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Short‑term variability of the human 
serum metabolome depending 
on nutritional and metabolic health 
status
inoncent Agueusop1, petra B. Musholt1, Beate Klaus2, Kendra Hightower3 & Aimo Kannt1,4,5*

The intra-individual variability of the human serum metabolome over a period of 4 weeks and its 
dependence on metabolic health and nutritional status was investigated in a single‑center study under 
tightly controlled conditions in healthy controls, pre-diabetic individuals and patients with type-2 
diabetes mellitus (T2DM, n = 10 each). Untargeted metabolomics in serum samples taken at three 
different days after overnight fasts and following intake of a standardized mixed meal showed that 
the human serum metabolome is remarkably stable: The median intra-class correlation coefficient 
(ICC) across all metabolites and all study participants was determined as 0.65. ICCs were similar for 
the three different health groups, before and after meal intake, and for different metabolic pathways. 
Only 147 out of 1438 metabolites (10%) had an ICC below 0.4 indicating poor stability over time. In 
addition, we confirmed previously identified metabolic signatures differentiating healthy, pre-diabetic 
and diabetic individuals. To our knowledge, this is the most comprehensive study investigating the 
temporal variability of the human serum metabolome under such tightly controlled conditions.

Circulating metabolites are assessed because they may be indicative of the body’s responses to nutrition, disease, 
treatment or environmental factors. Metabolites have potential to be used e.g. for predicting disease progres-
sion, response to therapy, demonstrating drug target engagement in clinical trials or for prognostic purposes. 
There is an increasing body of evidence for using metabolomics in medicine, such that the field is now poised to 
discover clinically useful biomarkers and therapeutic targets in nephrology, cancer, and other medical  fields1,2. 
With this growing interest to perform metabolomics analyses for biomarker identification, it is crucial to accu-
rately understand the diurnal variation, the course over time per subject, as well as the intra- and inter-subject 
variability also dependent on metabolic condition or nutritional status among other  factors3. The biological 
interpretation of biomarkers with large fluctuation will be different from the interpretation of biomarkers which 
are perceived or known to be stable.

Published studies on metabolites are frequently completed on cohorts with a small number of subjects 
included, a limited number of biological samples collected per subject and over time, and are based on targeted 
approaches with a limited number of metabolites investigated. In addition, samples are often collected at dif-
ferent clinical centers and by different investigators, and potentially in subjects with unclear nutritional status. 
This may lead to biased estimates of the intra- but also inter-subject variability and has the inherent weakness 
that markers showing high variability are more likely to be identified as “significantly changing” just by chance, 
in comparison to markers which are stable over time. Furthermore, the populations in which biomarkers are 
investigated are often not homogenous or not sufficiently characterized. Kim et al.4 performed non-targeted 
metabolomics analysis of blood and urine of healthy subjects over a short period of time and suggested that blood 
and urine are suitable biofluids for metabolomics studies. They investigated the source of variability attributed to 
technical issues such as sample preparation and analysis. Most of the available studies on diet and metabolomics 
have focused on the effects of a specific dietary  intervention5,6 rather than day-to-day variability.

The identification and validation of known or new biomarkers—that, for example, predict disease progres-
sion or response to treatment, demonstrate target engagement or are indicative of disease type, severity or a 
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specific mode of action—is a key success factor to assess the clinical relevance of a particular treatment approach. 
Biomarkers which are subject to high variability, either if assessed over a defined observation period between 
individuals, or within individuals if repeatedly measured, may have only limited use in clinical practice. Especially 
the evaluation of effects of disease-modifying treatments through the application of a biomarker or a panel of 
biomarkers strongly requires knowledge about the characteristics of these markers under conditions where no 
treatment intervention was applied. Characterization and validation of a biomarker could be best achieved if 
multiple samples over a defined sampling period from one subject are tested, as well as a comparison of samples 
from different subjects. If the purpose is also to test the ability of a biomarker to predict disease modification 
or progression, then samples from different populations (with/without disease) should be collected in addition.

We have designed and performed a study aiming at investigating the intra-individual variability of the human 
serum metabolome over a period of 28 days, while eliminating as many of the potential sources of variability 
as possible: The study was performed in a single-center setting with repeated blood sample collection on three 
different days under carefully controlled conditions. Participants stayed overnight before each study day to 
control food intake. Serum samples from 30 min before and 1 h after intake of a standardized mixed meal were 
used to perform untargeted global metabolomics and lipidomics analyses to (a) investigate the intra-individual 
variability of serum metabolites over time, (b) its dependence on nutritional status and metabolic health, and (c) 
identify metabolic signatures of healthy, prediabetic and T2DM individuals and potential differences in response 
to a mixed meal. To our knowledge, this is the first and most comprehensive study investigating the variability 
of the human serum metabolome under tightly controlled conditions over a short period of time in subjects 
with different metabolic health conditions and controlled nutritional status. We collected over 40.000 samples 
in different matrices (serum, EDTA-, Li-heparin-, NaF- and p800-plasma) and different body fluids including 
urine. These samples are available for further biomarker analyses.

Results
Study participants. The overall study layout is depicted in Fig. 1. Three groups of individuals (n = 10 each) 
were recruited for the study: healthy subjects, individuals with pre-diabetes and patients with T2DM. Assign-
ment to the three groups was done based on fasting glucose, and glycated hemoglobin (HbA1c) according to 
ADA  criteria7 as well as the results of the OGTT-challenged 1-h and 2-h glucose, intact proinsulin and C-pep-
tide, and the intact proinsulin/C-peptide (PC) ratio. The values for the different parameters are provided in 
Table 1 by subgroup. Plasma glucose and proinsulin: c-peptide (PC) ratios are depicted in Fig. 2. As reflected by 
use of ADA criteria for group allocation, the OGTT glucose profiles clearly distinguish the three study groups.

The interpretation of the wide range of PC ratios for T2DM patients after an OGTT challenge, on the other 
hand, needs to take into account the individual state of beta-cell dysfunction. During T2DM disease progres-
sion, intact proinsulin values increase after a meal challenge, reflecting the inability of the beta-cells to ade-
quately intracellularly cleave intact proinsulin into insulin and C-peptide on demand. At late-stage disease, 
the “exhausted” beta-cells produce only low levels of intact proinsulin anymore and therefore also low levels of 
insulin/C-peptide.

The main demographic and baseline characteristics are summarized in Table 2. BMI, HbA1c and sex distribu-
tion are depicted in supplementary figure S1 and provided in the supplementary data file (worksheet “partici-
pants_characteristics”). On average, healthy subjects were leaner with mean BMI equal to 23.7 (± 3.5) compared 

Figure 1.  Graphical study design. Grey: ambulatory visits. Blue: in-house study days with participants staying 
the night before the study day at the study center.

Table 1.  Fasting screening data for the study population (N = 30). FPG fasting plasma glucose, PC-ratio 
proinsulin/C-peptide ratio. a Standard deviation. b Mean.

Healthy individuals (N = 10) Pre-diabetic sindividuals (N = 10) T2DM patients (N = 10)

HbA1c (%) 5.40b (0.31a) 5.86 (0.34) 7.46 (0.59)

FPG (mmol/L) 4.95 (0.27) 6.61 (0.51) 8.33 (1.14)

C-Peptide (nmol/L) 0.58 (0.2) 1.53 (0.94) 1.28 (0.44)

Proinsulin (pmol/L) 1.25 (0.0) 6.4 (4.23) 14.64 (6.75)

PC-ratio 2.34 (0.6) 4.24 (1.77) 11.55 (4.6)
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to 34.3 (± 5.0) and 31.5 (± 4.7) in pre-diabetic and T2DM groups, respectively. The groups were different in terms 
of gender distribution. All T2DM patients were male while 70% of healthy subjects were female.

Serum metabolome: results summary. Relative levels of all detected metabolites across the three study 
visits, before and after a standardized mixed meal and across the three metabolic health groups are provided 
in the supplementary data file and depicted as a heat map in Fig. 3. A repetitive pattern was observed com-
paring the map across visits, indicating overall reproducibility of metabolite levels and changes in response 
to meal intake on each of the three in-house study days. Differences in changes of metabolites in response to 
meal intake can be observed for different pathways: Whereas there is an increase in, e.g., amino acid levels in 
response to meal intake, free fatty acids were found to decrease after the mixed meal in all three health groups. 
Notably, however, there were higher prandial amino acid and fasting free fatty acid levels in T2DM patients and 
pre-diabetic individuals compared to healthy subjects. This reflects insulin resistance and the resulting lack of 
post-prandial suppression of lipolysis and reduced amino acid uptake in pre-diabetic and diabetic individuals. 
Large inter-individual variability is seen, e.g., for complex lipids that are exceptionally high in some pre-diabetic 
and diabetic individuals. However, these patterns are consistent across the three study visits, thus indicating low 
intra-individual variability over time (see below).

Serum metabolome: principal component analysis (PCA). The first two principal components of 
the serum metabolome containing 1438 individual metabolites are depicted in Fig. 4, each point representing 
one sample. Out of the different metabolite classes, PCA dimension 1 correlated strongly with triacylglycerides 
(TAG) and diacylglycerides (DAG) whereas dimension 2 was primarily determined by free fatty acids (FFA, 
negative correlation), lysophosphatidylethanolamines (LPE) and lysophosphatidylcholines (LPC, supplemen-
tary table S1).

There is a clear overlap between samples from different study visits, indicating a global consistency of metabo-
lite levels over time (Fig. 4a,b). In Fig. 4a, the shapes of the symbols correspond to nutritional status (pre-MMT 
or post-MMT). As expected, there is a marked difference between pre- and post-meal levels, being mainly driven 
by the second principal component. Figure 4b shows the PCA with the shapes of the symbols corresponding 
to different health groups. There was a clear difference between metabolite levels in healthy subjects compared 
to pre-diabetic individuals and T2DM patients with most of the pre-diabetic subjects being in between the 

Figure 2.  OGTT glucose (left) and proinsulin:c-peptide (PC) ratio profile (right) for subjects included into the 
study (N = 30). Graphs are colored by health group.

Table 2.  Demographics and baseline characteristics of the study population.

Healthy (N = 10) Pre-diabetic (N = 10) T2DM (N = 10)

Age (years) 46.4 (12.7) 52.3 (8.3) 55.0 (7.9)

Age range 26–60 42–64 37–64

Sex = Male 3 (30%) 6 (60%) 10 (100%)

Sex = Female 7 (70%) 4 (40%) 0

Caucasian/White 10 (100%) 10 (100%) 10 (100%)

Weight (kg) 65.8 (13.2) 102.3 (26.4) 101.0 (16.9)

Weight range (kg) 50.3–84.5 69.6–149.6 75.0–123.0

Height (cm) 165.9 (6.6) 171.1 (11.4) 178.8 (7.8)

BMI (kg/m2) 23.8 (3.6) 34.4 (5.0) 31.5 (4.8)

BMI range (kg/m2) 20.1–28.9 28.2–41.4 26.4–38.9
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healthy and T2DM groups. Differences were mainly driven by the first principal component highly correlated 
with triacylglycerides (TAG). These results suggest that TAGs were increased in T2DM patients compared to 
pre-diabetic and healthy subjects. The data set was further split into pre-MMT and post-MMT sub data sets 
and the PCA was computed for both data sets separately. Figure 4c shows a clear separation of healthy from 
pre-diabetic and T2DM samples before MMT with the diabetic and pre-diabetic groups strongly overlapping. 
In contrast, after meal intake, pre-diabetic individuals differ from T2DM patients along the second principal 
component as illustrated by the separate confidence ellipses (Fig. 4d). Thus, subjects can be better stratified on 
their metabolic status after a meal intake compared to pre-meal stratification. The three black dots on the upper 
right (Figs. 4c,d) correspond to one pre-diabetic subjects that showed elevated C-peptide level at screening (sup-
plementary figure S2). The three black dots more distant from the other black dots (Fig. 4d) correspond to one 
pre-diabetic subject that was however, similar to the other pre-diabetic subjects in term of screening parameters.

Intra-individual variability of the serum metabolome: Intra-class correlation coefficients. The 
primary objective of our study was to investigate the intra-individual variability of the human serum metabo-
lome in repeated measurements over a period of 4 weeks. To quantify the extent of intra-individual variability, 
intra-class correlation coefficients (ICC) were computed for each metabolite using Eq. 1. Of note, metabolites 
with low ICC (≤ 0.4) are perceived as highly variable or unstable over time. It means that the variation between 
time points was larger than the variation between individuals. For metabolites with higher ICC values, stability 
or reproducibility can be rated as fair (0.4–0.5), good (0.51–0.74) or excellent (0.75 and above)8,9. 1291 out of 
1438 metabolites had an ICC above 0.4, corresponding to 90% of metabolites that can be considered as at least 
fairly stable over time. 1118 metabolites (78%) showed at least good stability (ICC > 0.5), and 407 (28%) metabo-
lites showed excellent stability (ICC of 0.75 or higher). The mean (± SD) and median ICCs across all metabolites 
were determined as 0.63(0.17) and 0.65, respectively. These results show a fundamental stability of the human 
serum metabolome suggesting that the majority of metabolites can be good potential biomarkers. The number 
of metabolites per ICC interval is provided in Fig. 5.

We also tested if the variance of metabolite abundance depends on metabolic condition or nutritional sta-
tus by splitting the data and computing the ICC in sub-data sets. The ICC values for pre-MMT samples were 
comparable to that of post-MMT samples and global ICC values (Fig. 6). There were some differences in intra-
individual variability as defined by ICC between the different health groups (Fig. 6b) that could not be readily 
associated with specific metabolic pathways as the mean ICC was similar for each pathway across the three 
health groups (Table 3).

Individual metabolites with the 10 highest and 10 lowest ICC values are summarized in supplementary 
table S2. Interestingly, among the top 25 metabolites, there are 14 steroids indicating tight control and stability 
of this class of metabolites. This is also reflected in the high mean ICC of 0.83 across all members of the steroid 
class (Table 3, in bold).

Figure 3.  Heat map representing serum metabolite levels for each individual study participant (horizontal) 
ordered by study day, subject category and nutritional status, and individual metabolite (vertical) ordered by 
metabolic pathway.
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Figure 4.  Principal component analyses for differences in metabolite levels between study days (a, b) or health 
groups (c, d). Colors and symbols refer to different study days, health groups or nutritional status as described in 
the diagrams.

Figure 5.  Histogram showing the number of individual metabolites per ICC interval.
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Illustrative examples of unstable and stable metabolites are presented in Fig. 7: Xylose and dexpanthenol had 
ICC values of 0.09 and 0.11, leucine and 3-methyl-2-oxovalerate had ICC values of 0.84 and 0.7, respectively.

ICC by pathway was computed by summarizing the ICC values for all metabolites in that pathway. All 
metabolic pathways showed longitudinal stability with an average ICC above 0.4 regardless of health group and 
nutritional status (see Table 3). Although there were no obvious differences between major metabolic pathways, 
some subclasses such as steroids (ICC = 0.83 ± 0.22) or free fatty acids (ICC = 0.44 ± 0.14), respectively, show less 
or more intra-individual variability over time.

Visit‑to visit variability. Metabolites were globally very stable between visits as observed with the ICC and 
PCA. Only cytidine levels were significantly different (FDR < 0.05) with a fold-change above 1.5 between day 14 
and day 28, while 9 metabolites were tested as significantly different with a fold-change > 1.5 between study days 
2 and 28 (supplementary figure S3and supplementary table S3).

Differences between health groups. The secondary objective of our study was to identify metabolite 
signatures of pre-diabetes and T2DM. As expected, there were considerable statistically significant differences 
in specific groups of metabolites between the healthy group and the pre-diabetic and T2DM groups both before 

Figure 6.  Distribution of ICCs by (a) nutritional status and (b) health group. In (a), metabolites are ranked 
by their ICC across all measurements (red), ICCs for the same metabolites under fasting or fed conditions 
are shown in green and blue, respectively. In (b), metabolites are ranked by their ICCs in the group of healthy 
individuals (green). ICCs for the same metabolites in the groups of pre-diabetic individuals and patients with 
T2DM are shown in blue and red, respectively.

Table 3.  Summary statistics for ICC by pathway. a Cholesterol esters, diacyglycerols, free fatty acids, 
triacylglycerols, ceramides, dihydroceramides.

Pathway ICC ICC healthy ICC pre-diabetes ICC T2DM ICC pre-MMT ICC post-MMT

All 0.63(0.17) 0.58(0.23) 0.66(0.2) 0.57(0.21) 0.61(0.19) 0.61(0.18)

Amino Acid 0.64(0.16) 0.6(0.21) 0.64(0.22) 0.6(0.22) 0.63(0.18) 0.63(0.17)

Carbohydrate 0.52(0.22) 0.46(0.23) 0.48(0.26) 0.55(0.23) 0.53(0.22) 0.52(0.2)

Cofactors and Vitamins 0.72(0.16) 0.65(0.26) 0.74(0.15) 0.66(0.14) 0.67(0.23) 0.71(0.15)

Energy 0.55(0.08) 0.46(0.13) 0.6(0.13) 0.56(0.09) 0.58(0.09) 0.54(0.13)

Lipid 0.56(0.24) 0.52(0.24) 0.61(0.26) 0.52(0.27) 0.56(0.25) 0.56(0.24)

Lipid/steroid 0.83(0.22) 0.77(0.22) 0.83(0.19) 0.89(0.12) 0.81(0.26) 0.81(0.26)

Neutral Complex  Lipidsa 0.65(0.14) 0.59(0.24) 0.71(0.14) 0.56(0.18) 0.64(0.15) 0.62(0.15)

Nucleotide 0.58(0.21) 0.56(0.24) 0.56(0.23) 0.59(0.23) 0.55(0.23) 0.57(0.23)

Peptide 0.63(0.18) 0.63(0.2) 0.59(0.21) 0.61(0.18) 0.6(0.21) 0.65(0.19)

Phospholipids 0.61(0.13) 0.61(0.16) 0.6(0.19) 0.56(0.17) 0.6(0.14) 0.56(0.15)

Sphingolipids 0.71(0.17) 0.66(0.23) 0.76(0.2) 0.59(0.19) 0.67(0.2) 0.7(0.18)

Xenobiotics 0.55(0.19) 0.48(0.22) 0.59(0.21) 0.52(0.21) 0.49(0.23) 0.5(0.22)
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and after the mixed meal. Pre-diabetic and T2DM groups were more overlapping suggesting similar metabolic 
profiles for these groups.

Difference before MMT. 49 out of 1438 metabolites were significantly different between healthy subjects and 
T2DM patients before meal intake. For example, carbohydrates (e.g., glucose, mannose, fructose), branched-
chain amino acids (BCAA, e.g., leucine [Fig. 7c], valine [Fig. 8d], isoleucine), intermediates of BCAA metabo-
lism (e.g., 3-methyl-2-oxovalerate [Fig. 7d], glutamate, gamma-glutamyl, alpha-hydroxyisocaproate and beta-
hydroxyisovalerate), and free fatty acids (e.g., 18:0, 24:1, 22:1) were significantly higher in T2DM patients 
compared to healthy subjects. 1,5-anhydroglucitol (1,5-AG) was elevated in healthy subjects compared to T2DM 
before MMT but also post MMT. Of note, there was no difference in 1,5-AG levels between the groups of healthy 
and pre-diabetics individually, and 1,5-AG did not change upon meal intake (Fig. 8c). 1,5-AG levels were inde-
pendent from BMI per group and well separated by HbA1c (supplementary figure S4).

32 out of 1438 (2.2%) metabolites were significantly different between healthy and pre-diabetic subjects before 
MMT with an FDR < 0.05. Glutamate (Fig. 8f) and cystine were elevated in pre-diabetic subjects before but also 
after MMT intake. Only 7 metabolites out of 1438 were significantly different between pre-diabetic subjects and 
T2DM patients before MMT with an FDR < 0.05. The known metabolites demonstrating significant differences 
were mannose, glucose, glycerophosphorylcholine (GPC), sphingomyelin(18:1), 3-hydroxydecanoate and 2-keto-
3-deoxy-gluconate. Examples of metabolites differing between health groups are shown in Fig. 8.

Differences post-MMT. As illustrated in Fig.  4d, differences between health groups became larger 1  h after 
intake of a defined mixed meal: 6.5% of all metabolites were significantly different between healthy and T2DM 
patients 1 h after the MMT with an FDR < 0.05. For example, members of the phospholipid metabolism path-
ways (e.g., Arachidonoylcholine, docosahexaenoylcholine and dihomo-linolenoyl-choline) were decreased in 
T2DM patients after MMT compared to healthy subjects. 14 metabolites were significantly different between 
healthy and pre-diabetic individuals after MMT with an FDR < 0.05. 11 metabolites were significantly different 
between pre-diabetic subjects and T2DM patients after MMT with an FDR < 0.05: Glucose, mannose, 3-methyl-
glutaconate, 3-hydroxyoctanoate, fructose, 2-keto-3-deoxy-gluconate, glycodeoxycholate, 3-hydroxydecanoate, 
glycolithocholate sulfate, sphingomyelin(18:1) and 1,5-anhydroglucitol (1,5-AG).

Figure 7.  Examples of unstable (a, b) and stable (c, d) metabolites colored by health group.
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Difference in MMT response between health groups. The MMT response, i.e. the change in metabolite levels 
post-MMT vs. pre-MMT, was compared between healthy subjects, pre-diabetic individuals and T2DM patients. 
Results are summarized in Fig. 9 that shows the overlap of metabolites with pairwise differences in changes in 
response to meal intake between different health groups. The three metabolites in the overall intersection were 
glucose, mannose and 3-methylglutaconate, an intermediate of leucine metabolism.

Figure 8.  Selected metabolites differing between health groups before the mixed-meal test. Diagrams show 
mean metabolite levels per health group ± SD for study days 2, 14 and 28, pre- and post-MMTT for (a) 2-keto-3-
deoxy-gluconate, (b) mannose, (c) 1,5-anhydroglucitol, (d) valine, (i) glucose and (f) glutamate.
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Discussion
The primary objective of our study was to interrogate the intra-individual variability of the human serum metabo-
lome over a comparably short period of time in individuals with different metabolic health and under fasting 
and fed conditions. An additional goal was to identify metabolic signatures differentiating metabolically healthy 
individuals from subjects with impaired glucose tolerance (IGT) or T2DM. For these purposes, we performed 
a 4-week study to collect blood samples at three different days following an overnight fast and a defined mixed 
meal, followed by a global serum metabolomics and lipidomics analysis. Study participants included healthy 
subjects, individuals with IGT and patients with T2DM (n = 10 each).

The ICC was high for of the majority of metabolites suggesting that metabolites were stable during the study 
with almost no visit effect. In addition, exploratory statistical tests for visit-to-visit difference were not significant.

This is, to our knowledge, the first and most extensive study investigating serum metabolome variability 
in human subjects with different metabolic health conditions over a period of 4 weeks in a tightly controlled 
dietary environment of a single inpatient clinical center. Our results show that the human serum metabolome 
is remarkably stable when measured repetitively, and that low variability is seen independent of nutritional and 
metabolic health status. Previous studies investigating the temporal variability of the circulating metabolome 
include the study by Kim et al.4, who came to similar conclusions regarding the stability of the metabolome before 
and after intake of a meal. However, their results were based on samples taken on three consecutive days, focused 
on healthy individuals and patients with polycystic kidney disease and was limited to 121 plasma metabolites. 
In another study, Zheng et al.10 investigated the medium-term variability of the human serum metabolome of 
participants in the ARIC study, finding an ICC across all metabolites investigated of 0.6 and 82% of metabolites 
having an ICC >  = 0.4, very similar to our findings. However, their analysis was based on only two samples 
per subject taken 4–6 weeks apart from each other under fasting conditions and limited to 178 metabolites. A 
median ICC of 0.57 was reported  in8 for fasting serum samples taken approximately 4 months apart, based on 
the analysis of 163 metabolites. Recently, based on repeated measurements in the Netherlands Epidemiology of 
Obesity Study, median ICC values of 0.72 and 0.62 for fasting plasma and 0.66 and 0.64 for prandial plasma were 
reported based on 1H-NMR spectroscopy analysis of 148 metabolites in samples taken approximately 4 months 
or 3 years apart,  respectively9. Finally, Yousri et al. also found a high degree of metabolite level conservation 
in 818 subjects of the KORA cohort when investigating 212 metabolites in samples that were collected up to 
13 years apart from each  other11.

There is a much larger body of studies available that interrogate the influence of dietary interventions or 
metabolic disease on the circulating metabolome (reviewed, e.g.,  in12). A landmark study using multiplatform 
metabolomics identified a metabolic footprint of T2DM comparing 40 individuals with T2DM and 60 healthy 
controls from a population-based  study13 using samples taken under fasting conditions. Of note, key metabolites 
associated with T2DM identified in their study, like BCAA, mannose, 1,5-AG, ketone bodies or medium chain-
length free fatty acids, could be confirmed in our study. In addition, our study showed that 1,5-AG is independ-
ent of nutritional status and lower in T2DM but not pre-diabetes, indicating an association with fasting but 
not prandial glucose (see Fig. 8c). Of note, three metabolite biomarkers (glycine, LPC 18:2, acetylcarnitine) for 
prediabetes that were recently identified and confirmed in the KORA and EPIC-Potsdam  cohorts14, respectively, 
could also be confirmed in our study (supplementary figure S5).

Likewise, BCAA, branched-chain ketoacids (BCKA) and their catabolic derivatives like glutamate or acylcar-
nitines were found to be strongly associated with IGT and T2DM, as previously described in multiple  studies15–22 
(see Figs. 7c,d; 9d,f.). Thus, previous results could be corroborated even though the number of study participants 
was small and the identification of metabolites to differentiate between the three health groups was not the pri-
mary objective of our study (see below).

Major strengths of our study are (1) the tight control of nutritional status and sampling time. In addition, 
whereas most of the previous studies investigating the variability of the human metabolome relied on samples 
taken at two different time points in healthy volunteers, our results are based on six measurements at three time 

Figure 9.  Venn diagram showing number and overlap of metabolites with significant differences in the 
response to MMT.
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points in three groups of individuals with different metabolic health and before and after intake of a defined 
mixed meal. (2) The number of detected metabolites across a wide range of biochemical pathways: With 1438 
metabolites, 1202 being assigned to known structures, included in our final analysis, this is one of the largest 
untargeted metabolomics approach investigating intra-individual variability using multiple samples per subject. 
(3) Dependence on metabolic health and nutritional status: We could demonstrate that intra-individual variabil-
ity of the serum metabolome is largely independent of nutritional and metabolic disease status. Furthermore, by 
including a group of individuals with impaired glucose tolerance but without T2DM, we could identify metabo-
lites that differ between this group and healthy subjects on one hand and patients with T2DM on the other or 
may respond differently to intake of a mixed meal. (4) Diversity of the study population: The study participants 
cover a broad range of age and weight/BMI which helps to generalize conclusions regarding intra-individual 
variability of the metabolome (but may negatively impact comparison between different health groups, see 
below). (5) Robustness of results: We have confirmed multiple previously identified metabolites associated with 
meal intake or metabolic disease. (6) Multitude of samples collected under tightly controlled conditions: The 
study has generated numerous additional samples at various time points following the mixed meal, in different 
matrices (serum, EDTA-, Li-heparin-, NaF- and p800-plasma) and body fluids (including urine) that are avail-
able for additional analyses beyond the metabolomics investigation described here.

Limitations of our studies are the following: (1) The metabolomics method applied in our study covers a 
large number of metabolites but provides relative levels rather than absolute concentrations. While this is not 
necessarily relevant for the investigation of temporal variability, it means that for, e.g., the differentiation between 
study groups no absolute threshold values can be defined. (2) Diversity of the study population: Participants 
with pre-diabetes or T2DM were older and heavier than healthy controls, and there was a gender disparity 
especially in the T2DM group where only male participants were recruited. In addition, group sizes were small 
(n = 10 each), limited by resource constraints. Whereas for the investigation of intra-individual variability each 
participant served as his or her own control, thereby requiring smaller groups, the study was not powered to 
robustly determine inter-individual differences, e.g. between health groups Thus, differences in metabolites 
between the three health groups could be due to factors other than metabolic disease. With respect to the second 
objective of identifying metabolic signatures of pre-diabetes and T2DM, our study should therefore be seen as 
hypothesis-generating rather than providing definitive conclusions. (3) Variation in metabolite levels is a com-
posite of biological and technical variation. While all efforts were made to limit technical variability through, 
e.g., multiple embedded QC standards in every sample and technical replicates across each study run day, it still 
may be a major contributor for at least a subset of metabolites.

In conclusion, we have comprehensively interrogated the intra-individual variability of the human serum 
metabolome over time and depending on metabolic health and nutritional status. The majority of metabolites 
were determined to be robust and stable in repeated measurements and could thus serve as potential biomarkers 
for conditions in which they are regulated. Furthermore, previously identified biomarkers for pre-diabetes or 
T2DM could be confirmed and were found to be stable over time. Samples (serum, EDTA-, Li-heparin-, NaF- 
and p800-plasma, urine) collected in our study from three different health groups over a period of 4 weeks and 
under fasting and fed conditions are available for further biomarker analyses.

Methods
Study conduct. The study was conducted in accordance with the guidelines of the 18th World Medical 
Assembly (Helsinki 1964) and all applicable amendments laid down, and the ICH guideline for Good Clinical 
Practice GCP, all applicable laws, rules and regulations. The study was approved by the local ethics commit-
tee (Ethik-Kommission der Bayerischen Landesärztekammer, Mühlbaurstraße 16, 81,677 München). Informed 
consent was obtained prior to the conduct of any study-related procedures. The subject informed consent form 
was prepared according to local regulations and requirements.

Study population. This was a single-center biomarker collection study conducted at Nuvisan GmbH 
(Neu-Ulm, Germany). Apart from a standardized mixed meal, no study drug was applied or other therapeutic 
intervention performed. Out of 65 study participants enrolled and screened with an oral glucose tolerance test 
(OGTT), 30 subjects were assigned to the respective study groups: healthy, prediabetic or T2DM individuals 
(n = 10 each), depending on HbA1c as well as on fasting and OGTT-challenged glucose, C-peptide and intact 
proinsulin measurements, based on ADA  criteria7. Detailed inclusion and exclusion criteria for the three health 
groups are provided in supplementary information. Individuals that could not unambiguously allocated to one 
of the three study groups were excluded from further study participation and from metabolomics analyses.

The study design is illustrated in Fig. 1. On study days 2, 14 and 28, participants provided biological samples 
longitudinally before and after a mixed meal test (MMT). The mixed meal consisted of a 400-ml drink (Ensure 
Plus, Abbot) containing 600 kcal and composed of 53.8% carbohydrates, 16.7% protein and 29.5% fat, and a 
standard protein bar as solid component. All 30 subjects completed the study without any serious adverse events 
due to mixed meal intake. There were three in-house days on Days 1–2, 13–14 and 27- 28 during which subjects 
stayed on site overnight and provided biological samples in fasted conditions the next morning before, during, 
and after an MMT. Two ambulatory biological sample collections were also performed at Day 7 and Day 21 
but these samples were not analyzed using metabolomics as the conditions were not under full control of the 
investigators. Participants were asked not to change lifestyle or diet over the course of the study. No medication 
was allowed throughout the study with the exception of antihypertensive treatment (all classes) and medication 
for short-term treatment of mild clinical disorders such as intermittent headaches up to 48 h before screening 
or study visits. For the T2DM group, metformin was allowed at any dose regimen but had to be stopped the 
evening before OGTT or MMT.
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The screening procedure included standard safety parameters (vital signs, clinical chemistry), measurement 
of glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG) and an OGTT. Before starting the OGTT, 
glucose values were determined via capillary blood sampling, and hyperglycemic values > 270 mg/dL blood 
glucose in T2DM patients led to postponing of OGTT or study exclusion, as a safety measure. The OGTT was 
carried in the morning after an overnight fast of at least 10 h (in-house visits), and after at least 3 days of unre-
stricted diet and unlimited physical activity.

Sample collection. Serum (collected with blood collection tubes containing no coagulation activator) stood 
upright for at least 20–30 min before centrifugation to allow for coagulation to take place. Following centrifuga-
tion, the supernatant containing serum was split into aliquots of 200 μl volume, using appropriately labeled cryo 
storage tubes. Storage tubes were then transferred into storage racks and immediately frozen at − 80 °C. Samples 
were shipped on dry ice with a temperature tracker.

Global metabolomics and lipidomics analysis. Serum samples were analyzed at Metabolon Inc. (Mor-
risville, NC, USA). Global metabolomics was performed as previously  described23–26. Briefly, samples were 
extracted by agitation with methanol. Extracts were then split to enable analysis by four different methods. 
All methods used a Waters Acquity ultra-performance liquid chromatography (UPLC) system coupled to a 
Thermo Scientific Q-Exactive high resolution accurate-mass spectrometer. Raw data extraction, peak identi-
fication, and quality control processing were carried out using the Metabolon proprietary software. Metabolite 
identification was done through comparison with a library of chromatographic and MS data from authenticated 
standards. Metabolite abundances were determined by their area under the curve (AUC). Lipidomics was done 
as previously  described27. Briefly, lipids were extracted from serum samples using a butanol:methanol (BUME) 
mixture (3:1) followed by two-phase extraction into heptane:ethyl acetate (3:1) using 1% acetic acid as buffer. 
Reconstituted extracts were infused into a SelexION equipped Sciex 5500 QTRAP. The scan was performed in 
multiple reaction monitoring (MRM) mode. Individual lipid species were quantified by referencing to known 
concentration of internal standard. Lipid class concentrations were calculated from the sum of all molecular 
species within a class, and fatty acid compositions were determined by calculating the proportion of each class 
comprised by individual fatty acids. Further experimental details and the analysis process are described in Sup-
plementary Methods.

Statistical analysis. Data pre-processing. Six serum samples were analyzed from each study participant: 
one sample taken after an overnight fast (t = –30 min, see Fig. 1), one sample 1 h after intake of a defined mixed 
meal, for a total of three times at study visit days 2, 14 and 28. Untargeted serum metabolomics and lipidomics 
were performed in two runs, with two batches in the first and four batches in the second run. Potential batch 
effects were adjusted for using the following procedure: A pool of small aliquots was made from all samples and 
was analyzed in both runs for normalizing the data and adjusting for batch effects. The data were generated for 
seven healthy subjects in the first run. Here, 1637 known metabolites and 315 unnamed metabolites were identi-
fied, leading to a total of 1952 metabolites detected. In the second run, data were generated for the remaining 23 
participants (3 healthy subjects, 10 pre-diabetic subjects and 10 T2DM patients). Here, 1391 known metabolites 
and 305 unnamed metabolites were identified leading to a total of 1696 metabolites detected. The two data sets 
were merged utilizing the reference data generated in both study parts. The merged data set consisted of 1486 
metabolites with a very good detection rate: 1064 were identified in all samples; 213 metabolites had the propor-
tion of values below the lower limit of quantification (LLOQ) in the interval (0.10%]; 161 metabolites had the 
proportion of values below LLOQ between 10 and 50% of all samples and only 48 metabolites had more than 
50% of LLOQ. The raw data were scaled for median metabolite equal to one. For metabolites with less than 50% 
of values below LLOQ, values below LLOQ were imputed by the minimum of detected values across all sam-
ples. Metabolites with more than 50% of values below LLOQ were discarded from all statistical analyses. Outli-
ers were determined as values outside of the range the [Q1 − 3*IQR, Q3 + 3*IQR], where Q1 denoted the 25% 
percentile of the metabolite values across all samples, Q3 the 75% percentile and IQR the interquartile range. 
Those values are extreme outliers based on the Tukey method and were imputed by Q3 + 3*IQR and Q1 − 3*IQR, 
respectively. No log-transformation was applied after scrutinizing the data for Gaussian distribution.

Longitudinal stability of metabolites. Principal component analysis (PCA). The PCA was computed with all 
metabolites to reduce the dimensionality of the data while retaining maximal variability. Each sample was pro-
jected on the first two principal components and was colored or shaped by sub-group or visit for visualizing 
global visit-to-visit variability, the change due to meal intake and the differences due to metabolic status.

Intraclass correlation coefficient (ICC). For each metabolite, the ratio of variability between individuals and 
the variability between sampling time points was estimated with the following linear mixed model. For a given 
metabolite, measurement for time point j and subject k was modeled with:

Equation 1: model for computing the ICC

ICC is the ratio of inter-subject variance and total variance, it has been estimated with:
ICC =

σ
2
Subj

σ
2
Total

.

(1)yjk = µ+ Subjk + MMTT +HealthStatus+MMT:HealthStatus+ εjk
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ICC around 0 means low correlation between observations for the same subject, whereas ICC around 1 means 
high correlation between observations for the same  subject28. The ICC for each metabolic pathway was derived 
as mean and standard of ICCs of metabolites in this pathway. A single metabolite or metabolic pathway with an 
ICC value below 0.4 was considered as poorly stable. Ratings of stability for metabolites with ICC values above 
0.4 were as follows: 0.4–0.5: moderate, 0.51–0.74: good, 0.75 or higher:  excellent8,9.

Pathway stability using median polish. An additive model (two way decomposition) using Tukey’s median pol-
ish procedure was computed to derive a composite marker from all metabolites in each pathway (Amino Acid 
(163), Carbohydrate (22), Cofactors and Vitamins (18), Energy (8), Lipid (161), Neutral Complex Lipids (605), 
Nucleotide (29), Peptide (22), Phospholipids (210), Sphingolipids (54) and Xenobiotics (97)). The composite 
biomarkers were explored for longitudinal variability of pathways.

Test statistics for visit, MMT and metabolic status effect on metabolites. For identifying metabolites signifi-
cantly altered by the metabolic status, unstable metabolites across study visits and metabolites that changed 
according to the fasting or feeding condition, a linear mixed model was computed (see Eq. 2).

Equation 2: linear mixed model for all subgroup differences

where Visit represents a factor variable with levels Day2, Day14 and Day28; health_group (Healthy, pre-diabetic, 
T2DM groups); MMTT (pre-MMTT and post-MMTT); batch (6 modalities); MMT*HealthStatus the interaction 
between MMTT and health_group were fixed effects and subject as random effect. Day2, pre-MMTT healthy 
and the first batch in the pilot study were set as reference subgroups for the corresponding variables. All p-values 
were adjusted for the multiplicity to control the false discovery rate (FDR). The Benjamini–Hochberg  procedure29 
was used for this purpose.

Software. The statistical analyses were performed using R version 3.2.3 (2015–12-10). In addition to the 
base package, we used the packages FactoMiner for PCA, pheatmap and RcolorBrewer for generating heatmaps, 
ggplot2, openxlsx, VennDiagram, and the packages lme4 and multcomp for linear mixed model and group 
comparisons.
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