC curve. The ROC curve analysis of the TCGA prognostic model 
is shown in Fig. 7A, and the area under the curve (AUC) was 0.752. The nomogram is shown in Fig. 7B, and the 
C-index was 0.758.

Functional enrichment analysis of stemness‑related genes. Through GSEA, we found that the 
high-risk-score group had enrichment in KEGG pathways related to metabolism (Fig. 8): the hedgehog signaling 
pathway, the TGF-β signaling pathway and a pathway related to arrhythmogenic right ventricular cardiomyopa-
thy (ARVC). The low-risk-score group had enrichment in the following KEGG pathways (Fig. 8): the cell cycle, 
apoptosis, chemokine, cytokine and JAK-STAT pathways.

Discussion
In this research, we identified DEGs with potential stemness characteristics by analyzing stem-like and non-stem-
like cells in GSE69280. Then, the DEGs were compared with TCGA and GSE24450 data to select coexpressed 
genes in the two databases. Next, by using univariate Cox regression analysis and Lasso-penalized Cox regression 
analysis, we obtained four prognostic-related genes (PSMB9, CXCL13, NPR3, and CDKN2C) and established a 
prognostic model. The model was validated with GSE24450 data. We divided patients into low-risk-score and 
high-risk-score groups and found that the low-risk-score group had better OS than the high-risk-score group 
for both TCGA and GSE24450 data.

BCSCs are a small group of tumor cells that have self-renewal capacity and play an important role in tumor 
formation, recurrence and  metastasis19. Furthermore, resistance to traditional chemoradiotherapy is a remark-
able feature of BCSCs, as well as one of the culprits for treatment  failure20. Recent studies have demonstrated 
that breast non-stem cells undergo dedifferentiation and transform into CSCs in response to  treatment21. In 
addition, traditional treatments cannot thoroughly eliminate BCSCs, which contributes to a significant increase 
in the proportion of  CSCs22. The main reasons for the resistance of CSCs are as follows. First, CSCs inhibit the 
expression of membrane-bound APC transporters, which act as efflux drug pumps to decrease intracellular drug 
 accumulation20. In addition, CSCs also have DNA repair and antiapoptotic  effects23, which are responsible for 
resistance to treatment. What’s more, different BC molecular subtypes, such as TNBC cells and HER-2 positive 
cells, has the similar stemness, but they are tow unique diseases that require different treatment  strategies24. In 
BCSCs of different molecular subtypes, the expression and regulation of HER-2 are both different, so therapeutic 

Figure 5.  Cox regression analyses of the prognostic model and clinical features. (A) Univariate Cox analyses of 
the TCGA model. (B) Multivariate Cox regression analysis of the TCGA model.
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repercussion and prognosis of patients will be  different25. Thus, elimination of BSCSs is a potential new strategy 
for patients with refractory breast cancer.

Our prognostic model was constructed with a series of survival-associated DEGs, including PSMB9, CXCL13, 
NPR3, and CDKN2C. CDKN2C, also known as p18 or INK4C, is a member of the INKCK family and regulates 

Figure 6.  The relationship between risk score and clinical features. (A) The risk score in different T stage 
groups. (B) The risk score in different lymph node metastasis groups. (C) The risk score in different AJCC stage 
groups. (D) The risk score in different age groups. (E) The risk score in different molecular phenotype groups.
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the G1 phase of the cell cycle by inhibiting CDK4 or CDK626. Previous studies have reported that CDKN2C 
is involved in the regulation of normal stem cells and  CSCs27. Yuan et al. pointed out that liver CSC counts 
significantly increased in the absence of CDKN2C expression, suggesting that CDKN2C strongly inhibited the 
self-renewal of liver  CSCs28. Gain of the CCND1 and CDK4 and loss of the CDKN2A (p16) and CDKN2C (p18) 
genes are present in patients with luminal B breast cancer and poor prognosis of and negatively regulated by 
the cell cycle  pathway29. Currently, inhibitors targeting CDK4/6 have been clinically approved for breast cancer 
patients who have failed hormone receptor-targeted treatment. CXCL13 is a member of the chemokine family 
and is an important component of the tumor microenvironment. In vivo, IL-30 overexpression in primary tumors 
facilitates the recruitment of prostate cancer stem-like cells (PCSLCs) to CXCL13, creating a microenvironment 
convenient for lymph node and blood  metastasis30,31. Zhang found that mesenchymal stem cells (MSCs) could 
secrete a large amount of CXCL13 in the bone marrow microenvironment of multiple myeloma and promote the 
proliferation, metastasis and drug resistance of myeloma cells through a CXCL13-mediated signaling  pathway32. 
PSMB9 is one of the genes encoding proteasome subunits in human embryonic stem cells (hESCs) and plays 
a key role in maintaining the pluripotency of hESCs and regulating the cell  cycle33. NPR3 is enriched in bone 
marrow mesenchymal stem cells (BM-MSCs) and has important regulatory effects on BM-MSCs34. Therefore, 
considering the regulatory role of these four stemness-related genes, our prognostic signature might be a potential 
biomarker in breast cancer outcome prediction.

GSEA revealed that the high-risk-score group was enriched in the Hedgehog, TGF-β and cardiovascular 
KEGG pathways, while the low-risk-score group was enriched in the cell cycle, apoptosis, chemokine, cytokine 
and JAK-STAT KEGG pathways. The Hedgehog signaling pathway is essential for maintenance of  BCSCs35, and 
inhibition of the components of the Hedgehog signaling pathway, such as Gli1, Gil2 and SHH, can reduce CSCs 
in breast cancer cell  lines35,36. The components of the tumor microenvironment (cytokines, chemokines, and 

Figure 7.  Verification of the accuracy of prognostic models. (A) The ROC curve of the TCGA prognostic 
model. (B) The nomogram of the TCGA prognostic model.

Figure 8.  KEGG pathway enrichment analysis.
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exosomes)37,38 and multiple signaling pathways, such as the apoptotic  pathway39 and the cell cycle  pathway27, both 
play an important role in maintaining the phenotype and function of CSCs. The JAK2-STAT pathway mediates 
BCSC  resistance40, while JAK1-STAT may participate in non-CSC transformation into  BCSCs41. Thus, the KEGG 
pathways involved in both groups are closely related to maintaining stemness, which may provide strategies for 
BC treatment. There are already some clinical trials that act directly on the hedgehog, Notch and Wnt signaling 
pathways and have some effects on CSC  suppression42–44. However, unfortunately, although there are treatment 
strategies for CSCs, the translational of these treatments into the clinic for BC patients has been unsatisfactory.

There are some limitations in our present study. For example, the selected genes have been demonstrated to 
play an important role in maintaining CSCs or other SCs (BM-MSCs and hESCs), some of which have different 
roles in breast cancer, but few studies have involved the relationship of these genes with BCSCs. This requires 
further research in the future.

A prognostic model consisting of stem cell-associated genes was constructed in our study. In data from both 
TCGA and GSE24450, the low-risk-score group had worse outcomes than the high-risk-score group. Although 
BCSCs account for only a small proportion of all breast cancer cells, these cells play an important role in the 
recurrence and metastasis of the disease, and traditional treatment cannot thoroughly eliminate them. To the 
best of our knowledge, this is the first study to build a stemness-related prognostic signature in BC. It is hoped 
that our present study can provide potential biomarkers for BC outcome prediction and targets for therapies.

Material and methods
Selected stemness‑related DEGs. Via the edgeR package (v3.53) (https ://bioco nduct or.org/packa ges/
edgeR /) (R Development Core Team, Vienna, Austria), we analyzed the GSE69280 data in cells with stemness 
characteristics and cells without stemness characteristics and identified the stemness-related DEGs (with thresh-
olds of |log2 fold change [FC]|> 1.0 and false discovery rate [FDR] adjusted to P < 0.05).

Data collection. Patient clinical information and mRNA sequencing data were obtained from The Cancer 
Genome Atlas (TCGA) and GSE24450. The TCGA database contains 1066 BC tissues and 112 adjacent normal 

Table 1.  The clinical features of TCGA breast cancer patients. AJCC, American Joint Committee on Cancer; 
HER-2, human epidermal growth factor receptor-2; M, metastasis, N, node; T, tumor; TCGA, The Cancer 
Genome Atlas.

Clinical features

Age (years) Media 58

Rage 26–89

Numbers of patients (n = 1066) Numbers of patients (%)

Gender
Female 1055 (98.97)

Male 11 (1.03)

T stage

T1 280 (26.27)

T2 617 (57.88)

T3 131 (12.29)

T4 36 (3.38)

Unknown 2 (0.18)

N stage

0 501 (47.00)

1 358 (33.58)

2 118 (11.69)

3 74 (6.94)

Unknown 15 (0.79)

M stage

0 888 (83.80)

1 19 (1.78)

Unknown 159 (14.42)

AJCC stage

I 183 (17.17)

II 602 (56.47)

III 240 (22.51)

IV 19 (1.78)

Unknown 20 (2.07)

HER-2 status

Positive 156 (14.63)

Negative 560 (52.53)

Unknown 350 (32.84)

Estrogen receptor status

Positive 787 (73.83)

Negative 233 (21.86)

Unknown 46 (4.31)

https://bioconductor.org/packages/edgeR/
https://bioconductor.org/packages/edgeR/


8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18325  | https://doi.org/10.1038/s41598-020-73164-3

www.nature.com/scientificreports/

tissues, the clinical features of patients were showed in Table 1. GSE24450 included 183 breast cancer patients. 
All patients had complete survival information, and the follow-up time was more than 10 years; the validation 
data set had similar characteristics. The DEGs were identified as follows: (A) First, the coexpressed genes were 
obtained by intersecting TCGA and GSE24450 genes. (B) Second, a stemness-related gene list was obtained 
from GSE69280. (C) Next, the DEGs in BC samples from TCGA were identified. (D) Finally, we compared the 
stemness-related gene list and TCGA DEGs to obtain eligible stemness-related DEGs. The flow chart is shown 
in Fig S1.

Identification of stemness‑related differentially expressed genes (DEGs). Through the R limma 
 package45, we identified stemness-related DEGs for BC in the TCGA data (with thresholds of |log2 fold change 
(FC)|> 1.0 and false discovery rate [FDR] adjusted to P < 0.05).

Establishment of a prognostic model and validation model. Prognostic risk scores were obtained 
for all patients by univariate Cox regression analysis and Lasso-penalized Cox  regression46. The risk score calcu-
lation formula for all patients is as follows.

In the formula, n represents the number of mRNAs, Ci represents the coefficient of the mRNA in multivariate 
Cox regression analysis, and Vi represents the expression level of the mRNA.

Patients were classified into a high-risk-score group and a low-risk-score group by median risk score. To fur-
ther verify the feasibility of the prognostic model, we also divided GSE24450 patients into two groups according 
to the median risk score. The survival of the two groups of patients was analyzed by KM curves.

Construction of a prognosis‑related nomogram and receiver operating characteristic (ROC) 
curves. To further verify the accuracy of the prognostic model, a nomogram and ROC curves were estab-
lished by the edgeR  package47,48. The C-index was used to evaluate the accuracy of the nomogram by a bootstrap 
method with 1000 resamples.

Functional enrichment analysis. To better understand the underlying biological mechanisms of these 
genes, KEGG pathway analyses were performed (gene set enrichment analysis [GSEA])49. KEGG pathway analy-
ses were based on a threshold of P < 0.05.

Statistical analysis. Statistical analyses were performed by using GraphPad Prism (version 8.0, San Diego, 
USA). Independent prognostic factors were determined by using a multivariate Cox regression model. Patient 
survival time was analyzed using the KM curve, and the log-rank test was used for statistical analysis. P < 0.05 
was considered to indicate a statistically significant difference.

Ethics declarations. Our research is in compliance with the Declaration of Helsinki.

Data availability
The datasets generated and analyzed during the current study are available in the TCGA and GEO repositories.
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