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Pattern recognition of the fluid flow 
in a 3D domain by combination 
of Lattice Boltzmann and ANFIS 
methods
Meisam Babanezhad1,2, Ali Taghvaie Nakhjiri3, Azam Marjani4,5* & Saeed Shirazian6,7

Many numerical methods have been used to simulate the fluid flow pattern in different industrial 
devices. However, they are limited with modeling of complex geometries, numerical stability 
and expensive computational time for computing, and large hard drive. The evolution of artificial 
intelligence (AI) methods in learning large datasets with massive inputs and outputs of CFD results 
enables us to present completely artificial CFD results without existing numerical method problems. 
As AI methods can not feel barriers in numerical methods, they can be used as an assistance tool 
beside numerical methods to predict the process in complex geometries and unstable numerical 
regions within the short computational time. In this study, we use an adaptive neuro-fuzzy inference 
system (ANFIS) in the prediction of fluid flow pattern recognition in the 3D cavity. This prediction 
overview can reduce the computational time for visualization of fluid in the 3D domain. The method 
of ANFIS is used to predict the flow in the cavity and illustrates some artificial cavities for a different 
time. This method is also compared with the genetic algorithm fuzzy inference system (GAFIS) 
method for the assessment of numerical accuracy and prediction capability. The result shows that the 
ANFIS method is very successful in the estimation of flow compared with the GAFIS method. However, 
the GAFIS can provide faster training and prediction platform compared with the ANFIS method.

Artificial intelligence (AI) has been frequently used in the prediction of physical and industrial  processes1–4. They 
are also used as an assistance tool besides exact studies, either numerical or experimental, during optimization 
of processes, and they can mimic and then provide mathematical descriptions for  processes5–8. Recently, AI has 
been combined with computational fluid dynamics to simulate the fluid flow pattern in different geometries, such 
as square cavity and the cylindrical bubble column  reactors9–11. In this combination, the AI learns the process 
from the computational fluid dynamics (CFD) data set, specifically from each CFD node in the domain, and 
then represents the new data set for different conditions. The flow pattern in this condition is also based on the 
CFD data and is completely independent of boundary conditions, mesh sensitivity, and stability of numerical 
 methods12–15. The AI shows the evolution of the flow pattern between the range of exact models, which is helpful 
to avoid exact modeling repetition with expensive computational expenses in the optimization process.

In the multiphase flow application, Pourtousi et al.16 employed the ANFIS method to learn CFD data from 
different heights of a bubble column reactor and predicted the new data set of the flow pattern for different 
heights and sparger (gas distributor) specifications. They also used this method to learn CFD data about for-
mation, detachment and to raise the bubble at few CFD time steps, and after learning data, they predicted the 
interface between continuous and dispersed phase for the very small time step. Pourtousi et al.17 showed that the 
prediction of the interface between dispersed and continuous phase is not very accurate with the combination 
of ANFIS and CFD, and it requires a huge number of rules.
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There are also several tuning parameters to accurately predict the shape of the pattern in the  AI18. For instance, 
in the ANFIS technique, number of rules and membership functions can be changed for each input and results 
in improvement of the  pattern6,19.

The selection of different datasets during the learning process enables us for better pattern recognition. One 
of the main advantages of this accurate fluid flow pattern prediction is the CFD method does not require to save 
each time step and then store the data. In this case, AI plays a role as an assistance tool to provide non-existing 
data, which sometimes needs large computational time and hard drive for storing data. This technique can be 
replaced with computational fluid dynamics, and it enables us to avoid storing data for a very small time step 
and replace smart modeling instead of CFD modeling.

Recently there are several machine learning (ML) tools that have been developed to predict the pattern of 
flow in a domain. They showed that the number of input parameters and the number of membership functions 
could significantly impact on accurate prediction of flow pattern. However, the selection of each model based on 
the learning time has not been fully considered. Additionally, the prediction of more futures in the pattern has 
not been fully investigated. In this work, we consider the prediction of flow pattern in the domain and represent 
new features of flow characteristics based on the predictions ability.

We use different patterns of fluid flow for different time steps as a data set, and with the ANFIS method, all 
time steps are learned. After training all patterns of fluid, the AI predicts missing times with the CFD method, 
which has not been used in the training method. We also compare prediction results with the existing model 
in literature called the genetic algorithm fuzzy inference system (GAFIS) to evaluate the capability of models 
in predicting flow patterns. For the first time, we present a new mathematical correlation based on AI for the 
flow pattern in the cavity domain. This correlation can represent the local values for the fluid flow when there 
is a shear flow.

Method
In this study, to build-up a large dataset for the fluid flow, we simulate the 3D cavity by the Lattice Boltzmann 
method (LBM). This dataset enables us to study the ability of ML prediction process in the simulation of fluid 
flow pattern recognition in a simple fluid problem. The AI is used to get several slices for various simulation 
time at the center of the cavity, in x–y coordinate. Then it tries to learn the process and predict many simulation 
times that are not simulated by the CFD method or saved on the computer. This ability enables us to visualize 
the fluid pattern in a short period of time.

Lattice Boltzmann Method (LBM). For simulation of single-phase fluid flow in the 3D cavity, we use the 
lattice Boltzmann method, and the collision term is computed based on Bhatnagar-Gross-Krook (BGK). The 
model of D3Q19 is used to present the location of LB points. The LB equation, which represents the streaming 
and collision part, is written as:

where fi is the density distribution and f eqi  is the equilibrium distribution for particles in the domain. ci = cei 
is the discrete velocity in the domain of cavity, while ei presents unit lattice velocity. F is also the external force 
in the direction of i.

The equilibrium distribution ( f eqi  ) with different weight factors ( w ) describes as:

The weight factors are as w0 = 1/3, w1−6 = 1/18 and w5−9 = 1/36. The macroscopic density and velocity of fluid 
can be calculated based on:

ρ and u present the density and velocity of fluid flow, respectively.

ANFIS. ANFIS is a fuzzy implication structure that precisely forecasts the manners of nonlinear and complex 
 systems20,21. Three various sorts of fuzzy reasoning are present, which Sugeno and Takagi suggested if–then rules 
applied in the ANFIS  framework22. Herein x coordination (x), y coordination (y), and time (t) are engaged for 
the achievement of fluid velocity in place of output. The function of the ith rule is written as:

where wi is the signal coming out of the second layer’s node and μAi, μBi and μCi are received signals from imple-
mented MFs on inputs, x coordination (x), y coordination (y) and time (t), to the second layer’s node. More 
details on ANFIS can be found  elsewhere22.
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Results and discussion
The analysis of liquid flow pattern by CFD methods in 3D geometries requires high computational time. Saving 
all fluid properties in the three dimensions for each time step is time-consuming and needs a very large hard drive 
for storing data. In this study, we specifically, simulate the 3D cavity and save data at the center of the domain for 
several time steps. Then we use some data in training ANFIS for prediction of the liquid pattern. During learning 
data, we examine different combinations of membership functions, rules, and the number of inputs to evaluate 
the best condition for the prediction of flow patterns with AI. After learning all data, we call ANFIS function to 
generate the liquid flow pattern for different time steps, and we compare them with some of the CFD data that 
has not been presented in the training process. This procedure enables us to facilitate fast visualization of the 
data in a short computational time.

The prediction of flow pattern recognition in the domain requires the high accuracy of the learning process 
in artificial intelligence algorithms. This accuracy called "intelligence of the method" can be achieved with all 
tuning parameters in the AI and way of processing and training data. In this study, to achieve the intelligence of 
the method, we start training with different numbers of inputs and outputs. At first, we train data with one input 
and output and observe the accuracy of the method. The results show that the accuracy of the method is very low 
when only one input is used in the training process. This accuracy can not increase by increasing the number 
of rules or the number of membership functions. To achieve better accuracy of the method, we can increase 
the number of inputs. Increasing the number of inputs causes an increment in the number of neural in the 
system. For clustering data in the ANFIS method, we select grid partition clustering and also select generalized 

Figure 1.  ANFIS training and testing processes, one input, number of MFs = 2, 3, 4.

Figure 2.  ANFIS training and testing processes, two inputs, number of MFs = 2, 3, 4.
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bell-shaped membership function (Gbellmf) as a type of fuzzy membership functions (MFs). The percentage of 
data utilized for training is %60, the maximum iteration in ANFIS is 500, and the number of data is considered 
65,000. With the above parameters and considering x coordinate as the first input and different number of MFs, 
the ANFIS learning is implemented. Figure 1 shows the regression (R) about 0.117 for the training, and 0.116 for 
the testing. This value of R shows %11 of ANFIS intelligence for reaching a high ANFIS intelligence, we consider 
y coordinate as the second input and repeat the ANFIS training/testing when the number of MFs = 2,3 and 4.

Results depicted in Fig. 2 reveal that the amount of R is drastically risen up, and when the number of MFs = 2, 
the value of R for training/testing is about 0.92. Changes in the number of MFs from 2 to 4 indicated an increase 
in the amount of R from 0.92 to 0.96, which had a great influence over achieving %96 of ANFIS intelligence 
which is depicted in Fig. 3.

To reach a high percentage of ANFIS intelligence, we add time as the third input, and the learning step for 
the number of MFs = 2, 3, and 4 are done. By comparing R when the number of inputs is three and two, which 
indicates an increase in R in the testing and training, particularly when the number MFs = 4, percentage of ANFIS 
intelligence is %99.5, which is a significant achievement in the ANFIS intelligence.

According to Fig. 4, ANFIS prediction points have good adaptation with the CFD points; eventually, we pre-
dict surfaces that indicate velocity as the ANFIS output based on different inputs. By using predicted surfaces, 

Figure 3.  ANFIS training and testing processes, three inputs, number of MFs = 2, 3, 4.

Figure 4.  ANFIS prediction validation by the CFD outputs, three inputs, number of MFs = 4.
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there is a suitable capability to achieve more points in the cavity, which most of them have not been present in 
the ANFIS learning processes (see Fig. 5).

The highest intelligence is achieved when the number of inputs equals three and the number of MFs = 4. 
The degree of MFs is illustrated in Fig. 6; furthermore, Figs. 7 and 8 indicate MSE error and RMSE error for the 
training and testing processes in the highest level of ANFIS intelligence. In the following section, the velocity 
prediction patterns are depicted for the times that its data are present in the ANFIS learning processes, the veloc-
ity prediction patterns are depicted on the left side of Fig. 9, also the velocity prediction patterns for the times 
that are absent in the learning processes are depicted on the right side of Fig. 9.

Furthermore, in Fig. 10, the velocity prediction patterns for the different times are illustrated. In the follow-
ing section of this study, we select five points that are highlighted in Fig. 11, and their velocity are predicted at 
different times, also we compare the predicted velocity of five points with the CFD velocity of five points that 

Figure 5.  ANFIS prediction surfaces, three inputs, number of MFs = 4.

Figure 6.  Degree of membership function, three inputs, number of MFs = 4.
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are depicted in Fig. 12. Results show that there is a good adaptation between the prediction velocity lines and 
the CFD velocity lines.

Generalized Bell-shaped membership function (Gbellmf) from different types of MFs, and its equation can 
be seen in Table 1. Gbellmf is selected for prediction of velocity that is obtained from the following equation:

µ1i ,µ1j and µ1k are written in Eq. 6, as:
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Figure 7.  ANFIS training errors, three inputs, number of MFs = 4.

Figure 8.  ANFIS testing errors, three inputs, number of MFs = 4.
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Table 2 shows membership function parameters for each input separately in the first layer of ANFIS struc-
ture. Also, Table 3 shows Eq. (6) parameters that are extracted from the bottom layer of ANFIS structure, using 
these parameters in Eq. (6) we can predict fluid velocity based on ANFIS inputs (x and y coordinates and time).

For better evaluation of the ANFIS method, we compare this method of prediction with the GAFIS method. 
Similar to the previous analysis, again, we start with training assessment, and after learning data set in both 
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Figure 9.  Velocity prediction pattern for absent and present times in learning processes by the obtained ANFIS 
intelligence when the number of inputs is three, and the number of MFs is 4.

Figure 10.  Velocity prediction 3D pattern, three inputs, number of MFs = 4.
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Figure 11.  Five selected points in the cavity to evaluate velocity at different times.

Figure 12.  Prediction of the velocity patterns at different times.

Table 1.  The equation of MF.

Membership Function Equation

Bell-shaped 1

1+| x−c

a
|
2b
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ANFIS and GAFIS, we compare then with R evaluation criteria. The results in Fig. 13 show that the ANFIS 
method is more capable in the training of CFD dataset, and the ratio of R

ANFIS

RGAFIS
> 1 that shows the high ability 

of training data for the ANFIS method. In another assessment, we included more datasets in the process of the 

Table 2.  Membership functions parameters of ANFIS prediction.

Input MF Type of MF a b c

X Coordination

in1mf1 Gbellmf 8.35E + 00 5.71E−01 5.97 E−01

in1mf2 Gbellmf 1.15E + 01 2.30E + 00 1.51E + 01

in1mf3 Gbellmf 1.22E + 01 3.68E + 00 3.68E + 01

in1mf4 Gbellmf 7.31E + 00 1.51E + 00 5.24E + 01

Y Coordination

in2mf1 Gbellmf 1.08E + 01 1.63E + 00 3.15E + 00

in2mf2 Gbellmf 1.58E + 01 3.27E + 00 2.21E + 01

in2mf3 Gbellmf 9.44E + 00 1.16E + 00 3.88E + 01

in2mf4 Gbellmf 3.67E + 00 1.44E + 00 5.56E + 01

Time

in3mf1 Gbellmf 8.00E + 02 1.48 E−01 2.66 E−04

in3mf2 Gbellmf 8.00E + 02 7.82 E−01 1.60E + 03

in3mf3 Gbellmf 8.00E + 02 1.07E + 00 3.20E + 03

in3mf4 Gbellmf 8.00E + 02 1.59E + 00 4.80E + 03

Table 3.  ANFIS prediction parameters in Eq. (6).

Rule p q r s Rule p q r s

1 − 4.69E−06 8.21E−04 2.52E−07 5.15E−03 33 1.40E−05 2.14E−04 1.78E−07 4.75E−03

2 2.39E−04 3.80E−04 − 1.30E−07 6.25E−03 34 − 1.03E−04 − 8.75E−04 − 1.07E−07 − 7.95E−03

3 1.94E−04 − 3.32E−07 − 3.44E−09 4.62E−03 35 − 1.30E−04 4.49E−04 − 1.25E−07 − 1.91E−03

4 1.81E−04 − 1.12E−04 5.33E−08 3.77E−03 36 − 1.35E−04 9.60E−04 − 6.59E−08 1.08E−03

5 8.13E−05 1.13E−03 − 3.84E−07 − 1.69E−02 37 − 5.63E−05 7.81E−04 7.72E−07 − 6.57E−03

6 − 4.34E−04 1.04E−03 7.79E−08 − 1.09E−02 38 1.92E−04 − 1.77E−03 6.86E−08 1.89E−02

7 − 4.29E−04 6.26E−04 − 8.57E−08 − 3.18E−03 39 2.72E−04 − 3.67E−04 1.30E−07 − 8.42E−03

8 − 3.39E−04 4.88E−04 − 9.46E−08 − 7.93E−04 40 2.76E−04 3.50E−04 2.51E−07 − 2.06E−02

9 − 3.02E−04 2.39E−03 9.94E−07 − 1.01E−01 41 1.90E−04 2.35E−03 7.15E−07 − 1.00E−01

10 2.02E−03 2.97E−03 − 8.50E−07 − 1.24E−01 42 − 8.91E−04 − 4.49E−03 3.30E−07 2.05E−01

11 1.49E−03 2.32E−03 − 2.55E−07 − 9.54E−02 43 − 7.94E−04 − 2.32E−03 − 2.90E−08 1.08E−01

12 1.31E−03 2.06E−03 − 7.98E−08 − 8.48E−02 44 − 7.80E−04 − 9.76E−04 − 3.29E−07 5.02E−02

13 3.41E−03 2.52E−02 − 2.18E−06 − 1.30E + 00 45 − 1.38E−03 3.31E−02 7.27E−06 − 1.67E + 00

14 5.05E−03 3.46E−02 − 1.96E−06 − 1.78E + 00 46 − 1.63E−03 − 4.00E−02 − 4.33E−06 2.13E + 00

15 1.77E−03 3.52E−02 − 7.47E−07 − 1.80E + 00 47 − 3.92E−04 − 3.22E−02 − 2.86E−06 1.69E + 00

16 3.85E− 03 3.31E−02 − 4.81E−06 − 1.67E + 00 48 − 6.51E−04 − 2.51E−02 − 4.40E−07 1.31E + 00

17 1.23E−06 8.36E−05 2.02E−07 4.49E−03 49 8.18E−05 4.65E−04 3.04E−07 − 4.06E−04

18 − 2.76E−05 − 8.06E−04 − 8.84E−08 − 1.07E−02 50 − 6.10E−04 5.26E−04 − 3.38E−08 3.60E−02

19 − 2.60E−05 2.89E−05 − 1.50E−07 − 6.85E−03 51 − 7.73E−04 − 3.36E−05 1.08E−07 4.25E−02

20 − 1.80E−05 2.25E−04 − 1.42E−07 − 5.66E−03 52 − 8.57E−04 − 4.16E−04 3.10E−07 4.37E−02

21 − 2.20E−05 6.17E−04 7.06E−07 − 5.45E−03 53 − 3.67E−04 7.37E−04 − 4.40E−07 8.07E−03

22 6.55E−05 − 1.73E−03 1.02E−09 2.28E−02 54 1.20E−03 1.04E−03 − 6.42E−08 − 7.22E−02

23 8.77E−05 − 7.95E−04 8.14E−08 6.35E−03 55 1.68E−03 5.28E−04 − 8.52E−08 − 8.70E−02

24 8.16E−05 − 5.19E−04 9.30E−08 1.59E−03 56 1.81E−03 5.98E−05 − 3.19E−07 − 8.44E−02

25 1.04E−04 2.01E−03 8.93E−07 − 8.17E−02 57 1.43E−03 1.64E−03 1.29E−06 − 1.41E−01

26 − 3.95E−04 − 4.51E−03 3.19E−07 1.85E−01 58 − 5.99E−03 2.71E−03 − 3.67E−07 1.86E−01

27 − 3.86E−04 − 2.94E−03 − 1.13E−07 1.19E−01 59 − 5.82E−03 2.10E−03 − 4.15E−07 2.08E−01

28 − 3.37E−04 − 2.41E−03 − 2.12E−08 9.55E−02 60 − 5.98E−03 1.37E−03 2.14E−07 2.47E−01

29 − 5.88E−04 3.15E−02 8.15E−06 − 1.62E + 00 61 − 8.72E−03 2.15E−02 − 1.38E−06 − 6.64E−01

30 − 4.19E−04 − 4.21E−02 − 3.71E−06 2.20E + 00 62 − 1.02E−02 2.58E−02 2.34E−07 − 8.20E−01

31 2.53E−04 − 3.58E−02 − 3.00E−06 1.86E + 00 63 − 2.63E−03 2.46E−02 8.79E−07 − 1.13E + 00

32 − 3.02E−05 − 3.16E−02 1.35E−07 1.63E + 00 64 − 2.91E−03 2.25E−02 − 2.61E−06 − 9.93E−01
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assessment called “testing process”. In this stage of evaluation, we observe similar behavior as the training process, 
and the ANFIS method shows a higher ability with regards to accuracy.

In addition to the accuracy criteria, we compare these methods with regards to error, R2 , STD, and compu-
tational time (training and testing times). Table 4 shows that the ANFIS method contains less error than GAFIS 
when both methods have the same number of iterations, inputs, and percentage of training data set. Both meth-
ods reach the best level of accuracy. However, the training time for the ANFIS method is almost two times more 
than the GAFIS method. In the prediction process, the GAFIS method is even much faster, and the speed of the 
prediction process is almost 7 times more than the ANFIS method.

For the better comparison between the ANFIS and GAFIS method, the artificial flow characteristics (velocity 
distributions) should be compared at local computing points with CFD local dataset. Figure 14a,b shows the flow 
distribution for the ANFIS and GAFIS method, respectively, and then all velocity distributions are compared 
with CFD flow distributions in the cavity. The prediction results for the ANFIS method shows that this method 

Figure 13.  Accuracy comparison of ANFIS and GAFIS methods for the best learning processes.

Table 4.  Model parameters, error evaluation, and computational time for ANFIS and GAFIS.

Method ANFIS GAFIS

Number of inputs 3 3

Maximum of Iteration 500 500

Percentage of P 60 60

Clustering Type Grid Partition FCM Clustering

Training MSE error 2.74166E−08 3.55569E−07

Training RMSE error 0.00016558 0.000596296

Training Mean error − 5.50537E−11 0.000122548

Training Standard deviation (StD) 0.000165582 0.000583575

Training correlation coefficient (R) 0.995759587 0.94760459

Training coefficient of determination  (R2) 0.991537156 0.897954459

Testing MSE error 3.06098E−08 3.6226E−07

Testing RMSE error 0.000174957 0.000601881

Testing Mean error − 5.16564E−07 0.000122067

Testing Standard deviation (StD) 0.000174957 0.000589377

Testing correlation coefficient (R) 0.995291937 0.946933665

Testing coefficient of determination  (R2) 0.990606039 0.896683366

Learning time(s) 14,189.85973 7129.263288

Prediction time(s) 12.7125845 1.8255114
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can fully predict the flow distribution in the cavity with the minimal difference with CFD dataset, particularly 
near boundary conditions. However, the prediction results for the GAFIS method show that this method is 
unable to predict the flow at many local points. The low capability of prediction for some of the local points can 

Figure 14.  (a) Pattern recognition for liquid flow using the ANFIS method. (b) Pattern recognition for liquid 
flow using the GAFIS method.
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be modified with consideration of data filtration near all boundary conditions or introducing boundary condi-
tions as a numerical restriction into the learning algorithms. Another alternative method can be a dense CFD 
mesh near the boundary condition to have more datasets at those particular locations. We also predict the flow 
distribution for a different time, and we compare the ANFIS, GAFIS, and CFD methods at the time that the 
machine learning method does not have training sessions. Figure 15 shows the velocity for ANFIS, GAFIS, and 
CFD at different points in the cavity domain. Two velocity profiles for ANFIS and GAFIS are completely artificial 
and based on the prediction ability of machine learning. The results for the ANFIS results are comparable with 
CFD calculations at different time frames. However, the GAFIS is not as accurate as the ANFIS in the prediction 
of the flow pattern as a function of time. 

For future study, changes in a type of clusterings such as subtractive clustering and fuzzy c-means clustering, 
and their variable parameters such as the number of cluster in fuzzy c-means clustering and cluster influence 
range (CIR) in subtractive clustering are worth studying and evaluation.

Conclusion
In this study, a type of AI called ANFIS method is considered. For ANFIS learning processes, we considered data 
as inputs and outputs that were extracted from the CFD simulations. In the CFD method, we simulated a cavity 
and extracted data such as x and y direction and fluid velocity at different times. After making some changes in 
ANFIS variable parameters to achieve the highest percentage of ANFIS intelligence, ANFIS intelligence became 
conscious eventually. Fluid velocity as an ANFIS output is predicted in many points of the cavity in comparison 
with cavity points that are simulated via the CFD method. Particularly, in this study, we considered five points of 
the cavity at different times and predicted these points at any time in the CFD method period of time. By using 
this capability of the ANFIS method, we predicted the velocity of the fluid in times that no data existed in the 
learning processes. For the assessment of prediction capability in the ANFIS method, we compared this method 
with the GAFIS algorithm. The result shows that the prediction capability in the ANFIS method is higher than 
the GAFIS method. The ANFIS method can even better predict the flow patter at all local computing points. 
However, training and prediction time for the ANFIS method is much higher than the GAFIS method.
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