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Metabolomic biomarkers 
in midtrimester maternal 
plasma can accurately predict 
the development of preeclampsia
Seung Mi Lee1,4, Yujin Kang2,4, Eun Mi Lee2, Young Mi Jung1, Subeen Hong1, Soo Jin Park2, 
chan‑Wook park1, Errol R. Norwitz3, Do Yup Lee2* & Joong Shin Park1*

Early identification of patients at risk of developing preeclampsia (PE) would allow providers 
to tailor their prenatal management and adopt preventive strategies, such as low-dose aspirin. 
Nevertheless, no mid-trimester biomarkers have as yet been proven useful for prediction of PE. This 
study investigates the ability of metabolomic biomarkers in mid‑trimester maternal plasma to predict 
PE. A case–control study was conducted including 33 pregnant women with mid-trimester maternal 
plasma (gestational age [GA], 16–24 weeks) who subsequently developed PE and 66 GA-matched 
controls with normal outcomes (mid-trimester cohort). Plasma samples were comprehensively 
profiled for primary metabolic and lipidomic signatures based on gas chromatography time-of-
flight mass spectrometry (GC-TOF MS) and liquid chromatography Orbitrap mass spectrometry 
(LC-Orbitrap MS). A potential biomarker panel was computed based on binary logistic regression and 
evaluated using receiver operating characteristic (ROC) analysis. To evaluate whether this panel can 
be also used in late pregnancy, a retrospective cohort study was conducted using plasma collected 
from women who delivered in the late preterm period because of PE (n = 13) or other causes (n = 21) 
(at-delivery cohort). Metabolomic biomarkers were compared according to the indication for delivery. 
Performance of the metabolomic panel to identify patients with PE was compared also to a commonly 
used standard, the plasma soluble fms-like tyrosine kinase-1/placental growth factor (sFlt-1/PlGF) 
ratio. In the mid-trimester cohort, a total of 329 metabolites were identified and semi-quantified in 
maternal plasma using GC-TOF MS and LC-Orbitrap-MS. Binary logistic regression analysis proposed 
a mid-trimester biomarker panel for the prediction of PE with five metabolites (SM C28:1, SM C30:1, 
LysoPC C19:0, LysoPE C20:0, propane-1,3-diol). This metabolomic model predicted PE better than 
PlGF (AUC [95% CI]: 0.868 [0.844–0.891] vs 0.604 [0.485–0.723]) and sFlt-1/PlGF ratio. Analysis of 
plasma from the at-delivery cohort confirmed the ability of this biomarker panel to distinguish PE 
from non-PE, with comparable discrimination power to that of the sFlt-1/PlGF ratio. In conclusion, an 
integrative metabolomic biomarker panel in mid‑trimester maternal plasma can accurately predict the 
development of PE and showed good discriminatory power in patients with PE at delivery.

Preeclampsia (PE) is a clinical syndrome specific to human pregnancy and the puerperium that can affect 
virtually every maternal organ system. It is diagnosed by the presence of hypertension with evidence of end-
organ involvement, such as proteinuria, thrombocytopenia, renal insufficiency, pulmonary edema, or cerebral 
symptoms after 20 weeks’  gestation1. Preeclampsia complicates 2–10% of all pregnancies and is a major cause 
of maternal  mortality2.

Because of its clinical significance, the prediction and prevention of PE has been the target of intensive inves-
tigation for decades. Numerous biological markers have been evaluated in an effort to predict PE, but results 
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have been  inconsistent3–10. Such biomarkers included those related to placental perfusion/vascular resistance, 
endocrine dysfunction, renal dysfunction, endothelial dysfunction, and oxidative  stress11. Overall, these biomark-
ers have shown poor sensitivity and poor positive-predictive values for the prediction of PE. A test using plasma 
biomarkers of endothelial dysfunction—specifically the ratio of the anti- and pro-angiogenic factors, soluble 
fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF), respectively—is now commercially avail-
able. Although the sFlt-1/PlGF ratio has shown a high degree of accuracy for predicting PE in late  pregnancy12, 
the clinical utility of this test in the mid-trimester remains questionable. There are currently no widely accepted 
biological markers that have been shown to be reliable, reproducible, and cost-effective in the prediction of PE 
in early pregnancy, which would be critical if a preventative strategy is to be effective.

The metabolome refers to the complete profile of metabolites within the maternal plasma that reflect ongoing 
biochemical process at a single point in time, including metabolic substrates, intermediates, and final products. 
Metabolomic analysis of samples collected from study subjects with/without underlying diseases is thus ide-
ally suited for developing diagnostic tests, prognostic tools, and personalized therapeutic  interventions13–15. 
Metabolomic studies have been conducted for the purpose of biomarker discovery for PE in a range of bio-
logical specimens (including serum, urine, and placenta) and different analytical platforms have been used to 
measure a number of putative biomarker molecule species including amino acid, fatty acid, organic acid, and 
 acylcarnitine16,17, which have been summarized in detail  elsewhere16. In brief, several studies with maternal 
blood in late pregnancy reported metabolic biomarkers for discrimination of  preeclampsia18–21, and other previ-
ous studies suggested predictive metabolic biomarkers in early pregnancy with the use of metabolomics tools 
such as nuclear magnetic resonance spectroscopy (NMR), gas-/ liquid chromatography–mass spectrometry 
(GC– / LC–MS), with variable sensitivities and specificities (30–100%)22–29. Other biologic samples such as 
urine or placenta in early or late pregnancy has been also explored to examine the underlying pathophysiology 
of  preeclampsia30–34.

However, few studies have explored comprehensive phospholipid profiles in maternal blood. Phospholipids 
(PLs) are a major constituent of cell membranes and function also as second messengers in intracellular signal 
transduction cascades. The different composition of fatty acyl chains within PL subtypes determines the bio-
physical traits of the individual cell membrane and influences a range of biological  processes35. Considering 
that endothelial injury/dysfunction is a key pathogenic feature of  PE36, it is biologically plausible that changes 
in circulating PL profiles might be useful in predicting and/or diagnosing the disease. In addition, abnormal 
circulating PL profiles have been reported in many diseases, including obesity, hypertension, seizure disorders, 
and gestational diabetes, all of which are risks factors for  PE37–39.

In this study, we analyzed comprehensive plasma PL profiles and primary metabolomic signatures from 
women who did and did not develop PE. We identified unique metabolomic features in women with PE, which 
was consistent in both early and late gestational ages, and describe a biomarker panel based on binary logistic 
regression model that showed robust performance in differentiating women with PE from those without.

Results
Metabolomic biomarkers in the Mid-trimester Cohort. Integrative metabolomic analysis identi-
fied and semi-quantified 116 primary metabolites and 213 lipids based on GC-TOF MS and LC-Orbitrap MS, 
respectively. The profiles were not clearly separated by principal component analysis (PCA) (Figure S1). Super-
vised multivariate statistics, PLS-DA modeling demonstrated that the primary discriminatory factor was GA 
at sampling based on the first two latent variables (Fig. 1A,B). Variable importance projection (VIP) analysis 
determined that the metabolites that contributed most to the model were Fatty Acid Esters of Hydroxy Fatty 
Acid (FAHFA) C18:0, LysoPC C19:0, and LysoPS C19:0 (Fig. 1C,D). Sixty-one metabolites (18.5%) achieved 
statistical significance based on one-way ANOVA (adjusted by Benjamini–Hochberg analysis, FDR < 0.05) with 
post-hoc test (Fisher’s LSD) of which 26 metabolites were significantly different in all 4 comparisons (Table S1). 
Subsequent PLS-DA showed the PE-unique metabolic profiles in the mid-trimester cohort (R2Y = 0.626 and 
Q2 = -0.0187) (Figure S2 A,B) and in the at-delivery cohort (R2Y = 0.991 and Q2 = 0.546) (Figure S2 C,D).

We first interrogated the clinical characteristics and the metabolic compositional differences in the mid-
trimester cohort. Table 1 shows the clinical characteristics of the mid-trimester cohort. Cases and controls were 
matched for maternal age and GA at blood sampling. As expected, cases (women who developed PE) had an 
earlier GA at delivery and lower birthweight that those who did not (controls). Neither circulating sFlt-1 concen-
trations nor sFlt-1/PlGF ratios were different between the two groups, but PlGF levels were significantly lower 
in women who subsequently developed PE as compared with those that did not (median 43.1 [range, 3.2–387.8] 
vs 60.3 [11.3–654.4] pg/mL, respectively; p < 0.05).

The compositional changes in the metabolic profiles were interrogated based on Student’s t-test in which 6 
primary metabolites (1.8%) and 17 lipid molecules (5.2%) were present in plasma at significantly different levels 
in PE cases compared to healthy controls (p < 0.05) (listed in Table 2). The primary metabolites included glycolysis 
intermediates (3-phosphoglycerate), nitrogenous compounds (xanthine, glutamate), and palmitoleic acid, all of 
which were elevated in women who developed PE. Lyxose and propane-1,3-diol were present at significantly 
lower levels in women who developed PE. Metabolite enrichment analysis suggested that arachidonic acid 
metabolism, malate-aspartate shuttle, β-alanine metabolism were significantly altered (p value < 0.05) (Figure S3).

From the lipidomic profiles, phosphatidylinositol (PI) C38:3 was increased the most (11.2 fold-change). Levels 
of lyso-phosphatidylethanolamine (LysoPEs, C16:1, C17:0, and C20:0) were also measured at higher levels in 
the PE group, whereas levels of phosphatidylethanolamine (PE) C23:1 and C24:1, and C34:3 were significantly 
reduced. Similarly, phosphatidylcholine (PC) and LysoPC showed contrasting patterns, with lower contrac-
tions of LysoPC C19:0 and C22:1 and higher concentrations of PC C32:1 and C32:2 in the PE group. Other lipid 
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Figure 1.  Multivariate statistical modeling of plasma metabolites by partial least squares-discriminant analysis 
(PLS-DA). (A) The score plot shows that the major discriminatory factor is pregnancy stage. T1 and T2 indicates 
are the vectors, which explain the two largest degree of variation in the model. R2Y (0.425) is cumulative 
goodness-of-fit. Q2 (0.179) proposes model predictability. (B) Random permutation plot (100 times). The 
vertical axis presents R2 (green points) and Q2 (blue points) values of the model. The horizontal axis shows the 
correlation coefficient between the original and the permuted Y-variable. (C) The top five list of metabolites 
based on VIP analysis (D) Individual measurements as well as Box-Whisker plots (mean ± SEM) are shown of 
the metabolites that contributed most to the model.

Table 1.  Clinical characteristics of the study population in the mid-trimester cohort. All values are given as 
median (range) or number (%). NS, not significant; BMI, body mass index; PlGF, placental growth factor; sFlt-
1, soluble fms-like tyrosine kinase-1.

Controls (did not develop preeclampsia) 
(n = 66) Cases (developed preeclampsia) (n = 33) p Value

Maternal age (years) 36 (27–43) 35 (26–44) NS

Nulliparity 39 (59%) 20 (61%) NS

BMI before pregnancy 20.7 (16.4–32.8) (n = 51) 22.4 (17.6–40.2) (n = 31)  < 0.01

BMI at blood sampling 22.4 (16.7–36.5) 23.8 (18.2–38.1) NS

Gestational age at blood sampling (weeks) 17.4 (16.0–23.4) 17.6 (16.0–22.6) NS

Gestational age at delivery (weeks) 39.3 (25.6–42.3) 37.4 (25.3–41.3)  < 0.001

Birth weight (g) 3275 (760–4260) 2670 (450–4700)  < 0.001

Small for gestational age 4 (6%) 6 (19%) NS

Sex (male) 34 (53%) 16 (49%) NS

Cesarean delivery 26 (41%) 16 (49%) NS

Diabetes during pregnancy 1 (2%) 0 (0%) NS

Pro- and anti-angiogenic factors

sFlt-1 (pg/mL) 887.4 (177.3–3446.2) 952.2 (273.7–1957.1) NS

PlGF (pg/mL) 60.3 (11.3–654.4) 43.1 (3.2–387.8)  < 0.05

sFlt-1/PlGF 15.1 (0.8–239.2) 18.0 (1.5–577.8) NS
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molecules that were differentially regulated included oxidized PLs (OxPC and OxPI) and sphingomyelins (SMs). 
The identities of the oxidized PLs were validated by predicted spectra based on CFM-ID40.

Next, we examined if blood metabolites can discriminate PE from healthy control in mid-trimester cohort. 
Initially, we tested the metabolite recomposite based on the PLS-DA model; however, the panel did not show 
good performance (AUC: 0.793) (Figure S4). Alternatively, we explored linearly-recomposited metabo-
lite panel derived based on binary logistic regression analysis. The multivariate logistic model suggested five 
metabolites (SM C28:1, SM C30:1, LysoPC C19:0, LysoPE C20:0, propane-1,3-diol) and presented a risk of 
developing PE = -0.626 + (-1.015*SM C28:1) + (1.546*SM C30:1) + (-1.043*LysoPC C19:0) + (0.994*LysoPE 
C20:0) + (-0.713*propane-1,3-diol) (Figure S5 A). ROC curve analysis confirmed good performance of the 
metabolic signature (AUC: 0.868, 95% confidence interval [CI]: 0.844–0.891, Sensitivity: 75.1, Specificity: 83.0) 
(Fig. 2). We also compared the area under the ROC curve between the combined metabolic prediction model 
and PlGF levels for the ability to predict PE. The combined metabolic model consisting of five metabolites (SM 
C28:1, SM C30:1, LysoPC C19:0, LysoPE C20:0, propane-1,3-diol) predicted the risk of PE better than PlGF 
concentrations (AUC [95% CI]: 0.868 [0.844–0.891] vs 0.604 [0.485–0.723]).

Metabolic biomarkers in the at-delivery cohort. We next performed a comprehensive metabolic pro-
file analysis from maternal plasma collected at delivery. Table 3 shows the clinical characteristics of the at-deliv-
ery cohort. Of these, 13 women (38%) were delivered because of PE. With the exception of birth weight, clinical 
characteristics were not different between women who were delivered for PE or for other indications. Circulating 
sFlt-1 concentrations and sFlt-1/PlGF ratios were significantly higher and PlGF concentrations significantly 
lower in the group delivered for PE (Table 3).

A comparative analysis of the metabolomic profiles revealed 17 lipids (5.2%) and 7 primary metabolites (2.1%) 
that were significantly different in women delivered with PE versus no PE (Student’s t-test, listed in Table 4). Of 
these, the major lipid classes included sphingomyelins (C30:1, C32:1, C33:2, C34:2, and C38:1), that were pre-
sent at higher levels in the PE versus non-PE group, as well as FAHFA (C18:0), PCs, PE, LysoPC, and LysoPEs, 
most of which were also significantly higher in the PE group. Similarly, all identified primary metabolites were 
upregulated in the PE group. Remarkably, the disaccharide, isomaltose, showed a more than two-fold increase in 
PE. Other primary metabolites of note included 2-deoxytetronic acid, 3,6-anhydro-d-galactose, sugar alcohols 
(erythritol, xylitol, and myo-inositol), and thymine (Table 4). Isomaltose and erythritol that were originated from 
dietary resource, have been suggested for the association with disease biomarker, particularly in  diabetes41,42.

Next, we set out to confirm whether the panel of 5 metabolites identified in the mid-trimester cohort could 
discriminate between cases with and without PE in the at-delivery cohort. The same panel of 5 compounds (SM 

Table 2.  Metabolites that were significantly different in the preeclampsia group in the mid-trimester cohort. * 
Statistical significance is presented by p value and false discovery rate (FDR) against control.

Fold change p Value FDR

Lipid molecules

LysoPC C19:0 0.72 0.002 0.000

LysoPC C22:1 0.53 0.010 0.000

LysoPE C16:1 1.73 0.018 0.783

LysoPE C17:0 1.30 0.013 0.783

LysoPE C20:0 1.46 0.044 0.783

OxPC C38:4 + 1O 0.76 0.048 0.336

OxPI C38:4 + 1O 0.73 0.044 0.277

PC C32:1 1.37 0.007 0.783

PC C32:2 1.33 0.009 0.783

PE C23:1e 0.65 0.030 0.231

PE C24:1e 0.46 0.031 0.231

PE C34:3e 0.81 0.031 0.277

PI C36:2 0.72 0.014 0.231

PI C38:3 11.23 0.041 0.783

SM C28:1 0.66 0.011 0.000

SM C30:1 1.53 0.020 0.783

SM C34:1 2.22 0.044 0.783

Primary metabolites

3-Phosphoglycerate 1.37 0.037 0.783

Glutamate 1.29 0.041 0.783

Lyxose 0.74 0.024 0.231

Palmitoleic acid 1.50 0.046 0.844

Propane-1,3-diol 0.91 0.028 0.231

Xanthine 1.43 0.044 0.783
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Figure 2.  Performance comparison of the metabolic biomarker panel and PlGF for discriminating 
preeclampsia from healthy controls in the mid-trimester cohort (A) Receiver operating characteristic (ROC) 
curve analysis. The biomarker panel of 5 discriminatory circulating metabolites were tested against PlGF levels 
in their ability to predict the development of PE. (B) Validation based on permutation test with 100 time-
random sampling (C) Summarized features of ROC curve analysis of two models.

Table 3.  Clinical Characteristics of the Study Population in the At-delivery Cohort. All values are given as 
median (range) or number (%). NS, not significant; BMI, body mass index; PlGF, placental growth factor; sFlt-
1, soluble fms-like tyrosine kinase-1.

Group 1 Group 2

p Value
Delivered for reasons other than preeclampsia 
(n = 21) Delivered for preeclampsia (n = 13)

Maternal age (years) 32 (28–42) 31 (22–40) NS

Nulliparity 5 (24%) 6 (46%) NS

BMI before pregnancy 20.9 (15.2–29.6) (n = 13) 22.4 (18.4–25.6) (n = 8) NS

BMI at delivery 25.9 (20.3–33.3) (n = 17) 27.7 (24.8–31.0) (n = 10) NS

Gestational age at delivery (weeks) 35.4 (34.3–36.9) 35.6 (34.1–36.9) NS

Birth weight (g) 2660 (1710–3440) 2160 (1560–3240)  < 0.01

Small for gestational age 1 (5%) 2 (15%) NS

Sex (male) 11 (52%) 6 (46%) NS

Cesarean delivery 17 (81%) 13 (100%) NS

Diabetes during pregnancy 2 (10%) 0 (0%) NS

Pro- and anti-angiogenic factors

sFlt-1 (pg/mL) 1325.0 (199.5–9884.9) 2791.6 (723.8–7887.2)  < 0.05

PlGF (pg/mL) 31.1 (3.0–256.3) 3.1 (1.6–40.7)  < 0.001

sFlt-1/PlGF 32.8 (7.1–3278.0) 856.2 (59.6–3243.8)  < 0.001
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C28:1, SM C30:1, LysoPC C19:0, LysoPE C20:0, and propane-1,3-diol) showed good discriminatory performance, 
with similar AUC to that of the sFlt-1/PlGF ratio (AUC [95% CI]: 0.858 [0.817–0.899] vs AUC [95% CI]: 0.812 
[0.760–0.864]) (Fig. 3, Figure S5 B).

Then, we further explored if there is a combination of metabolomic markers that could more accurately 
distinguish between PE and non-PE in the at-delivery cohort. All metabolites that were significantly different 
in the PE group were analyzed (Table 4) and prioritized using binary logistic regression. The analysis suggested 
three consecutive models, which consisted of SM C30:1 alone, SM C30:1 + oxidized PE (OxPE) C38:3, and SM 
C30:1 + oxidized PE (OxPE) C38:3 + isomaltose. The calculated AUC (95% CI) values were as follows: 0.844 
(0.802–0.886), 0.904 (0.872–0.937), and 0.972 (0.956–0.988), respectively. The model with the three metabolites 
(SM C30:1 + oxidized PE (OxPE) C38:3 + isomaltose) showed the marginal difference (p = 0.08) compared to the 
sFlt-1/PlGF ratio (0.812 [0.760–0.864]) (Fig. 3). Ten-fold cross validation was performed for each model and 
provided in Figure S6.

Discussion
In the current study, we comprehensively characterized the metabolome in mid-trimester maternal plasma and 
identified a panel composed of 5 metabolites that can accurately predict the subsequent development of PE. We 
then tested this same biomarker signature in a second cohort of women delivered in the late preterm period, 
and were able to accurately discriminate women who were delivered with PE from those delivered with other 
indications. In addition, we first reported the significant differences in metabolic phenotype according to gesta-
tional age at sampling (mid-trimester and at-delivery), suggesting that these biomarkers may be used for both 
prediction and diagnosis along with pregnancy period. Particularly, lipid molecules, FAHFA C18:0 and LysoPC 
C19:0 were highly abundant at the time of delivery.

In mid-trimester population, we obtained predictive model for PE with 5 plasma metabolites based on binary 
logistic regression following the variable prioritization based on Pattern Searching  algorithm43. The regression 
model presented good predictive performance in the mid-trimester period (16–24 weeks) for the subsequent 
development of PE. The biomarker signature included SM C28:1, SM C30:1, LysoPC C19:0, LysoPE C20:0, and 
propane-1,3-diol. Aberrant levels of SMs, which serve as important structural components of cell membranes and 
as bioactive signal transduction molecules in various cellular  response44, have been measured in fetal (umbilical 
artery)  blood45,  placentas46, and maternal  blood46 collected from pregnancies complicated by PE.

A number of intervention strategies have been proposed to prevent PE including dietary manipulation, exer-
cise, cardiovascular drugs, and antioxidants, but none has been found to be effective. Low-dose aspirin (LDA), 

Table 4.  Metabolites That Were Significantly Different in the Preeclampsia Group in the At-delivery Cohort. 
*Statistical significance is presented by p-value and false discovery rate (FDR) against control.

Metabolites list Fold change p Value FDR

Lipid molecules

FAHFA C18:0 1.41 0.028 0.331

LysoPC C18:2 0.44 0.007 0.580

LysoPE C15:0 0.28 0.043 0.589

LysoPE C18:2 0.31 0.037 0.589

LysoPE C20:4 0.63 0.049 0.589

OxPC C38:4 + 1O(1Cyc) 1.72 0.003 0.000

OxPE C38:3 + 1O 1.86 0.001 0.000

OxPI C38:4 + 1O 1.52 0.028 0.331

PC C36:5e 1.65 0.042 0.331

PC C38:5 1.89 0.009 0.098

PC C40:7 1.82 0.008 0.098

PE C36:4 2.73 0.010 0.098

SM C30:1 2.37 0.001 0.000

SM C32:1 1.80 0.012 0.098

SM C33:2 2.63 0.033 0.331

SM C34:2 1.43 0.049 0.331

SM C38:1 2.18 0.049 0.331

Primary metabolites

2-Deoxytetronic acid 1.55 0.035 0.193

3,6-Anhydro-d-galactose 1.28 0.029 0.193

Erythritol 1.31 0.043 0.315

Isomaltose 2.37 0.028 0.193

Myo-inositol 1.39 0.014 0.193

Thymine 1.24 0.048 0.315

Xylitol 1.21 0.032 0.193
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which acts in part by inhibiting platelet thromboxane  A2 biosynthesis, is the one intervention that has been 
shown to reduce the development of PE in some high-risk  patients47–49. As such, recent guidelines support the 
use of LDA starting from mid-pregnancy period to prevent PE in high-risk populations, including women with 
a history of PE in a prior pregnancy, and women with multiple gestations, chronic hypertension, pregestational 
diabetes, renal disease, or autoimmune  diseases1,50. However, the use of LDA in low-risk populations is not cur-
rently recommended even though substantial number of the women without these risk factors can develop PE 
during  pregnancy51.

For the reasons outlined above, the early risk assessment of PE development is highly desirable for low-risk 
population. Indeed, the application of complex algorithms (e.g. maternal historical and demographic risk fac-
tors, blood pressure, uterine artery pulsatility index on Doppler velocimetry, and maternal serum biomarkers 
such as pregnancy-associated plasma protein A [PAPP-A] and PlGF) to identify women at risk for preeclampsia 
and use of LDA might also lead to a reduction of PE  development52. The current study suggests that a new test 
using maternal plasma biomarkers alone can more accurately identify women at high-risk of PE development 
and would allow for more timely and appropriate utilization of preventive medications for low-risk pregnant 
women (those without a history of prior PE and those with no underlying medical conditions). Most guidelines 
recommend the LDA therapy starting at the late first or early second trimester of  pregnancy1,50. Therefore, early 
and accurate identification of women with high risk for PE is critical to allow for the timely adoption of LDA 
prophylaxis. In the current study, we developed simple binary logistic regression model composed of 5 plasma 
metabolites, which accurately predicted the development of PE superior to PIGF. The simpler model using only 
SMs (SM C28:1 and SM C30:1) also showed good performance for the PE prediction. Moreover, our highly 
quantitative and comprehensive approach suggested the plausible association between the metabolic features 
and potential patho-mechanism. For instance, the increases in circulating SMs has been described in a lipid-
omic analysis of placental microvesicles from abnormal pregnancies and appears to correlate with an increase 
in inflammation and oxidative  stress53. The additional examination of plasma metabolites from the at-delivery 
cohort implied an underlying aberrant redox regulation given the significant increase in oxidized PLs (OxPC, 

Figure 3.  Performance comparison of the metabolic biomarker panels and sFlt-1/PlGF ratio for discriminating 
preeclampsia from non-preeclampsia in the at-delivery cohort. (A) Receiver operating characteristic (ROC) 
curve analysis. The same metabolic biomarker derived from the mid-trimester cohort study is re-formulated 
for at-delivery cohort using binary logistic regression analysis (biomarker  panel1). New biomarker panel was 
generated based metabolite set determined from at-delivery cohort study (biomarker  panel2). (B) Validation 
based on permutation test with 100 time-random sampling (C) Summarized features of ROC curve analysis of 
the tested models.
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OxPI, and OxPE) in the PE group. A recent report suggested that this may be due to the enhanced release of the 
anti-angiogenic factor, endoglin, by circulating exosome in response to exposure to high levels of  SMs53. Indeed, 
in our model, the combination of SM C30:1 and OxPE C38:3 was best able to discriminate between patients with 
and without PE at delivery. The pathophysiologic mechanism regarding these biomarkers needs to be further 
investigated for exploring novel therapeutic targets.

The appropriate development of the prediction model would be completed through the validation of the 
developed model in independent study population, but we could not split the study population into the devel-
opment and validation set because of small number of cases. Instead we validated the model in the same study 
population and tested if the developed model can be also used in the identification of preeclampsia patient at 
delivery. Further studies with large number of cases with separate development and validation population should 
be performed. For the clinical application, the biomarker also needs to be validated in other cohorts including 
the group in the first trimester. As guidelines recommend the start of LDA ideally in the late first  trimester49,50, 
the first trimester biomarkers would be clinically more applicable. In addition, the comparative evaluation of 
prediction accuracy between the metabolic biomarkers and clinical parameters, or the combination of both 
needs to be evaluated in future studies.

In addition, we evaluated the usefulness of metabolomic panel in at-delivery cohort. The identical biomarker 
composite developed from the mid-trimester cohort also showed good discrimination between PE and non-PE in 
the late preterm study population at delivery (at-delivery cohort). Furthermore, the metabolic panel derived from 
at-delivery cohort showed the outperformance in the discriminant power. For at-delivery cohort, we evaluated 
the maternal plasma at delivery from patients who delivered in the late preterm period (34–0/7—36–6/7 weeks) 
as the following reasons: (1) Guidelines recommend that women with severe preeclampsia should be delivered at 
or after 34 weeks of  gestation54. Therefore most patients with severe preeclampsia are intended to deliver at late 
preterm period; (2) In addition, to compare the pathophysiologic changes in biomaterials of preeclampsia with 
those of control pregnancy, proper comparison should be performed between pregnant women with preeclampsia 
and those who delivered at term without any complications, but this comparison can be biased by the difference 
of gestational age at delivery. To adjust gestational age at delivery, most studies included pregnant women who 
delivered at the similar gestational age (preterm) after spontaneous preterm labor or rupture of membranes. 
However, the result from this comparison can be difficult in interpretation, because the changes in biomaterials 
could be originate from the parturition mechanism in preterm labor/rupture of membranes, as well as from 
the pathophysiologic mechanism of preeclampsia. To overcome this problem, we included as controls not only 
women who delivered preterm after spontaneous parturition but also those who delivered preterm because of 
maternal medical indication in late preterm period.

In conclusion, we demonstrated that a combination of 5 blood metabolites in mid-trimester maternal plasma 
accurately predicted the development of PE. This unique metabolomic panel was further validated by its accurate 
predictability that discriminated the patients delivered in the late preterm period for PE from those delivered 
for other indications.

Methods
Study design. (1) Mid‑trimester cohort. The population for this case–control study consisted of 33 healthy 
pregnant women whose plasma was taken in the mid-trimester period (gestational age [GA] range 16–24 weeks, 
median 17.4 weeks) and who subsequently developed PE [cases]. Control subjects included 66 pregnant women 
with mid-trimester plasma samples who did not develop PE and were matched for maternal age and GA at ma-
ternal plasma sampling (ratio 1:2) [controls]. Patients with major fetal malformations and multifetal pregnancies 
were excluded. The maternal plasma metabolite and PL profiles were compared between cases and controls. PE 
was defined as the development of hypertension with evidences of end-organ involvement such as proteinuria, 
low platelet count, renal or liver involvement, cerebral symptoms, or pulmonary  edema1.

(2) At‑delivery cohort. After characterization of the metabolomic biomarker panel, we evaluated the dis-
criminatory power of this panel of biomarkers to identify women with PE at the time of delivery. The latter 
study population consisted of singleton pregnant women who delivered in the late preterm period (34–0/7 to 
36–6/7 weeks), had maternal plasma collected within 3 days of delivery, and had no evidence of chorioamionitis. 
Study subjects were divided into 2 groups according to the indication for preterm birth (i.e., PE or other causes 
such as spontaneous preterm labor and maternal and/or fetal indication). The plasma metabolomic biomarker 
measurements were compared between subjects who did and did not have PE at delivery.

Metabolomic profiling of maternal plasma. Maternal plasma samples were centrifuged at 2,000 rpm 
for 10 min and the supernatant stored at -70 °C until assayed. Samples were comprehensively analyzed for pri-
mary metabolomic and lipidomic signatures using gas chromatography time-of-flight mass spectrometry (GC-
TOF MS) and liquid chromatography Orbitrap mass spectrometry (LC-Orbitrap MS) [See Appendix S1 for fur-
ther details of  methodology]55–57. In addition, all analytical procedures, including extraction, reconstitution, and 
MS analysis were performed in random order to minimize potential systematic errors. The study was approved 
by the Institutional Review Board of Seoul National University Hospital. All patients provided written informed 
consent for sample collection and the use of biologic materials for research purposes. All methods were per-
formed in accordance with the relevant guidelines and regulations including Declaration of Helsinki.

Measurement of sFlt-1 and PlGF. For comparison, sFlt-1 and PlGF levels were measured in all samples 
using a highly sensitive multiplex array in accordance with the instruction of the manufacturer (Meso Scale 
Discovery (MSD) V-PLEX Angiogenesis Panel 1 Human kit, MSD, USA).
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Statistical analysis. For clinical information, continuous data were analyzed using the Mann–Whitney U 
test and categorical data using the Fisher’s exact test or Chi-square test, as appropriate. Statistical analyses were 
conducted using the IBM SPSS version 20 (IBM Corp., Armonk, NY, USA).

The integrative metabolomic profiles were pre-processed for data normalization using the MSTUS 
 methodology58 implemented in NOREVA (https ://idrb.zju.edu.cn/norev a/)59. MSTUS (MS Total Useful Signal) 
is a method of summing and adjusting the total intensities of identified metabolites across all samples). Student’s 
t-test was performed for univariate statistics using EXCEL (Microsoft Office 2010). One-way ANOVA was con-
ducted with post-hoc testing (Fisher’s LSD) as indicated. For adjusting multiple comparisons, the false discovery 
rate (FDR) was computed (adjusted by Benjamini-Hochberg). Partial least squares-discriminant analysis (PLS-
DA) and permutation test were carried out for multivariate statistics using SIMCA 15 (Umetrics AB, Umea, 
Sweden). Binary logistic regression was performed with forward or enter selection, as appropriate, for predictive 
model construction using IMB SPSS Statistics for Windows, version 25.0 (IBM Corp.) following auto-scaling 
procedure. Receiver operating characteristic (ROC) analysis, tenfold cross validation, permutation test, and 
enrichment analysis were performed using Metaboanalyst 4.0 (https ://www.metab oanal yst.ca/).

Data availability
The datasets analyzed during the current study are not publicly available, but are available from the correspond-
ing author on reasonable request.
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