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Dual‑guiding‑layer resonance 
structure with an embedded 
metasurface for quasi‑critical 
coupling without a perfect mirror
Gyeong cheol park1,2* & Kwangwook park3,4*

We propose an all‑dielectric quasi‑one‑port resonance structure that achieves near perfect absorption 
without the use of a back mirror. the structure mainly consists of a high‑refractive‑index silicon 
metasurface and surrounding high‑refractive‑index guiding layers. the dual‑guiding‑layer (DGL) 
structure has high background reflectance and is designed to have a ratio of two decay rates into the 
upper and lower regions within a wider range. When an absorbing material is introduced into a DGL 
system, it can be designed to achieve a near critical-coupling condition by reducing the constraints 
in the two decay rates. By using single-layer graphene as an absorbing material, the DGL resonance 
structure shows an absorption of ~ 97% and a phase change of ∼ 0.95π near the wavelength of 
1550 nm, confirming quasi-critical coupling. The optimized DGL structure is relatively insensitive 
to potential fabrication imperfections, and consequently, the expected average peak wavelength 
and absorption are obtained as 1549.29 nm and 96.74%, respectively. Angle-dependent absorption 
confirms that maximum absorption occurs under normal incidence. The DGL absorber is also 
designed to cover the whole C-band region, in order to meet the quasi-critical-coupling condition. All 
mode profiles are similarly quasi-symmetric along the metasurface due to the same DGL resonance 
mechanism.

Within the field of photonics, graphene has been extensively studied due to its gapless, fast electron mobility, 
and electro-optical properties. By integrating a graphene layer with a silicon (Si) or a silicon-on-insulator (SOI) 
platform, graphene-integrated silicon photonic devices have demonstrated their potential capabilities in high-
speed operation, electro-optic modulation performance, and broadband light  absorption1–3. In accordance with 
expansions in graphene-integrated silicon photonics, considerable efforts have been made to achieve direct 
transfer of wafer-scale graphene sheet onto a Si or a SOI  platform4. This can also enable fabrication of graphene-
integrated silicon photonic devices through a CMOS-compatible process in semiconductor foundries. For these 
reasons, graphene is regarded as an alternative to III–V materials or germanium as an absorbing material in 
silicon  photonics2,3,5.

However, undoped single-layer graphene (SLG) suspended in air has a weak light absorption of ∼ 2.3% in 
the visible to near-infrared wavelength  range6. To overcome its poor light absorption in waveguide-integrated 
photodetectors, a longer waveguide is needed, to enhance the light absorption path length. However, extend-
ing a waveguide, on the other hand, can possibly increase the scattering loss due to side-wall roughness of the 
waveguide. In addition, a lengthy waveguide decreases integration density of on-chip devices. To reduce the 
length of the waveguide, a planar resonance structure can be used on top of the graphene to enhance light-matter 
 interaction7,8. In case of free-space light detection, an SLG can be transferred onto an  SiO2 spacer layer, backed by 
a dielectric distributed Bragg reflector (DBR) to maximize the optical field in the graphene  layer9. However, this 
still achieves only 9% of light absorption. Another structure that has been proposed is an optical cavity, formed 
of both upper and lower DBRs in order to achieve total  absorption5,10,11. In this structure, the lower DBR ideally 
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requires 100% reflectance and forms a one-port optical cavity. Total absorption can thus be achieved by control-
ling the upper DBR reflectance and the location of the graphene, although the poor heat dissipation caused by 
the presence of the DBRs is a potential  drawback12.

As an alternative optical cavity, a guided resonance structure is used to meet the critical coupling condition, 
formed by a metasurface or 1D or 2D photonic crystal layer backed with a metallic or  DBR13–19. The metasurface 
has a fixed thickness, but by manipulating the other parameters, such as grating period or the ratio of high to low 
refractive index regions within a unit cell, the decay rates of the resonance mode from the resonance structure 
can be  tuned13,20. By manipulating these parameters and using a back mirror, the critical coupling condition can 
be met and thus total absorption is  achieved13,21–23. To avoid the requirement of the back reflector, a dielectric 
photonic structure with inversion symmetry has been theoretically studied and proposed that achieves perfect 
absorption under off-normal incidence from one-side  illumination24. However, in most cases, the inversion 
symmetry structure is too complicated to fabricate on an SOI platform.

Here, we propose and analyze a dual-guiding-layer (DGL) resonance structure on an SOI platform without 
using a back mirror, that achieves near-perfect absorption using single-layer graphene (SLG). The DGL structure 
shows high background reflectance and the ratio of the two decay rates into the incident and exit regions can be 
extended to a wider range. Consequently, the decay rate to the exit can be further suppressed and the structure 
becomes a quasi-one-port cavity. When an SLG is transferred onto the DGL structure, the sum of the two decay 
rates and the absorption rate of the SLG can be deliberately tuned so as to meet the quasi-critical-coupling 
condition. This DGL graphene absorber demonstrates ∼ 97.27% absorption and phase change of ∼ 0.95π under 
normal incidence at a wavelength of 1550 nm. The DGL structure is insensitive to potential fabrication devia-
tion and covers the whole C-band region (1530–1565 nm). The design concept and its resonance mechanism 
can be applied to other photodetectors that use different material platforms, but without using a back mirror.

concept and design
Schematics for dual-guiding-layer (DGL) resonance photodetectors using an SLG as an absorbing material on an 
SOI platform are shown in Fig. 1a. An SLG is chosen since it is gapless and has almost constant absorption over a 
broad wavelength  range1,2. Therefore, by tailoring the parameters of a DGL resonance structure, the absorption 
wavelength of a graphene-based DGL absorber can be tuned without replacing an absorbing material. However, 
it is worth to mention that other two-dimensional (2D) materials can be employed on a DGL platform as an 
absorbing  material2. The SLG with no pattern can be transferred onto the top of the oxide layer (Type A) or 
sandwiched between the two oxide layers (Type B). An incident plane wave with transverse electric (TE) polariza-
tion is assumed. Unless otherwise stated, the incoming wave is incident with a normal angle. A cross-sectional 
view of the unit cell of the DGL resonance structure is shown in Fig. 1b. The structures mainly consist of three 

Figure 1.  (a) DGL resonance absorbers on an SOI platform with an SLG on top of an oxide layer (Type A) 
and in-between the oxide layer (Type B). The incident light is transverse electric (TE) polarized (parallel to the 
grating bar). (b) Cross-sectional view of the DGL (Type A) with design parameters. Grating parameters: period 
(Λ), duty cycle (DC), grating bar width = (DC·Λ), grating thickness (tg), and thicknesses of three homogeneous 
layers: slab (ts), cap (tc), and oxide thickness (to). (c) Schematic illustration of the physical mechanism of DGL 
resonance (red arrows: diffraction process; blue arrows: TIR). θc,top: a critical angle for the top interface, θc,bot: 
a critical angle for the bottom interface (graphene layer not included here). (d) Representative electric field 
amplitude: dotted lines correspond to different layers while red ones to the metasurface. The image is created by 
MathWorks MATLAB 2019b with in-house RCWA method.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16014  | https://doi.org/10.1038/s41598-020-72983-8

www.nature.com/scientificreports/

parts; cap and slab layers as a dual-guiding core, a metasurface to excite higher diffraction order(s), and an upper 
oxide layer. The thickness of the Si device layer is 250 nm. On the Si device layer, a metasurface layer (1D grating 
structure) is formed by partially etching down to the Si layer. Beneath the metasurface, an Si homogeneous layer 
remains, which becomes a slab layer. The spaces between the high-refractive-index Si grating bars are filled with 
the low-refractive-index material of  SiO2 to form alternating Si and  SiO2 bars in a lateral direction. On top of the 
metasurface, a high-refractive-index material such as amorphous Si (a-Si) is deposited as a cap layer, while a thin 
oxide layer with a low-refractive-index is deposited on top of the cap layer. The oxide layer can be aluminium 
oxide  (Al2O3) or hafnium oxide  (HfO2) to improve the quality of the transferred graphene and ameliorate contact 
resistance and electron  mobility25. The proposed DGL structure is considered not only to design an optically 
optimized structure and to achieve near-perfect absorption, but also to consider the electrical performance of 
a graphene-based DGL absorber by adding a thin oxide  layer25. The overall DGL structure is quasi-symmetric 
with respect to the metasurface, in terms of its composite optical refractive index. The first parameter, the grat-
ing period (Λ) of the metasurface, is determined in relation to the target wavelength and its diffraction angle. In 
considering the grating period, the initial excited diffraction orders from the normal incident light are restricted 
to ± 1st diffraction order. After the grating parameter has been established, the thicknesses of the slab and cap 
layers need to be optimized to enable the diffraction orders to propagate in the DGL structure, through the fol-
lowing diffraction process and total internal reflection (TIR). At a wavelength of 1550 nm, the diffracted angles 
in the cap and slab layers (both Si, nsi = 3.48) are calculated as θdiffm = (|m| × 1550nm)/3.48/�26. The grating 
period, which can excite the ± 1st diffraction order, should be larger than ∼ 445 nm but smaller than ∼ 890 nm 
in the Si layer. If the grating period is 800 nm, the ± 1st diffraction angle ( θdiff+1  ) of both upper and lower guid-
ing layers is ∼ 33.8°. At the upper oxide-cap interface, if use of  HfO2 is assumed then the critical angle ( θc,top ) 
is ∼ 36.5°. Even though the diffracted angle is slightly smaller than the upper critical angle, the TIR condition 
of the next oxide-air interface with a critical angle of ∼ 28.8° can reflect transmitted light back to the cap layer. 
At the lower slab-SiO2 interface, the lower critical angle ( θc,bot ) is ∼ 24.6°. The diffracted light toward the lower 
boundary also experiences the TIR and is reflected back to the metasurface. The remaining two parameters to 
be determined are thickness and duty cycle (DC). The DC should be in the feasible range, such as from 0.3 to 
0.7. Then, it can be fabricated using the deep ultraviolet (DUV) photolithography and dry etch process. The 
thickness of the metasurface should be determined so that it can tolerate possible fabrication imperfections. On 
top of the metasurface parameters, the thickness of both cap and oxide layers should be optimized to support 
resonance absorption. These parameters will be discussed in detail in “Results and discussion” section below.

A schematic description of the physical mechanism of the DGL resonance is shown in Fig. 1c. Normal 
incident light is transmitted and reaches the metasurface. The ± 1st diffraction orders are excited in the cap 
and slab layers and propagate toward the upper and lower homogeneous layers, indicated as red arrows. Since 
the homogeneous layers are composed of the high-refractive-index material of Si, the diffracted light at higher 
orders cannot penetrate the oxide-Si interface if it propagates at an angle greater than the critical angle at each 
interface. At the interface, the propagating light experiences TIR and is reflected back toward the metasurface, 
indicated as blue arrows. This in turn excites subsequent diffraction order(s) and the process is repeated. At the 
resonance condition, the DGL structure confines the light, as shown in Fig. 1d. The electric field profile is quasi-
symmetric along the metasurface; this is because the resonance mode is initiated by the ± 1st diffraction orders in 
the upper Si cap and lower Si slab layer with the same diffraction angle amplitude ( θdiff ,cap/slab+1 = −θ

diff ,cap/slab
−1  ). 

The subsequent process in the upper and lower guiding cores then also occurs symmetrically along the metas-
urface. The mode is extended outside the oxide and the BOX layer. The near field, which extended out of the top 
oxide layer, can interact with an SLG. Under optimum design parameters, a DGL resonant structure using an 
SLG can thus achieve near-perfect absorption, by closely matching up the decay rates from the DGL structure 
with the loss rate of the SLG.

numerical and theoretical analysis
To simulate DGL structures, an in-house rigorous-coupled wave analysis (RCWA) method is  used27. For a two-
port system, the resonance mode excited in a DGL resonator can be theoretically described by temporal coupled-
mode theory (TCMT). The amplitude of the excited resonance mode a = a0ejωt can be described as  follows20,28:

where ω0 is the resonance frequency; 1/τ(1,2) (= γ(1,2)) is the decay rate of the amplitude of the mode into the two 
ports; 1/τa (= γa) is the decay rate due to internal absorption; S(1+,2+) and S(1−,2−) are the incoming and outgoing 
plane waves; d(1,2) is the coupling coefficient between the incoming waves and the resonance mode; and 

C = ejπ
(
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)

 describes the direct process through the reflection (r) and transmission (t) complex coefficients 

of the non-resonant interaction.  S2+ is 0 when the structure is illuminated only from the top port. At the incom-
ing and outgoing ports, the total wave is the sum of direct (‘background’) and indirect (‘resonance’) processes 
and the two processes can give rise to the Fano  resonance28. If this is lossless (τa → ∞), it can conserve the total 
energy and is a time-reversal symmetry  system28. In this system, the two decay rates, 1/τ1 and 1/τ2 are constrained 
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where r is the amplitude of the reflection coefficient of the direct  process28. If a resonance system has a larger r, 
the ratio of the two decay rates is in a wider range. Importantly, within the bounds, even the asymmetric structure 
can have 100%  reflectance28. This resonance structure can thus be regarded as a quasi-one-port resonance system 
without a back mirror around the resonance. If such a resonance system includes an absorbing material, the 
resonant process can be tuned so that the sum of the two decay rates into the two ports is similar to the internal 
absorption rate. It is thus possible to achieve quasi-critical coupling.

The representative DGL structure on an SOI platform is analyzed. Figure 2a shows reflectance and transmit-
tance spectra without an absorbing material; solid lines are obtained by RCWA simulation while square-dotted 
lines indicate the fitted results based on the  TCMT28,29. The DGL structure’s high-refractive-index layers (Si) 
deliver high background reflectance, averaging as high as ∼ 89% within the wavelength range, as Fig. 2a shows. 
Average amplitude of the reflection coefficient is 0.943, while the corresponding upper and lower bounds of the 
decay rate are 34.0877 and 0.0293, respectively. By controlling the grating parameter, the two decay rates can be 
adjusted. The grating parameters of Λ and DC are 793 nm and 0.35, respectively. The thicknesses of the cap and 
 HfO2 are 102 nm and 40 nm, respectively. Under these conditions, the Fano resonance is excited and 100% reflec-
tance is achieved at 1549.59 nm, even though the DGL is an asymmetric  structure28. From the theoretical fitting, 
the total decay rate (γtot = γ1 + γ2) is estimated as 0.7440 THz, and the decay probabilities (η1,2 = γ1,2/γtot) of η1 and 
η2 are obtained as 0.956 and 0.044, respectively. The decay ratio is 21.72, which remains within the boundary.

On the same DGL structure, a graphene layer is placed as an absorbing material on top of the upper oxide 
layer. Figure 2b shows the corresponding reflectance, transmittance, and absorption spectra. The analytical 
TCMT (the square-dotted curve) is well fitted with the RCWA result (the solid line). The graphene’s complex 
refractive index enables it to absorb light; however, due to the imaginary part of its refractive index, the mini-
mum transmittance for the two-port DGL system may  increase30. Therefore, the maximum absorption of the 
DGL absorber using a graphene layer can be slightly less than 100% due to the intrinsic property of the two-port 
resonance structure, which does not use a back reflector. As shown in Fig. 2b, the minimum transmittance is 
2.62%. The reflectance drops abruptly around the Fano resonance. The maximum absorption of the DGL gra-
phene absorber is ∼ 97.27% at a wavelength of 1549.65 nm. The estimated total decay rate is 1.4832 THz, which 

(3)
1− r

1+ r
≤

τ1

τ2
≤

1+ r
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Figure 2.  (a) Reflectance and transmittance spectra of the DGL resonance structure without SLG and (d) its 
electric field distribution; (b) reflectance, transmittance, and absorption spectra with SLG and (e) its electric 
field distribution; (c) phase spectrum of the reflection coefficient. Dotted lines in (d) and (e) indicate different 
layers of the DGL structure shown in Fig. 1 (black-dotted line: SLG). (d) and (e) are created by MathWorks 
MATLAB 2019b with in-house RCWA method.
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is almost twice as large as that of the lossless DGL resonator. The decay probabilities (η1 and η2) into the two 
ports are 0.481 and 0.0132, respectively. The absorption decay probability (ηa) is 0.5058. The DGL resonator is 
thus a slightly over-coupled system (γ1 + γ2 > γa). The ratio of (η1 + η2)/ηa is 0.977 is close to the critical coupling 
condition of 1. The phase spectrum (argument of the reflection coefficient, ∠r) of the DGL resonator is shown 
in Fig. 2c. The phase change around the resonance wavelength is ∼ 0.95π with almost vertical slope. At the criti-
cal coupling condition, the phase change at the resonance wavelength is π31. This phase spectrum is another 
indication of a quasi-critical-coupling  condition31,32. The electric field distribution at the resonance wavelength 
is shown in Fig. 2d,e, respectively, without and with an SLG. The field distribution shows an odd-like mode along 
the metasurface plane for both, and the evanescent field extends outside the upper and lower oxide bounda-
ries. When a lossy material, such as an SLG, is transferred on top of the oxide, the peak electric field amplitude 
decreases by almost half, since the SLG absorbs the light. The overall field profile, however, is not significantly 
altered by the SLG. The property of an absorbing material determines γa; however, γa is not determined solely 
by material properties, but also by the interaction with the cavity  structure20. Since the field distribution and its 
overlap with the absorbing material will decide the γa for a Type B structure where an SLG is embedded inside 
the oxide layer, the DGL structure needs to be adjusted in order to achieve the near critical-coupling condition.

Results and discussion
To determine the optimum parametric set of a DGL structure and to analyze it, absorption is calculated by chang-
ing parameters. For the RCWA simulation, the graphene thickness is set as 0.335 nm and the complex refractive 
is estimated based on the equation of nSLG = 3.0 + j(5.446/3 µm−1)λ, where λ is the  wavelength33. The transferred 
SLG is assumed to be undoped. The refractive index of Si is assumed to be the same as 3.48. The refractive index 
of  HfO2 and  SiO2 are 2.07 and 1.45, respectively. Figure 3a shows the absorption map for a Type A DGL structure 
by changing grating parameters under normal incidence of TE polarized light with a wavelength of 1550 nm. By 
changing the DC and thickness of a grating, the absorption is calculated. The grating period of Λ, the thickness 
of an Si cap layer, and the thickness of  HfO2 are 793, 102, and 40 nm, respectively, which are determined by the 
sub-optimization process. There is a near flat region of absorption of more than 95% around the grating thickness 
of 120 ± 10 nm, indicated by a white-dotted box. The duty cycle ranges from 0.3 to 0.6, which is converted to a 
grating bar width (DC·Λ) range of 238 to 476 nm. This grating can be fabricated using a DUV photolithography 
process. If the grating thickness is around 120 nm, the DC condition selected is flexible. Near the DC of 0.21, the 
shallow grating (less than 100 nm) region has a thick absorption region. However, the absorption is not as high as 

Figure 3.  Absorption contour plots as a function of two grating parameters: (a) grating thickness versus duty 
cycle, (b) duty cycle versus wavelength. Absorption contour plots as a function of thickness of two homogeneous 
layers above the grating and wavelength: (c) oxide layer thickness versus wavelength and (d) cap layer thickness 
versus wavelength. The images are created by MathWorks MATLAB 2019b with in-house RCWA method.
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in the near flat region. The other absorption mapping is conducted by varying the DC and incident wavelength, 
as shown in Fig. 3b. The grating thickness is fixed as 120 nm. Around a target wavelength of 1550 nm and a DC 
range of 0.3 to 0.6, there is a region with more than 90% absorption inside the white-dotted box. Even outside the 
vertically flat region, there is a DC region where absorption is more than 90% within a slightly shorter or longer 
wavelength region. From the absorption maps in Fig. 3a,b, a DC of 0.35 and a grating thickness of 120 nm are 
selected. Even though the two parameters deviate from the target due to potential fabrication imperfections, the 
change of target wavelength can be minimized while maintaining peak absorption as high as possible.

The effect of oxide  (HfO2) and Si cap layers on the absorption are investigated by varying its thickness and 
wavelength, as shown in Fig. 3c,d. The first layer to consider is the  HfO2 layer. The grating period, DC, and 
thickness are fixed as 793 nm, 0.35, 120 nm, respectively. By increasing the thickness of  HfO2 from 20 to 80 nm, 
the peak absorption wavelength is red-shifted from 1536 to 1564 nm, since the overall upper guiding structure 
 (HfO2 + Si cap) becomes thicker and the supported resonance wavelength becomes longer. Within the thick-
ness range of the  HfO2, the average peak absorption is more than 96.98%. For the case of an Si cap layer with a 
40 nm-thick  HfO2, the peak absorption wavelength becomes longer, as does the  HfO2 as the thickness of the Si 
cap increases, as shown in Fig. 3d. The average peak absorption of 95.69% is achieved within a thickness range 
from 97 to 107.5 nm, while the corresponding peak wavelength is distributed from 1536 to 1564 nm. Outside 
the thickness range of the Si cap, the DGL structure deviates from the quasi-critical-coupling condition, and 
hence the achievable peak absorption decreases. Since the refractive index of Si cap is higher than that of the 
oxide  (HfO2), the peak wavelength shifts faster than it does for the oxide layer. Therefore, to adjust the peak 
wavelength precisely, control of the  HfO2 is preferable. In addition, the atomic layer deposition (ALD) process 
itself is known for its precise control of deposition  thickness34.

The deviation from the design of the DGL structure can reduce peak absorption at the target wavelength 
because the resonance wavelength can be shifted, or may deviate from the quasi-critical-coupling condition. To 
investigate the design sensitivity of the DGL resonance structure, the main design parameters of grating thick-
ness, DC,  HfO2 thickness, and Si cap thickness are randomly generated following a normal distribution, 
f (x) = 1

σ
√
2π

exp
[

− 1
2

( x−µ
σ

)2
]

 , where µ is the mean and σ is its standard deviation. The means of the parameters 
listed above are 120 nm, 0.35, 40 nm, 102 nm with the 3σ of 9 nm, 0.03, 3 nm, and 6 nm, respectively. The grating 
period is maintained as 793 nm. Each parameter is generated first with no correlation, then with these param-
eters, peak absorption and its wavelength are determined for 2000 samples. Figure 4a–d show the normal dis-
tribution for each parameter. The distribution of DC corresponds to variations in the grating bar width 
of ± 23.79 nm. The process for the  HfO2 layer can be conducted using ALD within a variation in the ± 3 nm range. 
The black solid lines indicate the fitted normal distribution from the distribution of 2000 samples. Figure 4e 
shows the scattering plot of peak absorption and its corresponding wavelength. The average peak wavelength is 
1549.29 nm, which is distributed within ± 20 nm. The average peak absorption is 96.74%, which is very close to 
the maximum absorption of 97.30%. The proposed design of the DGL graphene absorber thus remains robust 
within possible design imperfections, and can be feasible under optimization of the fabrication process.

The thickness of  HfO2 and Si can be tuned in order to maximize peak absorption of the DGL graphene 
absorber at the target wavelength of 1550 nm. It is assumed that DC may deviate during fabrication, and DC 

Figure 4.  Estimation of peak absorption wavelength shift due to potential fabrication deviation, by randomly 
generating parametric spaces of (a) DC, (b)  HfO2 thickness, (c) Si cap thickness, and (d) grating thickness of 
2000 samples from a normal distribution. Black lines indicate the fitted normal distribution. (e) Scattering plot 
of absorption and corresponding peak wavelength shift (right inset: histogram of absorption distribution; top 
inset: histogram of peak wavelength shift from designed wavelength of 1550 nm).
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values are randomly generated following normal distribution with µ = 0.35 and 3σ = 0.03. The grating thickness 
is set as 120 nm. These two optimum thicknesses are determined using particle swarm optimization (PSO)35. 
Figure 5a shows the distribution of peak absorption, with more than 1960 samples concentrated above 97.2%. 
Maximum peak absorption is 97.29% and minimum 96.63%. Average peak absorption is 97.27%. To analyze 
the correlation between the two homogeneous layers and the DC, a scattering graph is plotted as shown in 
Fig. 5b. As the DC increases, the overall thickness of Si cap increases (green dotted line), while the thickness of 
 HfO2 decreases correspondingly (yellow dotted line). To confirm the correlation between the  HfO2 layer and 
the Si cap, a scattered distribution is plotted as shown in Fig. 5c. On each axis, the thickness distribution of each 
homogeneous layer is plotted and follows the normal distribution. The  HfO2 is mostly concentrated between 
30 and 50 nm, while the Si cap is correspondingly between 101 and 104 nm. The correlation between the two 
layers is almost linear; the thicker the high-refractive-index Si cap layer, the thinner the low-refractive-index 
oxide layer. The additional controllability of the two homogeneous layers enables the DGL graphene absorber 
to achieve maximum absorption at the target wavelength.

The angle-dependent absorption for the DGL graphene absorber is shown in Fig. 6a. As the incidence angle 
increases, another absorption peak below the point 1 of 1550 nm appears and the two branches begin to diverge. 
Around 30°, another split in peak absorption occurs at wavelengths of 1340 and 1740 nm, respectively; the excited 
electric field profile (|Ey|) at the corresponding three points is plotted in Fig. 6b. At the normal incidence case of 
point 1, the electric field profile is quasi-symmetric along the vertical axis because of the resonance mechanism 
in the DGL structure. However, as the incidence angle increases, the initial excited ± 1st diffraction orders are 
not symmetric along the surface normal, while the guiding layers of the DGL are not optimized to support the 
resonance process. As a result, the electric field profile is no longer quasi-symmetric along the surface normal, as 
shown in the respective field profiles of points 2 and 3 at the incidence angle of 32.5°. Moreover, the decay rates 
change and deviate from the quasi-critical-coupling condition. Therefore, peak absorption for the off-normal 
cases falls, as shown in Fig. 6c13. At the normal incidence case of point 1, peak absorption is 97.27%. At the respec-
tive off-normal cases of points 2 and 3, it decreases to 81.48% and 91.85%, respectively. From the phase spectra of 

Figure 5.  Thickness control of two homogeneous layers:  HfO2 and Si cap, to maximize peak absorption at 
the target wavelength of 1550 nm when DC varies. (a) Maximum peak absorption distribution. (b) Thickness 
distribution of  HfO2 and Si cap layer as a function of DC (orange dot:  HfO2, green dot: Si cap). (c) Thickness 
correlation between  HfO2 layer and Si cap.

Figure 6.  (a) Absorption spectra as a function of wavelength and incidence angle for Type A DGL structure. 
(b) Corresponding electric field (|Ey|) profiles at the three points (dotted lines indicate different layers; black line 
indicates graphene position). (c) Absorption and phase (∠r) spectra, aligned with each peak wavelength. (a) and 
(b) are created by MathWorks MATLAB 2019b with in-house RCWA method.
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Fig. 6c, at point 1, it is obvious that the phase changes abruptly, a further indication of the quasi-critical-coupling 
condition. At the higher incidence angle of points 2 and 3, it shows the properties of an under-coupled  system31,32.

The DGL graphene absorber covers the whole C-band wavelength range. The parameters of the DGL structure 
are determined using PSO with a fixed grating thickness of 120 nm, in order to achieve the quasi-critical coupling 
condition at the target wavelength. Figure 7a shows the exemplary absorption spectra of the DGL graphene 
absorber, designed for different wavelengths. From 1520 to 1580 nm, peak absorption at each design wavelength 
is ∼ 97%. As shown in Fig. 7b, an abrupt phase change of ∼ 0.95π is observed at each resonance wavelength, 
confirming quasi-critical coupling. The respective electric field amplitude profiles at wavelengths of 1520, 1550, 
and 1580 nm are shown in Fig. 7c; the field profiles for the three resonance wavelengths are quasi-symmetric 
along the z-axis and similar to each other. This is because of the resonance mechanism in the DGL structure, 
as explained earlier. On the SOI platform, the BOX layer separates the DGL structure from the lower handle Si 
wafer. Even though the BOX layer’s effect on absorption is not discussed here, there is a weak Fabry–Perot effect 
that slightly increases or decreases absorption depending on the resonance wavelength.

conclusion
In summary, we have proposed a dual-guiding-layer (DGL) graphene absorber on an SOI platform without any 
back reflector, which enables a near critical-coupling condition. Since the DGL structure has been designed to 
have a high background reflectance, it possessed the ratio of two decay rates of two-port system within a wider 
range. As a result, the sum of the two decay rates and the absorption rate caused by the graphene were closely 
matched. As a result, the ratio of the sum of the two decay rates to the absorption rate of 0.977 in the DGL 
resonance absorber was close to that of the critical coupling condition of 1. In addition, the phase change was 
as abrupt as ∼ 0.95π, a further indication of quasi-critical-coupling, and showed ∼ 97% absorption across the 
whole C-band range. Since the DGL resonance mechanism was identical for difference resonance wavelengths, 
the corresponding electric field profiles were similar. For angle-dependent absorption, maximum absorption 
was achieved at normal incidence. The principles underlying the DGL resonance system may thus be usefully 
applied to other resonance structures that use different material platforms and require a back mirror. On an SOI 
platform a DGL graphene absorber array can also be fabricated using a CMOS-compatible process for image 
sensing or other applications involving free-space communication.

Figure 7.  DGL graphene absorber with fixed 120 nm-thick grating for different peak wavelengths. (a) 
Absorption spectra of DGL graphene absorber designed for different peak absorption wavelengths. (b) Relative 
phase spectra of each DGL absorber. (c) Electric field amplitude distribution at respective peak wavelengths of 
1520, 1550, and 1580 nm. The image is created by MathWorks MATLAB 2019b with in-house RCWA method.
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