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Identification of PIEZO1 
as a potential prognostic marker 
in gliomas
Wenjianlong Zhou1,2,7, Xiangxiang Liu3,4,7, Jan Willem Maurits van Wijnbergen2, 
Linhao Yuan1, Yuan Liu4, Chuanbao Zhang1* & Wang Jia1,5,6*

In multiple solid tumours, including gliomas, the mechanical properties change as the disease 
progresses. If and how mechanical cues regulate tumour cell proliferation is currently not fully 
studied. PIEZO1 has recently been identified as a crucial mechanosensitive cation channel in multiple 
solid tumours. However, we didn’t find any clinical data describing the association between PIEZO1 
expression and glioma. To investigate the role of PIEZO1 in gliomas, we analysed PIEZO1 gene 
expression at the transcriptome level, genomic profiles and the association of PIEZO1 with clinical 
practice. In total, 1633 glioma samples with transcriptome data, including data from the Chinese 
Glioma Genome Atlas RNAseq, the Cancer Genome Atlas RNAseq and GSE16011 databases, were 
included in this study. Clinical information and genomic profiles including somatic mutations were 
also obtained. We found that PIEZO1 expression was highly correlated with malignant clinical 
and molecular subtypes of glioma. Gene ontology analysis showed that expression of PIEZO1 
was correlated with tumour microenvironment-related genes that encode proteins involved in 
extracellular matrix (ECM) organization, angiogenesis and cell migration. Additionally, PIEZO1 was 
shown to be involved in tumour progression by serving as the central checkpoint of multiple ECM 
remodelling-related signalling pathways to modulate tumour cell proliferation and the tumour 
microenvironment in turn. Finally, high PIEZO1 expression was correlated with reduced survival time 
and acted as a robust biomarker for poor prognosis in gliomas. Taken together, the results indicated 
that high PIEZO1 expression is closely associated with highly malignant gliomas. Importantly, PIEZO1 
serves as a key factor involved in sensing mechanical properties in the tumour and can regulate both 
tumour cells and their microenvironment to promote glioma progression, and it is also a potential 
therapeutic target for the treatment of gliomas.

The current gold standard treatment for glioma consists of chemotherapy, radiation therapy and surgery. Treat-
ment strategies targeting the tumour microenvironment (TME) are gaining traction in the  clinic1. The TME 
comprises all components surrounding a tumour; this includes blood vessels, immune cells, signalling molecules 
and extracellular matrix proteins. The TME interacts closely with tumour cells by providing nutrients and struc-
tural support, by communicating through the exchange of signalling molecules and often by promoting tumour 
growth and metastasis.

In fact, it has yet to be identified that apart from regulation, nutrition and structural support, mechanical 
stimuli sensed by tumour cells and neighbouring cells are also provided by the TME and affect every step of 
tumour progression and  metastasis2,3. Tumour cells sense mechanical stimuli such as tissue pressure (stiffness), 
cell membrane tension, shear stress, and tissue pressure from the extracellular matrix (ECM). These mechanical 
cues are transduced into biochemical signals to modulate both tumour cells and the TME, promoting cancer 
 progression4. These processes strongly depend on mechanosensitive ion channels.
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PIEZO transmembrane proteins have been identified as mechanosensitive cation  channels5,6. First described 
by Coste et al.7, homologues PIEZO1 and PIEZO 2 independently induce cationic non-selective activated cur-
rents in response to mechanical  stimuli8–11. In breast cancer cells, PIEZO1 has been shown to increase motility 
in response to physical  cues12, and PIEZO2 has been shown to play a role in the anchoring of brain metastatic 
 cells13. As tumour cells grow, the mechanical forces within the tumour and TME increase, and the Piezo chan-
nel is activated by these mechanical signals and interacts with focal adhesions and integrin-FAK signalling to 
regulate tumour  development14.

Glioma is the most prevalent primary malignant tumour of the central nervous system (CNS) in  adults15. 
Despite advances in comprehensive care, the median survival time of patients who suffer from gliomas is only 
15 months16,17. Prolonging the survival time is a critical challenge for clinicians treating glioma patients. In the 
past decade, there has been a surge in studies investigating molecularly targeted therapies and immunotherapies 
for the treatment of gliomas. However, interindividual tumour heterogeneity appears to temper the success of 
these  studies18. It has become increasingly apparent that tumours do not result from the unregulated growth of 
a single cell but that tumour formation involves bidirectional abnormal communication between tumour cells 
and their  microenvironment19. This not only plays an essential role during tumour progression and metastasis 
but also has a profound impact on therapeutic  efficacy20. Additionally, recent studies addressed a feedforward 
circuit mediated by PIEZO1 and tumour tissue mechanics to promote glioma  growth21. However, until now, 
the relationship between PIEZO1 expression and glioma malignancy in human patients has not been studied.

Transcriptomes from 325 gliomas from the Chinese Glioma Genome Atlas (CGGA) dataset were analysed 
to investigate the expression of PIEZO1 in gliomas, and we further verified these results by analysing RNA data 
from The Cancer Genome Atlas (TCGA) network derived from 1032 gliomas and a GSE16011 microarray of 
276 cases. Moreover, genomic profiles containing somatic mutations were also analysed in our study. This is the 
first integrative study characterizing PIEZO1 expression in whole grade glioma both molecularly and clinically. 
Our work aims to improve the current knowledge of the role of mechanical forces in tumour aggressiveness 
mechanisms and provide a potential therapeutic target for gliomas.

Materials and methods
Data collection. The present study was approved by the Beijing Tiantan Hospital Institutional Review 
Board (IRB)/Ethics Committee of Beijing Tiantan Hospital. In total, 325 RNAseq samples were included in 
the CGGA dataset. We collected the molecular and clinical data from the CGGA database. The IDH mutation 
status detection method was described in Guan et al.22. mRNAseq data obtained from 1032 WHO grade II to 
grade IV gliomas were downloaded from The Cancer Genome Atlas (TCGA) (https ://porta l.gdc.cance r.gov/). 
We included 276 cases from the GSE16011 cohort. The RNAseq data used to study the specific tumour anatomic 
structure in GBM was collected from the Ivy Glioblastoma Atlas Project (http://gliob lasto ma.allen insti tute.org/).

Bioinformatic analysis. We obtained 741 cases with somatic mutations and associated with RNAseq data 
from the TCGA database. We used GISTIC 2.023 to evaluate the copy number alternations corresponding to 
PIEZO1 expression. The thresholded copy number at the alteration peaks was determined by GISTIC analysis 
(all_lesions.cof_99.txt file)24. The gene ontology (GO) analysis in DAVID Bioinformatics Resources 6.8 was used 
to explore the biological functions of the related  genes25. Gene set enrichment analysis (GSEA) was performed 
as presented in Li et al.26. GO analysis of the most highly correlated genes was used to generate a heatmap after 
Spearman correlation analysis. The GO gene set was downloaded from MSigDB (https ://softw are.broad insti tute.
org/gsea/msigd b/index .jsp). ECM-related metagenes were described in the work of Rody and  Jain27,28. Metagene 
expression values were obtained by quantifying the normalized mean expression values of all genes in their 
respective  cluster28.

Immunofluorescent staining and haematoxylin and eosin staining. Twenty Paraffin-embedded 
human glioma tissues for validation (10 LGG samples, WHO grade II–III diffuse astrocytoma; 10 GBM sam-
ples, WHO grade IV glioblastoma), normal human brain and mouse retina tissues were collected for staining. 
We reviewed the tissue slides through the visual evaluation of haematoxylin and eosin (HE)-stained slides. The 
results of the morphologic identification were independently confirmed by two neuropathologists. We selected 
a PIEZO1 antibody (NOVUS; NBP1-78537, 1:200) to detect PIEZO1 expression. Immunofluorescent (IF) stain-
ing of paraffin sections was performed. Briefly, specimens were blocked in blocking buffer for 60 min, the sec-
tions were incubated with primary antibody overnight at 4 °C, and then the sections incubated with the cor-
responding secondary antibody (Alexa Fluor 488, 1:200; DAPI, 1:1000) at room temperature in the dark for 1 h. 
After washing with PBS buffer, the slides were coverslipped with Prolong Gold Antifade Reagent. All images 
were analysed using Image-J based on the area fraction or intensity of positive staining.

Statistical analysis. All statistical analyses were performed using the R programming language (version 
3.4.1, https ://www.r-proje ct.org/) and ImageJ (version 1.52K, National Institutes of Health, USA). Spearman 
correlation analysis was used to evaluate the correlations between continuous variables. The differences in vari-
ables between groups were assessed by Student’s t-test, one-way ANOVA, or Pearson’s Chi-squared test. We used 
a Kaplan–Meier survival curve to determine the survival distributions and performed a log-rank test to assess 
the statistical significance. Univariate and multivariate Cox proportional hazard models were determined to 
evaluate the prognostic value of PIEZO1. Patients with missing information were excluded from the statistical 
analysis. All statistical tests were two-sided. A p value < 0.05 was considered significant.

https://portal.gdc.cancer.gov/
http://glioblastoma.alleninstitute.org/
https://software.broadinstitute.org/gsea/msigdb/index.jsp
https://software.broadinstitute.org/gsea/msigdb/index.jsp
https://www.r-project.org/
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Results
Associations of PIEZO1 expression with clinical and molecular characteristics in gliomas. Gli-
omas from the RNAseq and microarray sets were arranged in order of increasing PIEZO1 expression (Fig. 1A). 
PIEZO1 expression was evaluated among the groups and in association with factors including age and the KPS 
score, although we did not identify any difference. According to the histopathological heterogeneity of glioma, 
the RNA sequencing data was analysed based on histology, the WHO grading system and IDH mutation status. 
PIEZO1 expression was significantly higher in glioblastoma (WHO grade IV) than in low grade gliomas (WHO 
grade II and WHO grade III, Fig. 1B). With regard to histopathologic classification, glioblastoma had the highest 
expression of PIEZO1 (Fig. 1C).

Studies have incorporated the use of IDH mutations, 1p/19q codeletions and the TERT promoter as important 
alterations for glioma  classification24,29,30. Here, we found that PIEZO1 was overexpressed in wild-type IDH-
expressing gliomas, where it played an essential role in promoting cell viability and the aggressiveness of gliomas 
(Fig. 1D). Furthermore, the 1p/19q non-codeletion was associated with higher PIEZO1 expression (Fig. S1A). 
However, based on the TERT promoter status, there was no significant difference between the mutant and the 
wild-type in terms of PIEZO1 expression (Fig. S1B).

Molecular classification of gliomas has presented a new method for defining patient prognosis using genomic 
and transcriptomic data. Based on the 2016 WHO classification of tumours in the central nervous system, 
gliomas were divided into five molecular groups for further evaluation, which included lower-grade glioma 
(LGG)-oligodendroglioma (LGG-Oligo, IDH-mutant LGG with TERT promoter mutation or 1p/19q codeletion), 
LGG-astrocytoma (LGG-Astro, IDH-mutant LGGG without TERT promoter mutation or 1p/19q codeletion 
with ATRX mutation), LGG with wild-type IDH status (LGG IDH-wildtype), glioblastoma (GBM) with mutant 
IDH status (GBM-IDHmut), and GBM with wild-type IDH status (GBM-IDHwt). The expression of PIEZO1 
was the highest in GBM-IDHwt and the lowest in LGG-Oligo (Fig. 1E). Gliomas can be categorized into four 
distinct molecular subtypes: classical, mesenchymal, neural, and proneural (PN). As shown in Fig. 1F, PIEZO1 
was significantly upregulated in the mesenchymal and classical subtypes compared to other subtypes in both 
the TCGA and CGGA datasets. These results suggest that PIEZO1 may play a critical role in the progression 
of glioma. IF and HE analysis confirmed that the expression of PIEZO1 was upregulated in GBM (Fig. 2A,B). 
Choi et al.31 found astrocytes in the optic nerve head expressing multiple putative mechanosensitive channels, 
especially the recently identified channel PIEZO1. We used mouse retina as a positive control in our study.

In addition, primary and recurrent glioma in the same patients showed similar PIEZO1 expression (Fig. S1C). 
In GBM, there’s no significant difference in PIEZO1 expression between primary GBM and recurrent GBM. 
Meanwhile, the PIEZO1 expression was significant lower in secondary GBM compared to primary and recurrent 
GBM, respectively (Fig. S1D).

PIEZO1 expression is associated with distinct patterns of genomic alterations. The available 
somatic mutation information in the TCGA database was analysed to explore the molecular mechanisms in 
gliomas. Cases were classified into two, three, or four groups based on the order of increasing PIEZO1 expres-
sion. Parallel analyses were applied to each type of grouping to enhance the robustness of our findings. We 
dichotomized the patients into two groups based on the level PIEZO1 expression and compared the frequency 
of mutations between the high expression group and the low expression group. A high frequency of mutations 
in IDH1 and Chr1p19q was detected in gliomas with low PIEZO1 expression (Fig. 3A), while mutations in TTN, 
PTEN and NF1 were significantly enriched in cases with high expression of PIEZO1 (Fig. 3B). In addition, a sig-
nificant difference in the frequency of mutations in CIC, EGFR, FUBP1 and NOTCH1 was detected in response 
to differences in PIEZO1 expression. The frequency of mutations in IDH1 and Chr1p19q was in accordance with 
our findings based on RNAseq.

PIEZO1 indicates worse prognosis in gliomas. Since PIEZO1 showed a positive correlation with poor 
outcome, we further used Kaplan–Meier analysis and the Cox proportional hazard model to investigate the 
prognostic value of high PIEZO1 gene expression. Patients with tumours expressing PIEZO1 at high levels gen-
erally had a significantly shorter OS than those with lower expression (Fig. 4A,B). Moreover, similar results were 
found in most patients in our dataset (Fig. 4C–F). Survival curves were also generated for the different subtypes 
and categorized according to the 2016 WHO molecular classification, IDH mutant status and histopathologic 
classification (Supplemental Fig. 2). Furthermore, we performed Cox regression analyses to explore the prognos-
tic value of PIEZO1 expression in gliomas. Univariate analysis showed that the overall survival was significantly 
associated with PIEZO1 expression, malignant histopathology, high WHO grade, age at diagnosis, classical and 
mesenchymal subtypes and IDH mutations in CGGA dataset and TCGA dataset (Table 1). Moreover, univariate 
Cox regression indicated that PIEZO1 expression and the factors mentioned above were independent prognostic 
indicators for gliomas in the TCGA dataset, however, multivariate Cox regression failed to present similar results 
(Table 2). These results suggested that PIEZO1 may act as an indicator for poor prognosis in gliomas.

Overactivated signalling pathways were correlated with the expression of PIEZO1. We next 
investigated the association of abnormally activated signalling pathways with the expression heterogeneity of 
PIEZO1 in gliomas. GSEA was used to identify the activated biological pathways. Several oncological signatures 
were strongly correlated with high PIEZO1 expression in samples from both the CGGA and the GCTA data-
bases (c5.mf.v6.1.symbols). From CGGA, 174/188 gene sets were found to be upregulated in samples expressing 
PIEZO1 at high levels, among which 129 gene sets were significant at an FDR < 25%, and 82 gene sets were sig-
nificantly enriched at a nominal p value < 5%. From TCGA, 140/187 gene sets were upregulated in high PIEZO1 
expression samples, among which 18 gene sets were significant at FDR < 25%, and 18 gene sets were significantly 
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Figure 1.  The landscape of clinical and molecular features in associations with PIEZO1 expression. (A) Datasets were arranged in 
order of increasing PIEZO1 expression. The relationships between PIZEO1 expression and clinical characteristics were evaluated; (B): 
PIEZO1 expression was upregulated along with the increasing of the WHO grade. *** On the Grade IV bar means the difference of 
expression of PIEZO1 between Grade IV and Grade II, Grade III respectively; (C) The expression levels of PIEZO1 increased by the 
histopathologic classification, *** and ** on the Glioblastoma bar means the difference of expression of PIEZO1 between Glioblastoma 
and Astrocytoma, Oligoastrocytoma, Oligodendroglioma respectively; (D) The expression levels of PIEZO1 increased in the IDH-wt 
gliomas compared with the IDH mutant gliomas; (E) The level of PIEZO1 expression in the molecular entity, *** on the GBM-IDHwt 
bar means the difference of expression of PIEZO1 between GBM-IDHwt and LGG-Oligo, LGG-Astro, LGG-IDHwt, GBM-IDHmut 
respectively; F: The PIEZO1 expression pattern in the TCGA molecular classification. ***p < 0.001, **0.001 < p < 0.01, *0.01 < p < 0.05.
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Figure 2.  Immunofluorescence staining of PIEZO1. (A) IF staining of PIEZO1 in glioma tissues and normal 
human brain tissues; (B) Qualification of area fraction and intensity of positive PIEZO1 cells in LGG and GBM. 
PIEZO1 was highly expressed in GBM, compared to LGG. ***p < 0.001. Scale bar, 50 µm.
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enriched at a nominal p value < 5%. Figure 5A,B show the enriched signalling pathways based on their normal-
ized enrichment score (NES). Notably, oncological signatures such as EGFR and MEK showed a strong positive 
correlation with high PIEZO1 expression. The first 20 oncological signatures that were positively correlated with 
the expression of PIEZO1 in gliomas from GSEA are shown in Supplemental Table 1.

Figure 3.  Distinct genomic profiles associated with PIEZO1 expression. (A) Differential somatic mutations 
were detected in gliomas with low PIEZO1 expression; (B) differential somatic mutations were detected in 
gliomas with high PIEZO1 expression.

Figure 4.  Clinical outcome in patients with gliomas in different PIEZO1 expression. (A,B) Different PIEZO1 
expression conferred significantly different prognosis in all cases. (C–F) The prognostic value of PIEZO1 
expression in different grades. Kaplan–Meier survival analysis was performed. Blue lines show the survival curve 
in patients of low PIEZO1 expression; Red lines show the survival curve in patients of high PIEZO1 expression.
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Table 1.  Clinical and molecular characteristics of patients included in this study.

Cohort

CGGA-RNAseq TCGA-RNAseq GSE16011

(n = 325) (n = 1032) (n = 276)

Age, years

Mean (range) 43 (8–81) 50 (10–87) 51 (14–81)

Sex

Female 122 400 88

Male 203 562 180

Unavailable 0 70 8

KPS

Mean (range) – 81 (20–100) 81 (0–100)

Unavailable 325 376 0

Primary or recurrent

Primary glioma 240 0 0

Recurrent glioma 61 0 0

Secondary GBM 34 0 0

Unavailable 0 1032 276

WHO grade

Grade II 109 216 24

Grade III 72 241 85

Grade IV 144 505 159

Unavailable 0 70 0

Histology

Oligodendroglioma 40 159 52

Oligoastrocytoma 73 109 28

Astrocytoma 68 151 29

Glioblastoma 144 562 159

Normal brain 0 0 8

Unavailable 0 51 0

Molecular classification

LGG-Oligo 45 234 0

LGG-Astro 87 107 0

LGG, IDH-wildtype 49 78 0

GBM, IDH-mutant 39 36 0

GBM, IDH-wildtype 105 526 0

Unavailable 0 51 276

TCGA subtype

Neural 81 76 0

Proneural 102 83 0

Classical 74 738 0

Mesenchymal 68 135 0

Unavailable 0 0 276

IDH status

Mutant 171 456 82

Wild-type 154 454 139

Unavailable 0 122 55

1p/19q status

Codel 0 156 0

Non-codel 0 853 0

Unavailable 325 23 0

Overall survival, days

Median 770 353 –

Survival status

Alive 168 478 –

Dead 142 503 –

Unavailable 15 51 276
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Next, we used the (c5.bp.v7.0.symbols) gene set from GSEA to identify the activated biological pathways 
related to ECM regulation. Several signatures were found to strongly correlate with high PIEZO1 expression 
samples in both CGGA and GCTA. In the CGGA, 3210/3899 gene sets were upregulated in high PIEZO1 
expression samples, among which 1999 gene sets were significant at an FDR < 25%, and 1367 gene sets were 
significantly enriched at a nominal p value < 5%. In the TCGA, 2522/3453 gene sets were upregulated in high 
PIEZO1 expression samples, among which 379 gene sets were significantly enriched at a nominal p value < 5%. 
Figure 5C,D show the enriched signalling pathways based on their normalized enrichment score (NES). Pathways 
regulating ECM were strongly positively correlated with high PIEZO1 expression samples. The first 20 ECM-
regulating signatures that were positively correlated with the expression of PIEZO1 in gliomas from GSEA are 
shown in Supplemental Table 2.

PIEZO1 is related to the tumour microenvironment. Based on these results, we believe PIEZO1 
might play a role in the biological development of gliomas. To explore the correlation between biological func-
tion and PIEZO1 expression in gliomas, we selected 392 genes and 368 genes, which were significantly correlated 
with PIEZO1 using Pearson correlation analysis (Pearson |R|> 0.35) in the TCGA and CGGA datasets, respec-
tively, to conduct an analysis. We used GO analysis in the DAVID Bioinformatics Resources 6.8 to investigate 
the functions of related genes. As the gene functions were sorted by the p value in increasing order in the CGGA 
dataset, cell microenvironment-related genes that were responsible for ECM organization, cell adhesion, angio-
genesis, cell migration and proliferation were positively correlated with PIEZO1 expression (Fig. 6A). Addition-
ally, these results were verified in the TCGA dataset (Fig. 6B).

To investigate the expression of genes associated with PIEZO1 in the microenvironment in gliomas, we 
included an ECM-related gene set from the GSEA and found 110 genes that were most relevant to PIEZO1 
(Pearson |R|> 0.35) in the CGGA database to draw the heatmap. Among the selected genes, 106 genes were 
positively correlated to PIEZO1 expression, while 4 genes showed negative correlation with PIEZO1 expression 
(Fig. 6C). In the TCGA database, 61 genes were most relevant to PIEZO1 (Pearson |R|> 0.35). Among the selected 
genes, 59 genes were positively correlated to PIEZO1 expression, while 2 genes showed a negative correlation 
with PIEZO1 expression (Fig. 6D). Thus, PIEZO1 is positively correlated with the most relevant ECM genes in 
gliomas. As described before, the expression of PIEZO1 was high in GBM and highly metastatic mesenchymal 
subtype gliomas, and it was correlated with cell microenvironment-related genes. These results suggest that 
PIEZO1 may play an essential role in glioma aggressiveness.

To investigate how PIEZO1 interacts with the tumour microenvironment and regulates glioma malignancy, 
we performed a computational analysis to identify the specific microenvironment-related genes that were cor-
related with PIEZO1 expression. Two gene groups, namely, the collagen-encoded gene family (COL) and the 
integrin-encoded gene family (ITG), are known to regulate ECM remodelling and to generate the cytoskeleton 
network system, and both are highly expressed along with PIEZO1 (Fig. 6E–G).

PIEZO1 is relevant to ECM signalling pathways in gliomas. Among its functions in the tumour 
microenvironment, PIEZO1 appears to play a particularly strong role in ECM signalling pathways to regu-

Table 2.  Univariate and multivariate cox analyses in gliomas.

Factor

CGGA set TCGA set

No. of samples

Univariate Multivariate

No. of samples

Univariate Multivariate

p value HR p value HR p value HR p value HR

Age

Increasing years 325 < 0.0001 1.038 0.446 1.006 1047 < 0.0001 1.059 < 0.0001 1.026

WHO grade

Benign progress 325 < 0.0001 0.171 < 0.0001 0.22 1047 < 0.0001 0.138 < 0.0001 0.207

Histopathology

Astrocytoma 66 < 0.0001 0.31 0.537 0.859 169 < 0.0001 0.192 0.743 0.927

Oligoastrocytoma 67 < 0.0001 0.163 0.007 0.466 114 < 0.0001 0.121 0.01 0.511

Oligodendroglioma 39 < 0.0001 0.022 < 0.0001 0.068 174 < 0.0001 0.11 0 0.068

Glioblastoma 138 Ref. Ref. Ref. Ref. 590 Ref. Ref. Ref. Ref.

TCGA molecular classification

Classical 70 < 0.0001 2.839 0.802 1.08 105 0.106 0.788 0.015 0.688

Mesenchymal 65 < 0.0001 4.946 0.093 1.714 117 0.317 0.866 0.334 0.863

Neural 76 0.009 0.458 0.158 0.618 70 0.188 0.806 0.023 0.69

Proneural 99 Ref. Ref. Ref. Ref. 73 Ref. Ref. Ref. Ref.

IDH status

Wild-type versus mutation 310 < 0.0001 4.101 0.298 1.337 926 < 0.0001 6.56 0.007 1.737

PIEZO1 expression

Increasing expression 325 < 0.0001 1.128 0.988 1 1047 < 0.0001 1.627 0.076 1.027
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late tumour-associated tissue remodelling. We analysed the matrix  metalloproteinase  (MMP) family,  tissue 
inhibitors of metalloproteinases (TIMP) family, mitogen-activated protein kinase (MAPK) family and phos-
phoinositide 3-kinase (PI3Ks) family to clarify the role of PIEZO1 in ECM signal transduction. As shown in 
Fig. 7A,B, PIEZO1 expression was positively correlated with TIMP1, MMP2, MMP9, MAPK13, MAPKAPK2, 
PIK3R6, PIK3CD and AKT2 in both the CGGA and TCGA databases. Among these genes, four genes (TIMP1, 
MAPK13, MAPKAPK2 and MAPKAPK3) are known to regulate cell proliferation, and MMP2 and MMP9 con-
trol tumour-associated tissue remodelling; PIK3CD is involved in the immune response, and AKT2 regulates 
tumourigenesis. Furthermore, we analysed the expression of these ECM-related genes based on the classification 
of gliomas mentioned before. Strikingly, the expression of all ECM-related genes that were positively correlated 
with PIEZO1 were significantly higher in glioblastoma (WHO grade IV) compared with low grade gliomas 
(WHO grade II and WHO grad III, Fig. 7C,D). Taken together, these data indicate that PIEZO1 may provide a 
physical means for the transfer of mechanical forces, through which the tumour cells are able to directly respond 
to ECM changes to regulate gene transcription. Meanwhile, the instability of the tumour microenvironment due 
to ECM changes also allows extra space for tumour proliferation and metastasis.

Discussion
Gliomas are the most common and lethal primary brain tumours in adults. Limited improvements in outcomes 
have been made despite extensive study and combination of conventional treatments. New therapeutic targets 
are urgently needed. Studies on microenvironment-targeted therapeutic strategies have opened a new avenue 
for tumour  treatment32. Mechanical cues play a critical role in tumour progression and in shaping the TME by 
regulating both tumour cells and the TME. PIEZO1 is an intrinsically mechanosensitive ion channel that can 
interact with many signalling pathways in multiple cancer  malignancies12,13,33. However, it is unknown whether 
PIEZO1 regulates glioma development and whether the mechanical environment in tumours interacts with the 
mechanosensory function of PIEZO1 to promote malignancy in gliomas. Therefore, identification of the molecu-
lar and clinical correlations between PIEZO1 expression and glioma malignancy will facilitate the establishment 
of a potential therapeutic target and shed light on glioma treatment.

Figure 5.  Gene set enrichment analysis (GSEA) for the expression level of PIEZO1 and the signal pathways 
activated were present. (A) GSEA for the expression level of PIEZO1 from CGGA was described relating to 
oncogenic signatures; (B) GSEA for the expression level of PIEZO1 from TCGA was described relating to 
oncogenic signatures. NES and normalized p value were shown at the bottom of each figure.
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Figure 6.  Analysis of genetics of PIEZO1 expression through RNA-seq. (A,B) Gene ontology analysis of 
positively related biological process showed that PIEZO1 was mostly in regulating extracellular matrix in CGGA 
and TCGA datasets; (C,D) Heatmaps showed that most extracellular matrix-related genes were positively 
correlated with PIEZO1 expression in CGGA and TCGA datasets, while a small number of genes were 
negatively associated; (E–G) Heatmaps indicated that most collagen encoded gene family (COL) and integrin 
encoded gene family (ITG) were positively correlated with PIEZO1 expression in CGGA and TCGA datasets.
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Figure 7.  Association of PIEZO1 expression and matrix metalloproteinases (MMP) family, tissue inhibitors 
of metalloproteinases (TIMP) family, mitogen-activated protein kinase (MAPK) family and Phosphoinositide 
3-kinases (PI3Ks) family expression in CGGA and TCGA datasets. (A,B) Association of PIEZO1 expression and 
MMP, TIMP, MAPK and PI3K family expression in in CGGA and TCGA datasets; (C,D) MMP, TIMP, MAPK 
and PI3K family expression such as TMP1, MMP9, MAPK13, MAPKAPK3 and PIK3CD were upregulated 
along with the increasing of the WHO grade. ***p < 0.001, **0.001 < p < 0.01; * 0.01 < p < 0.05.
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In this study, we analysed PIEZO1 expression in glioma. High levels of PIEZO1 expression showed an asso-
ciation with malignant entities, including a high WHO Grade, IDH wild-type status and mesenchymal subtype 
gliomas. The most important common characteristic among gliomas with a high WHO grade, IDH wild-type 
status and mesenchymal subtype is aggressiveness. It has been reported that tissue stiffness in human low to high 
grade gliomas gradually increased from 100 to  104 Pa34 and that tumour stiffness correlates with  aggressiveness35. 
These results suggest that increasing intra-tumoural solid pressure developed by high grade glioma provides 
mechanical cues that stimulate PIEZO1, which further plays an essential role in tumour cell proliferation and 
metastasis. Moreover, we also found that a high level of PIEZO1 was predictive of a poor prognosis. This is the 
first study to present the PIEZO1 expression pattern in gliomas based on different grading systems including 
2016 WHO molecular classifications and the WHO Grade system according to the CGGA dataset and be veri-
fied by the TCGA dataset.

To investigate molecular mechanism of glioma, we analysed the distinct genomic alternations in order of 
increasing PIEZO1 expression. The data show a positive correlation between somatic mutations and PIEZO1 
expression. Tumour suppressor genes, including PTEN and NF1, were detected at high amplification peaks with 
high PIEZO1 expression. The oncogenic driver EGFR was found to be enriched with high expression of PIEZO1. 
It has been reported that tumour cell microenvironment stiffness regulates tumour development by interact-
ing with EGFR-dependent signalling in  glioma36,37. In addition, genomic alternations may also contribute to 
regulating the TME and promoting tumour cell  proliferation38. Therefore, PIEZO1 appears to take part in the 
glioma aggressive pathophysiological process, and it can act as the essential biomarker for glioma malignancy 
and provides a potential therapeutic target to overcome glioma.

As for the biological function of PIEZO1 expression in gliomas, we found that cell microenvironment-related 
genes that are related to ECM organization, cell adhesion, angiogenesis, cell migration and proliferation were 
positively correlated with PIEZO1 expression. Additionally, two gene groups, the collagen-encoded gene family 
(COL) and the integrin-encoded gene family (ITG) that are known to regulate ECM remodelling and compose 
the cytoskeleton network system were positively correlated with PIEZO1  expression39,40. These results indicate 
that PIEZO1 regulates glioma aggressiveness through its biological function in ECM remodelling. ECM compo-
nents are major molecules in the cell  microenvironment36. In solid tumours, the ECM has the capacity to drive 
tumour  aggressiveness3. It has been reported that PIEZO1 can activate integrins  intracellularly41. As the key ECM 
adhesion receptors, integrins interact with the integrin-FAK signalling pathway to regulate cancer cell behaviour, 
promoting migration, proliferation and  survival36. Integrin inhibitors (e.g., cilengitide or etaracizumab) have been 
tested in clinical  trials42–45. A randomized phase II trial showed that cilengitide monotherapy was well tolerated 
and noted a modest anti-tumour activity in recurrent  glioblastoma45. However, a phase III trial showed that 
combination of cilengitide with standard temozolomide chemoradiotherapy had no benefit over conventional 
therapy in glioblastoma, particularly in tumours with methylated MGMT  promoter42. Cilengitide as a subunit 
antagonist of the integrins αvβ3 and αvβ5 remains  controversial42. PIEZO1 is the upstream molecule of integ-
rins and can directly sense the mechanical changes caused by tumour tissue pressure, which makes PIEZO1 a 
potential biomarker as a therapeutic target.

The molecular mechanisms through which PIEZO1 regulates glioma malignancy involve multiple signalling 
pathways. As shown in the results, PIEZO1 expression is positively correlated with genes that are responsible 
for cell proliferation, tumour-associated tissue remodelling, immune response and tumourigenesis. These data 
indicate that PIEZO1 acts as a central functional point to form an integrated mechanical-regulation molecule 
network, here giving rise to the hypothesis that a feedback mechanism where the increasing tumour tissue 
stiffness caused by abnormal regulation of cell growth activates the PIEZO1 ion channel and multiple ECM-
related pathways that are downstream, in turn modulating cell proliferation and TME remodelling to increase 
tissue pressure. This also explains why in high grade gliomas such as GBM, PIEZO1 expression is expressed at 
a high level. Meanwhile, cytoskeletal dynamics are also associated with PIEZO1 expression. A loose supportive 
structure due to loss of collagen in the TME provides more physical space for tumour cells. In parallel, tumours 
with a remodelled TME are able to compress blood supply through exerting physical forces on their microenvi-
ronment. Hypoperfusion and hypoxia lower the efficacy of tumour targeted drug delivery, promoting immune 
evasion and tumour metastasis. Evidence has shown that expression of PIEZO1 increased in multiple malignant 
diseases including bladder carcinoma, synovial sarcoma, osteosarcoma, breast cancer and gastric  cancer12,46–49. 
PIEZO1 is also involved in 2D cell migration and 3D invasion in the MCF-7 cell line, a gastric cancer cell line, 
and small-cell lung carcinoma cell  lines12,33,49. Taken together, PIEZO1 not only regulates tumour cell prolifera-
tion but modulates the TME as well to promote tumour cell metastasis.

As expression of PIEZO1 is positively associated with gliomas, pharmacological inhibition of PIEZO1 might 
prove an efficacious strategy in treating these malignant gliomas. Although current identified inhibitors (ruthe-
nium red,  Gd3+ and Grammostola spatulata spider toxin GsMTx4) are not PIEZO1-specific, it has been reported 
that the use of GsMTx4 may inhibit PIEZO1 activity in the urothelium, affect PIEZO1-dependent arterial remod-
elling and reduce cell death due to high strain mechanical  injury50–52. Because PIEZO1 plays a vital role in an 
abundance of physiological processes, more research needs to be done to investigate tumour-specific PIEZO1 
knockdown and provide a potential tumour cell and TME-targeted therapy.

Our findings indicate that PIEZO1 might play a role as a biomarker in gliomas. The biological significance 
of PIEZO1 was explored by analysing two large sample-sized glioma cohorts. PIEZO1 expression is correlated 
with increasing tumour tissue stiffness as tumourigenesis proceeds, and the function of PIEZO1 aggravates 
tumour cell proliferation and glioma malignancy. Furthermore, the tumour-specific inhibitor of PIEZO1 needs 
to be addressed in future studies. However, we still need to clarify the specific molecular mechanism of PIEZO1-
related mechanical–biological transduction signalling pathways and how to modulate these molecules to regulate 
glioma progression.
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In conclusion, using publicly available transcriptomic and genomic profiling data, we found that PIEZO1 
was upregulated in high grade glioma and predictive of a poor prognosis. Additionally, PIEZO1 was positively 
correlated with microenvironment remodelling-related genes and appears to function as a central checkpoint of 
ECM remodelling pathways. These findings establish PIEZO1 as a novel focus to study the mechanism of glioma 
malignancy and as a potential therapeutic target.
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