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Normal electric field enhanced 
light‑induced polarizations 
and magnetic detection of valley 
polarization in silicene
N. Shahabi1,2* & A. Phirouznia1,2

The role of staggered potential on light‑induced spin and pseudo‑spin polarization has been 
investigated in silicene. It has been shown that non‑equilibrium spin and pseudo‑spin polarizations 
are emerged in silicene sheet by applying an external perpendicular electric field in the presence of 
circularly polarized light emission. This electric field results in pseudo‑spin resolved states very close 
to the Dirac points therefore could be considered as a pseudomagnetic field. It has been shown that 
staggered potential induced spin‑valley locking and pseudo‑spin resolved bands are responsible for 
the enhancement of the spin and pseudo‑spin polarizations. Meanwhile, spin‑valley locking suggests 
a coexistence of both spin and valley polarizations with nearly identical (or at least proportional) 
population imbalance at low Fermi energies which could be employed for magnetic detection of the 
valley polarization. It has been shown that spin‑valley locking results in the protection of the spin 
polarizations against the relaxations in elastic scattering regime. In addition, the results indicate that 
the pseudo‑spin current can be generated by the circularly polarized light which could be explained by 
asymmetric light absorption of the states in k‑space.

Linear dispersion relation in the vicinity of Fermi energy in graphene leads to semi-metallic behavior which is 
described by the massless Dirac  theory1. Graphene shows a variety of outstanding electronic and optical proper-
ties which make it one of the best candidates of optoelectronic  applications2,3.

Monolayer graphene-like materials have attracted considerable attention during last decade. They inherit 
their rich physics from their famous counterpart i.e. graphene. Analogous to graphene, the basic structure of 
graphene-like materials is honeycomb lattice. The physics of this group of two dimensional (2D) materials is 
described by the massive Dirac fermions theory which stems from rather large intrinsic spin-orbit coupling that 
the latter originates from structural  buckling4. The large ionic radius of silicon and group IV elements of the 
periodic table, leads to this structural  buckling4.

Another prominent feature of buckled structures is the tunable band gap that can be controlled by an external 
electric  field5. Silicene, germanene and stanene illustrate many attractive electronic and spintronic properties. 
Biased single layer silicene and germanene were reported to work effectively as field effect transistors while a 
vertical electric field can open a band gap in their semi-metallic band  structure6.

Edge manipulation of the mentioned 2D materials were studied which can suggest very promising applica-
tions: a giant magnetoresistance which can lead to a “topological quantum transistor” and a perfect spin  filter7. 
Potential application of silicene, germanene and stanene for Na or Li ion storage in Na or Li batteries has also 
been  investigated8.

Any two-component quantum degree of freedom which is mathematically equivalent to spin, can be consid-
ered as ‘pseudo-spin’. In 2D systems with two sublattices, pseudo-spin portraits the sublattice degree of freedom 
with the eigenstates localized on A or B  sublattices9. Pseudo-spin is analogous to the true electron spin but 
behaves totally different under time-reversal and parity  inversion10. Pseudo-spin stems from the degeneracy 
between two inequivalent atomic sites per  unitcell11. Meanwhile, Mecklenburg et al have demonstrated that the 
sublattice state vector represents indeed a real angular momentum in 3+ 1  dimensions11.
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Pseudo-spin is not associated with the internal magnetic moment of electron and does not interact with an 
external magnetic field however, it can turn into measurable orbital angular  momentum12 and can manifest itself 
as an observable quantity and can be detected in transport phenomena and inter-band optical  absorption10. 
Trushin et al have shown that due to the out-of-plane orientation of pseudo-spin, switching the helicity of 
circularly polarized light can cause a reduction or enhancement in inter-band absorption because the elements 
of inter-band transition matrix are sensitive to the light polarization and also pseudo-spin orientation in the 
initial and final  states10. Although the pseudo-spin eigenstates are really robust, the exchange electron-electron 
interaction can alter the pseudo-spin  orientation10.

In this work, light-induced non-equilibrium pseudo-spin polarization has been studied. Results show that 
pseudo-spin polarization and also pseudo-spin-polarized current are injected in silicene due to the external 
perpendicular electric field which determines the silicene phase. Applying this field leads to inversion symmetry 
breaking.

Another intriguing feature in 2D systems is spin-valley locking. Two inequivalent energy extrema in energy 
dispersion of these materials introduce ‘valley’ degree of freedom which is very promising in the new research 
field; ‘vallytronics’13. The valley polarization is an imbalance in the electron population in two  valleys13. The 
systems which exhibit three following features: Preserving P and T symmetries; owning two well-distinguished 
energy extrema called valleys which are transformed to each other by T symmetry; and having large spin-orbit 
coupling; are good candidates for injecting valley-dependent spin polarization by an external electric field. Before 
applying this electric field, system is spin degenerate and also valley degenerate. By applying electric field, which 
is responsible for P symmetry breaking, large spin-orbit coupling in silicene leads to spin sub-bands splitting as 
if they were exposed to a magnetic field. Therefore, this effect is called Zeeman-like  splitting13. As no external 
magnetic field is applied, the system is T-symmetric. Therefore, the opposite spin polarizations are formed in two 
valleys. This spin polarization emerged in valleys is electric-field  reversible13 i.e. changing the sign of electric field, 
which transforms two valleys to each other, will lead to flip of spin polarization. This effect is called spin-valley 
locking that arises as a result of the spin-orbit coupling and normal electric field which lifts the band degeneracy 
at the Dirac points. This provides a framework in which the valley polarization results in spin polarization and 
vice  versa14. In spite of lack of knowledge about spin and valley relaxation timescales, it has been reported that 
spin-valley locking effect enhances spin and valley relaxation  times13,15. Another interesting feature of this effect 
is the ability of controlling the valley polarization via lifting the valley  degeneracy13. In the present study, it has 
been shown that spin-valley locking provides a powerful framework for magnetic-based valley polarization 
measurement. In addition, it has been demonstrated that the inversion symmetry breaking normal electric field 
enhances the light induced pseudo-spin polarization and pseudo-spin current significantly.

Method
Using sp3 orbitals of z-direction (Fig. 1) as π-bond (see supplementary materials) one can develop the tight-
binding approach as described in this section.

More or less analogous to graphene, monolayer graphene-like materials are also honeycomb lattice structures 
and can be described by the tight-binding  model16,17. The rather strong intrinsic spin-orbit coupling is responsi-
ble for spin  dynamics18 and makes graphene-like structures topological  insulators5. In addition, there is a layer 
separation between the two sublattices in their buckled structure which makes the gap tunable by applying a 
perpendicular electric field, Ez5. Therefore the Hamiltonian describing graphene-like materials takes the follow-
ing  form16,17. The values of parameters vary for different graphene-like structures. Hamiltonian of the silicene 
is given by the following expression:

or

(1)H = H0 +HSO +HintR +HextR +Hb

Figure 1.  Schematic side view of the silicene π orbitals in buckled configuration.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16612  | https://doi.org/10.1038/s41598-020-73138-5

www.nature.com/scientificreports/

where c†iα creates an electron with spin polarization α and orbital state of φ(1)
sp3

 at site i and ciα annihilates an elec-
tron with spin polarization α and π-orbital state φ(1)

sp3
 at site j (see supplementary materials). Where, < i, j > 

(<< i, j >>) run over all the nearest (next nearest) neighbor hopping sites. The first term represents nearest-
neighbor hopping in which t is the hopping energy. The second term represents the effective spin-orbit coupling 

where ⇀u ij =
�di×�dj
∣

∣

∣

�di×�dj
∣

∣

∣

 , �di and �dj denote the nearest bonds that connect the next nearest neighbors and �dij = �di − �dj . 

In addition, uij = 1 or uij = −1 in case that next- nearest neighbor hopping is counterclockwise or clockwise 
respectively. for the electrons in the sublattice A, µij = +1 and for the electrons in the sublattice B, µij = −1 . tSO 

is the strength of the effective spin-orbit coupling and the Pauli matrix in the spin space is denoted by σ . The 
third term represents the intrinsic Rashba spin-orbit coupling related to the next-nearest-neighbor hoping. The 
forth term indicates the external Rashba spin-orbit coupling which is associated with the first-nearest-neighbor 
hoping. As a consequence of inversion symmetry breaking, this term could be induced by an external electric 
field or a substrate. The last term is the sublattice potential term which arises from structural buckling. l stands 
for the buckling height, ζi = +1(−1) for the sublattice A(B) degree of freedom and Ez is the external electric 
field perpendicular to the 2D sheet which can control the amount of staggered sublattice potential, lEz . Based 
on previous reports, numerical values of these parameters have been given in supplementary materials. Moreover, 
real-space Hamiltonian can be transformed into the k-space using the relation ciα = ∑

i exp(−i�k.�Ri)ckα in which 
�k = (kx , ky) is the wave number of the charged carriers and Ri denotes the atomic positions. Then the k-space 
Hamiltonian reads as follow

where we have defined following parameters

and also β± = β1 ± β2 in which

In which, we have ignored the intrinsic Rashba interaction in the numerical computations to provide a clear 
understanding of the most important factors in the light induced effects.

The interaction between the electrons and electromagnetic field in length gauge and long-wavelength approxi-
mation inside the silicene has the  form19

By expanding the field operators in terms of the silicene wave functions

where a†k ( ak ) and b†k ( bk ) are creation (annihilation) operators which create (annihilate) an electron with wave 
vector k in A and B sublattices respectively. Using above relations one can write
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In which IS is the identity operator in spin space and electric dipole moment is defined by the following 
relation

and f (k) = ∑

i e
i
⇀

k .
⇀

δ i where 
⇀

δ i are the nearest neighbors position vectors. Electric part of the light emission is 
identified by 

⇀

E (t) = E(t)ǫ̂p in which ǫ̂p denotes the light polarization and in the present work has been assumed 
to be ǫ̂p = (1, i, 0) for a circularly polarized incident wave.

Eventually, the light-matter interaction takes the form

where according to Eq. (10), it can be shown that the off-diagonal elements of the dipole moment i.e. DAB and 

DBA are relatively small 
⇀

DAB =
⇀

DBA ≃
(

5.96× 10−5,−6.13× 10−10,−5.12× 10−5
)

 (in the unit of electron-

Angstrom; eÅ ) in comparison with diagonal elements, DAA and DBB that have considerable values given by 
⇀

DAA =
⇀

DBB ≃
(

1.915× 10−5,−4.112× 10−7,−0.240
)

 ( eÅ).
It should be noted that even small off-diagonal elements of the dipole moment have to be considered. Ignoring 

these components leads to a diagonal V matrix which cannot result in inter-band transitions and non-equilibrium 
polarization injection.

According to Inglot et al.18, the injection rate of any quantity Ô is obtained using the well-known Fermi’s 
golden rule,

where n and n′ are the numbers of sub-bands which optical transitions occur within and f (Enk) is the Fermi-
Dirac distribution function. Then the non-equilibrium quantities such as spin injection

non-equilibrium normal pseudo-spin

and pseudo-spin current

could be defined within this approach where Ĵτz
α

= 1
2 (v̂ατ̂z + τ̂z v̂α) and v̂α = 1

�

∂Ĥ
∂kα

 is the band velocity along 
the α-direction.

On→n′ measures the change of expectation value of O via the transition from initial energy band n to band n′ 
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 . Therefore, induced polarization represents the variation of opera-
tor O due to transitions i.e. the non- equilibrium polarization of system due to optical pumping.

In the light absorption process, at the range of photon energies that are slightly greater than the band gap, 
there is another key factor which specifies how much a transition could be effective in generation of polarization. 
The electron-hole asymmetry is a consequence the Rashba spin-orbit  interaction20. For those transitions that 
take place between valence and conduction bands particle-hole asymmetry can enhance the non-equilibrium 
values of a given observable. Asymmetry between the conduction and valence bands results in more effective 
transitions in which the change of expectation values for excited electron is high.
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Results and discussion
Numerical results which have been represented here are normalized to electrons density of the system, 
n0 ≃ 1.5× 1015cm−2 and temperature given in the distribution functions has been chosen to be T = 1K.

The influence of staggered potential. In the case of graphene, applying a large external magnetic field 
is crucial for observing photogalvanic effect and light induced spin  polarization18. In this case Fermi surface 
deformation caused by external magnetic field, has been considered to be responsible for non-equilibrium spin-
current18. However, in the case of silicene, significant photon induced polarizations can be injected even at zero 
magnetic field but in the presence of a normal static electric field. The spin-orbit coupling in silicene is strong 
enough and can sufficiently lead to band energy splitting, meanwhile, normal electric field results in pseudo-
spin polarized bands and spin polarized valleys close to the Dirac points. When the perpendicular static electric 
field is applied to silicene sheet, due to different responses of silicon atoms at each of the sublattices, there exists 
a potential difference between two sublattices which is known as staggered potential21. Exactly analogous to an 
external magnetic field which can induce a net spin polarization, this static perpendicular electric field can 
induce pseudo-spin polarization. In this work, the role of perpendicular static electric field in light induced 
polarizations has been numerically studied. It has been observed that in the absence of this field, there is no 
non-equilibrium pseudo-spin polarization. By switching on the normal electric field, significant non-equilib-
rium polarization can be generated. In addition, external electric field remarkably enhances other light induced 
polarizations such as pseudo-spin current.

Applying the perpendicular static electric field, which produces a staggered potential between two sublat-
tices, breaks the inversion symmetry and subsequently induces a net pseudo-spin polarization at equilibrium 
(Fig. 2a,b) around the Dirac points. As shown in the Fig. 2a,b each band has a specified normal pseudo-spin 
polarization at Dirac points where the successive band has opposite pseudo-spin polarization. However, as it 
has been shown in this work pseudo-spin polarized bands provide more effective framework for light induced 

Figure 2.  Equilibrium spin and pseudo-spin polarizations in silicene. (a) Pseudo-spin polarization of the first 
conduction band (n = 3). (b) Pseudo-spin polarization of the second valance band (n = 2). (c) Spin polarization 
of the second valance band (n = 2). (d) Spin polarization of the first conduction band (n = 3). States are fully 
spin and pseudo-spin polarized very close to the Dirac points and become partially polarized away from these 
points.
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polarizations. Normal electric field is responsible for pseudo-spin polarized bands at equilibrium. Meanwhile, 
it should be noted that the non-equilibrium light induced pseudo-spin polarization has also been enhanced 
remarkably by the staggered filed.

The main role of the perpendicular electric field can be clearly seen in equilibrium condition i.e. in the 
absence of radiation field when silicene sheet is exposed to perpendicular Electric field, Ez , there will exist a net 
pseudo-spin equilibrium polarization.

As it can be seen in the Fig. 2a,b, in the absence of light emission, applying perpendicular electric field 
solely can induce a net pseudo-spin polarization in both valence and conduction bands. Normal component of 
pseudo-spin, τz , is a good quantum number close to the Dirac points. Therefore, it is noticeable that any factor 
which causes an inter-band transition, this band change is also accompanied with a pseudo-spin flip of electron.

On the other hand, as mentioned earlier, normal electric field results in spin-valley locking which is almost 
band-independent. This can be inferred from the Fig. 2c,d. This normal spin preserving property of electrons at 
each of the valleys has been removed by lifting the normal electric field.

The pseudo-spin polarized bands and spin-valley locking which has been observed at the 
vicinity states of the Dirac points can be explained simply within the Dirac point approxima-
tion. Given that extrinsic Rashba coupling is small (that is about 0.001eV), in the presence of per-
pendicular electric field and very close to the Dirac points ( k → 0 ), low energy Dirac Hamilto-
n i a n  H

η

D = �vF
(

ηkxτx + kyτy
)

+ ητz

(

a�R2
(

kyσx − kxσy
))

+ η�SOτzσz − lEzτz  i s  r e d u c e d  a s 
H = diag{η�SO + lEz ,−η�SO + lEz ,−η�SO − lEz , η�SO − lEz} in which �SO and �R2 are spin-orbit coupling 
constant and intrinsic Rashba interaction strength respectively. Accordingly, in this case the Hamiltonian is 
diagonal in the bases of |τz > ⊗|σz > which means that the eigenstates have definite pseudo-spin and spin 
quantum numbers. Eigenvalue of this eigenstate is given by εητσ = ησz�SO + τz lEz where εητσ = ε

−η

τ−σ
 clearly 

exhibits spin-valley locking that electrons of the same band and different valleys are isoenergetic when their spins 
directed oppositely. Meanwhile, there is a gap between the pseudo-spin up and pseudo-spin down states given 
by � = 2|lEz − �SO| which indicates that at zero electric field ( Ez = 0 ) the energy difference between up and 
down spins is very small of order of spin-orbit coupling and therefore population difference between the opposite 
spins is negligible. These results directly reflect the time-reversal symmetry of the system when the inversion 
symmetry is broken. In addition, this electrically tunable band gap provides a topological phase transition by 
manipulation of the normal electric  field5,16.

Light‑induced spin and valley polarization. In the presence of staggered potential and due to spin-
valley locking, spin population imbalance is almost identical with the valley polarization at low Fermi energies. 
In other words, since non-equilibrium spin polarization coincides with the population imbalance between the 
two valleys, spin polarization measures indirectly the valley polarization.

At first look it seems that the spin-valley locking results in exactly identical population of sz-spins with its 
corresponding valley population. However, it should be noted that all of the occupied states in a single valley 
are not completely sz polarized. Equilibrium spin polarization of a given state depends on the position of this 
state in k-space. Very close to the Dirac points states are fully spin polarized and as the distance of the state from 
the Dirac point increases, spin polarization of the state decreases (see supplementary materials). At low Fermi 
energies, the spin and valley populations are very close while away from the Dirac points states are partially 
polarized. Assuming that the up (down) spins are located around the K ( K ′ ) valley (as a result of the spin-valley 
locking) the relation between the spin and valley population at each of the valleys can be given by the follow-
ing expressions, n↑ = αKnK and n↓ = αK ′nK ′ . Where, nK ( nK ′ ) stands for the valley population of K ( K ′ ) valley 
and n↑ ( n↓ ) is the spin population of the same valley. αη is a coefficient that measures the ratio of the polarized 
states in the η-valley which depends on the Fermi wave number ( kF ). Due to the symmetry of the valleys one 
can expect that αK = αK ′ = α and accordingly one can easily obtain Ps = α Pv where Ps = (n↑ − n↓)/n and 
Pv = (nK − nK ′)/n are the spin polarization and valley polarization of the system respectively. Meanwhile, the 
n = nK + nK ′ is the electronic population of the sample. α can simply be estimated by the following relation,

in which < Sz >K is sum of the expectation value of ŝz over all of the occupied states in a single valley. Therefore, 
spin and valley polarization can be related to each other via Ps = α Pv.

Behavior of the system depends on the chirality of circularly polarized incident light. When the silicene sheet 
is exposed to circular right-handed polarized light, the behaviour of spin in K valley is exactly the same as K ′ 
valley in the presence of left-handed light and vice-versa. Accordingly, it is expected that each of these circularly 
polarized lights could provide one of the valley polarizations in the  silicene14.

As indicated in Fig. 3 spin polarization is suppressed at Ez = 0 . This can be explained by the concept of the 
spin-valley locking and non-symmetric light absorption of the left and right-handed photons. As discussed 
earlier, light induced spin polarization in silicene can be considered as a direct consequence of the spin-valley 
locking that has been induced by the normal external electric field.

Detection of valley‑polarization. Large separation between two valleys in momentum space, leads to a 
long inter-valley scattering time. This can grant the valley degree of freedom an opportunity to perform the role 
of information carrier in  valleytronics22. Since, the valley population imbalance is proportional to spin polariza-
tion by the spin-valley locking effect, it seems that the spin polarization detection devices could be proposed 

(16)αK = 1

(�/2)n
< Sz >K ,
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for valley polarization measurements as well. Therefore, a simple magneto-resistance detection setup can be 
employed. As shown in the Fig. 4 this setup includes silicene sheet deposited on a bipartite substrate. One half is 
non-magnetic and the other half is magnetic. As depicted in this figure an ac current can provide light modula-
tion which could be utilized at low frequencies.

By applying the electromagnetic radiation on non-magnetic part, if the light-induced magnetic polarization 
is aligned with magnetization of ferromagnetic substrate, the voltage in circuit will be changed and magneto-
resistance of the sample scales with the spin population imbalance. Then the valley polarization could be obtained 
via the correspondence of spin and valley population given the relations discussed above.

As discussed in supplementary materials which has also been reported in previous  works13,15 spin-valley 
locking enhances spin life-time. Therefore, in the spin-valley locking regime spin relaxation time could be high 
enough for effective detection of spin polarization in the magnetic region.

Figure 3.  Spin polarization of (a) K and (b) K ′ valleys in terms of the normal electric field at �ω = 0.3eV.

Figure 4.  Spin based detection of the valley polarization in which the light induced valley polarization could 
be measured by its corresponding spin polarized population. The spin polarization is measured by a simple 
magneto-resistance setup.

Figure 5.  Pseudo-spin polarization of (a) K and (b) K ′ valleys at lEz = 0.03eV.
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Figure 6.  Pseudo-spin polarization of (a) K and (b) K ′ valleys in terms of the normal electric field at 
�ω = 0.3eV.

Figure 7.  Light induced pseudo-spin current of (a) K and (b) K ′ valleys along the x-axis in terms of the normal 
electric field at �ω = 0.3eV . Similarly, light induced pseudo-spin current of (c) K and (d) K ′ valleys along the 
y-axis in terms of the normal electric field at �ω = 0.3eV.
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Non‑equilibrium pseudo‑spin polarization and pseudo‑spin current. As it can be inferred from 
Figs. 5 and 6 non-equilibrium pseudo-spin polarization can be induced by circularly polarized photons. The 
light-matter interaction leads to a considerable non-equilibrium pseudo-spin polarization when the normal 
static filed is applied. It should be noted that in the absence of perpendicular electric field, non-equilibrium 
pseudo-spin polarization cannot be injected by the radiation field (Fig. 6). At zero electric field and very close 
to the Dirac points band energies are given by εητσ = ησz�SO where the eigenstates are |τz > ⊗|σz > and there-
fore pseudo-spin up and down states located near to these points become degenerate at Ez = 0 . This gives rise 
to zero pseudo-spin polarization. On the other hand, states that have been placed far from the Dirac points are 
not pseudo-spin polarized and light induced transitions between these states could not result in effective non-
equilibrium pseudo-spin polarization.

Meanwhile, since successive pseudo-spin dependent bands in the presence of normal field have opposite sign 
of pseudo-spin polarization, light induced transitions between these bands result in negative non-equilibrium 
pseudo-spin polarization (Fig. 6).

Light induced transitions can result in non-equilibrium pseudo-spin current in silicene. Figure 7a–d represent 
pseudo-spin current along the x and y axis respectively. It can be inferred that pseudo-spin-polarized currents 
are different in two perpendicular directions x and y. This means that optical radiation not only injects valley 
polarization in silicene sheet but also results in anisotropic response of the system. This anisotropy would rely 

Figure 8.  Band energies and light absorption of different valleys in the presence and absence of the normal 
electric field. Vertical green arrows show the spin preserving light induced transitions. Horizontal dashed 
lines show photoexcited occupation level. (a) Black curves indicate unpolarized pseudo-spin bands at Ez = 0 . 
(b) Blue and red curves indicate the spin and pseudo-spin polarized bands at Ez  = 0 . Differently occupied 
valleys ( K ′ = −K ) at both Ez = 0 and Ez  = 0 fields and also non-symmetric photon absorption around each 
of valleys provide pseudo-spin current. Meanwhile, transitions between the degenerate and nearly degenerate 
states around the Dirac points at Ez = 0 , could not generate accountable spin or pseudo-spin non-equilibrium 
polarization. On the other hand when Ez  = 0 transitions between the opposite pseudo-spin resolved bands 
results in major change of average pseudo-spin.
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on the silicene band anisotropy which can be captured beyond the Dirac point approximation as performed in 
the present study. Within this approach band anisotropy manifests itself in the numerical results.

Since the circularly polarized photon absorption is not symmetric at different valleys, the population imbal-
ance between the K and K ′ = −K results in electric current. Therefore pseudo-spin polarized current increases 
by normal electric field based on the background pseudo-spin polarization increment.

However, it is really remarkable that unlike the non-equilibrium spin and pseudo-spin polarizations, pseudo-
spin current could be generated even at zero normal electric field (Fig. 7a–d). This reflects the fact that not only 
the light absorption of different valleys are not symmetric but also this absorption is not identical for each of 
the states around a single Dirac point. On the other words, in the absence of the staggered potential each of the 
band states has different pseudo-spin polarization, < τz > , depending on the location of the state in k-space 
and band number, however, the total pseudo-spin polarization of the band is zero. When the circularly polar-
ized light excites non-symmetrical states around the Dirac point overall induced pseudo-spin current becomes 
nonzero Fig. 8a,b.

Meanwhile, this can be considered as a specific consequence of the present approach which goes beyond 
the Dirac point approximation. Within the Dirac point approximation pseudo-spin current operator is given 
by Jτzx(y) = vF

1
2 (τzτx(y) + τx(y)τz) (when the internal Rashba interaction has been ignored) that identically 

vanishes which shows that non-equilibrium pseudo-spin current cannot be captured within the Dirac point 
approximation.

Concluding remarks
Within the semi-classical approach light-induced polarization in silicene has been investigated beyond the Dirac 
point approximation. Calculations are performed at the long-wavelength limit wherein the amplitude of external 
field remains practically constant over the atomic scale, where light-matter interaction at this limit cannot lead 
to inter-valley transition.

It has been shown that the normal electric field results in light induced spin and pseudo-spin polarization. 
Meanwhile, this field enhances the light induced pseudo-spin current.

Non-symmetric absorption of circularly polarized light are known to be responsible for spin polarization and 
pseudo-spin current. Meanwhile, it is noteworthy, since inside each valley initial and final states of transition 
possess different pseudo-spins. Therefore, light induced transitions from one energy band to another leads to 
pseudo-spin flip i.e. negative non-equilibrium pseudo-spin polarization. Spin-valley locking provides a magnetic 
framework for detection of the valley polarization by non-equilibrium spin measurements.
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