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integrating metabolomics 
and targeted gene expression 
to uncover potential biomarkers 
of fungal/oomycetes‑associated 
disease susceptibility in grapevine
Marisa Maia1,2, António E. N. Ferreira1, Rui Nascimento2, Filipa Monteiro3,4, 
francisco traquete1, Ana P. Marques1, Jorge Cunha5, José E. Eiras‑Dias5, Carlos Cordeiro1, 
Andreia Figueiredo2,6* & Marta Sousa Silva1,6*

Vitis vinifera, one of the most cultivated fruit crops, is susceptible to several diseases particularly 
caused by fungus and oomycete pathogens. In contrast, other Vitis species (American, Asian) 
display different degrees of tolerance/resistance to these pathogens, being widely used in breeding 
programs to introgress resistance traits in elite V. vinifera cultivars. Secondary metabolites are 
important players in plant defence responses. Therefore, the characterization of the metabolic 
profiles associated with disease resistance and susceptibility traits in grapevine is a promising 
approach to identify trait‑related biomarkers. In this work, the leaf metabolic composition of eleven 
Vitis genotypes was analysed using an untargeted metabolomics approach. A total of 190 putative 
metabolites were found to discriminate resistant/partial resistant from susceptible genotypes. 
The biological relevance of discriminative compounds was assessed by pathway analysis. Several 
compounds were selected as promising biomarkers and the expression of genes coding for enzymes 
associated with their metabolic pathways was analysed. Reference genes for these grapevine 
genotypes were established for normalisation of candidate gene expression. The leucoanthocyanidin 
reductase 2 gene (LAR2) presented a significant increase of expression in susceptible genotypes, in 
accordance with catechin accumulation in this analysis group. Up to our knowledge this is the first 
time that metabolic constitutive biomarkers are proposed, opening new insights into plant selection 
on breeding programs.

Grapevine (Vitis vinifera L.) is one of the most cultivated fruit plants in the world, with an important economic 
impact in wine and table grape industries. Of the 80 known and globally distributed Vitis  species1,2, Vitis vinifera 
L. is the mostly used in viticulture. As a result of its easy cultivation, vineyards longevity and numerous applica-
tions, in 2018, the global surface area for grapevine production was 7.4  Mha1. Grapevine cultivation requires 
preventive applications of agrochemicals to control several diseases, such as downy mildew [Plasmopara viticola 
(Berk. & Curt.) Berl. & de Toni) Beri, et de Toni], powdery mildew [(Erysiphe necator syn. Uncinula necator 
(Schweinf.) Burrill), gray mold (Botrytis cinerea Pers.) and black rot (Guignardia bidwellii (Ellis) Viala & Ravaz), 
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that affect all the green parts of the plant and  grapes3. However, some chemical products are not entirely effi-
cient, with major pathogen outbreaks being  reported4,5. Others are more efficient but have highly economic and 
environmental costs, besides the detrimental effects to human and animal  health6,7. Over the last decade, there 
has been an increasing demand for environmentally friendly agricultural practices. With the general recom-
mendations of the European agricultural policy encouraging the reduction of pesticides towards environmental 
sustainability and consumer health improvement, alternatives are needed. One possible approach is the creation 
of more resistant grapevine varieties through cross-breeding programs between wild Vitis sp. (resistant) and V. 
vinifera (susceptible), combining resistant traits with highly desired and unique grape properties. Several crossing 
lines inbreed with American Vitis species are currently commercialized as partially resistant varieties to fungal 
pathogens, e.g. Regent, Calardis Blanc,  Solaris8,9.

In breeding programs, the selection for pathogen resistance traits is only possible 2 to 3 years after plant 
crossing, after which the more resistant seedlings are  kept10,11. Considering the high number of newly developed 
seedlings, the establishment of new and advanced selection methods that can shorten this selection time and 
lead to a more efficient breeding process is a much-needed requirement. Grapevine genotypes possess distinct 
degrees of resistance to different fungal pathogens (https ://www.vivc.de/)12. Hence, the study of different grape-
vine genotypes metabolomes, without stress, will uncover the innate metabolic differences between them. The 
full comprehension of disease resistance or tolerance mechanisms allied with the discovery of fungal/oomycete 
pathogen resistance-associated biomarkers in grapevine, may allow a quick and accurate identification of the 
seedlings that inherited the resistant trait soon after germination.

Secondary metabolites have been proven to play an important role in grapevine defences against pathogens. 
Several studies have been published in pathogen infection conditions which has allowed the metabolite profiling 
of some grapevine-pathogen interactions through various analytical instruments. Some of these metabolites have 
been highlighted as possible  biomarkers13–20. For instance, the accumulation of inositol and caffeic acid are pos-
sibly related to the innate  resistance13,20 and hexadecanoic and the monohydroxycarboxylic acids were associated 
to grapevine  resistance18. Moreover, stilbenoids were already reported as key defense compounds involved in 
grapevine resistance to Plasmopara viticola, Erysiphe necator and Botrytis cinerea16,21.

Metabolic biomarkers have proven their value to predict phenotypical traits before they are  observed22. In 
this area, metabolomics is a powerful tool due to its ability to simultaneously characterize and quantify multiple 
 metabolites23–25. Due to its extreme resolution and ultra-high mass accuracy, Fourier Transform Ion Cyclotron 
Resonance mass spectrometry (FT-ICR-MS) is particularly powerful for an untargeted metabolome charac-
terization, being successfully used in the study of grapevine chemical  profile14,26–28. Additionally, metabolomics 
can also be used to explore metabolic pathways, uncover key enzymes involved in the biosynthesis/catalysis of 
metabolites and therefore genes associated with a wide range of responses. Metabolomics together with metabolic 
quantitative trait loci (mQTL) mapping, are being used as tools for assisting crops’ improvement, representing 
a breakthrough advance for the selection of offsprings with relevant traits and identification of trait-associated 
metabolic  biomarkers23. This approach has been applied to potato, rice, maize and  tomato29–33.

The present work aimed at identifying susceptibility and resistance/tolerance biomarkers through a combined 
approach based on untargeted metabolite profiling and targeted gene expression analysis. Eleven field grown Vitis 
genotypes (5 Vitis species and 6 Vitis vinifera) with different resistance levels to fungal/oomycete pathogens were 
analysed. After an untargeted metabolomics analysis by FT-ICR-MS, the most relevant metabolites discriminating 
susceptible and resistant/partial resistant genotypes were mapped for pathway analysis, allowing the selection of 
genes coding for pathway key enzymes. A targeted gene expression analysis was performed, preceded by refer-
ence gene establishment for this sample set. One candidate was identified as a possible susceptibility-associated 
biomarker.

Results
Metabolic differentiation of susceptible and resistant/partial resistant Vitis. Eleven Vitis geno-
types with different tolerance to pathogens were analysed. Vitis species V. labrusca, V. rotundifolia, V. riparia, 
and V. candicans present a higher resistance/tolerance to both downy and powdery mildews and gray mold 
(Table 1). An untargeted metabolomics analysis using FT-ICR-MS, by direct infusion and using electrospray 
ionization in positive  (ESI+) and negative  (ESI−) ionization modes was followed. Two unsupervised approaches, 
principal component analysis (PCA) and hierarchical clustering, were applied to the untargeted metabolomics 
data to verify the analytical reproducibility and to infer inter-genotype metabolic profile similarities among the 
various Vitis samples (Fig. 1). Data reproducibility, as seen from the clustering of replicates together, was very 
high, an indicating that metabolome profiling of Vitis leaves appears to be sufficiently sensitive to distinguish the 
different species and cultivars. Also, in both ionization modes, a trend of separation between wild Vitis and V. 
vinifera cultivars can be observed in the PCA score plots (Fig. 1a,b). The dendrograms resulting from hierarchi-
cal clustering confirm this trend, since two major clusters were formed with these two sample groups (Fig. 1c,d). 
The only exception to this overall trend is V. rupestris. It is also apparent that the metabolome profile variation 
among V. vinifera cultivars seems to be larger than variation among wild species’ samples (Fig. 1a,b). The general 
trend of separation suggests that the multivariate metabolic phenotypes might be enough to discriminate and 
predict resistance or susceptibility characteristics. For that purpose, we used our metabolomics data to build 
classifiers for predicting the resistance or susceptibility of Vitis plants from their leaf metabolic profiles. We fitted 
Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models on MS intensity data using as target 
the inclusion on either the resistant/partial resistant group, defined by all the wild species and cultivar ‘Regent’, 
or the susceptible group, defined by all the remaining V. vinifera cultivars. Separation classifiers were built for 
either  ESI+ or  ESI− data. Both classifiers showed very good performance. Score plots indicate that the predictor 
component was able to discriminate between the two groups (Fig. 2a,b) in both classifiers. Estimating model 
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performance with sevenfold stratified cross-validation, the overall accuracy was grater that 0.98 and both  R2
Y 

and  Q2
Y metrics achieve top values with only a few orthogonal components (see Supplementary Figure F1a,b 

online). Furthermore, by assessing the significance of the models by permutation tests, the accuracy of permuted 
target label models, estimated by sevenfold stratified cross-validation has a distribution well below the reference 
accuracy of the non-permuted models which correspond, in both classifiers, to p-values of 0.001 (Fig. 2c,d).

Univariate analysis based on the variable intensity changes between resistant/partial resistant and susceptible 
groups allowed the identification of several spectral features with both significant and large variation between the 
two groups. Even at a significance level of 0.01 for FDR-corrected p-values, we found 2535 features with |log2 FC| 
≥ 1, 1796 in  ESI+ and 739 in ESI. A search of these features in  MassTRIX34 provided a putative identification of 
some of these peaks. A total of 190 unique masses with significant and large variation between our comparison 
groups were putatively annotated (see Supplementary Table S1 online).

To understand the biological relevance of these discriminatory compounds in grapevine metabolism, the 
compounds with KEGG (Kyoto Encyclopaedia of Genes and Genomes) identifiers for database annotation were 
retrieved and mapped into selected pathogen defence related KEGG pathways using the R package Pathview 
(Fig. 3). Pathway analysis of flavonoid biosynthesis and flavone and flavonol biosynthesis, mapped 17 and 10 
metabolites, respectively (Fig. 3). Among the discriminative putatively identified metabolites, we highlight cat-
echin or epicatechin, leucocyanidin, caffeic acid, hexadecanoid acid derivatives and dodecanoic acid as more 
abundant in the susceptible V. vinifera cultivars. Quercetin 3-O-glucoside (isoquercitrin) and dihydroquercetin, 
together with several other flavonol 3-O-glucosides, more abundant in the resistant/partial resistant plants (see 
Supplementary Table S1 online).

Reference gene selection, stability determination and expression analysis. As no reference 
genes were previously described for non-stressed grapevine genotypes, we selected ten candidate reference 
genes (RGs) based on their previous description as good qPCR control genes for Arabidopsis thaliana35 and 
 grapevine36–38. Nine of the selected genes were formerly described as RGs for grapevine: 60S ribosomal protein 
L18 (60S), tetratricopeptide repeat protein 7B (TTC7B)], elongation factor 1-alpha (EF1α), ubiquitin-conju-
gating enzyme (UBQ), SAND family protein (SAND), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
alpha-tubulin 3-chain (α-TUB), beta-tubulin 1-chain (β-TUB) and actin (ACT ). Adaptor protein-2 MU-adaptin 
(AP2M) was previously described for Arabidopsis35 and sequence for its homologue in grapevine was retrieved 
from NCBI (https ://www.ncbi.nlm.nih.gov/) (Table 2).

Table 1.  Wild Vitis species, V. vinifera subsp. sylvestris and grapevine cultivars analysed. Species and cultivar 
names, type of accession, origin and response to fungi pathogens are indicated (information adapted  from47 
and https ://www.vivc.de/). Classification of resistance: 1—very low; 3—low, 5—medium, 7—high, 9—very 
high or total. PR—Partial resistant; R—Resistant; S—Susceptible.

Vitis species

Subspecies 
(subsp.) or 
cultivar (cv.)

VIVC variety 
number Abbreviation

Type of 
accession Origin

Degree of resistance according to OIV descriptor 
452

Overall 
response 
to fungi/
oomycete 
pathogens

Plasmopara 
viticola

Erysiphe 
necator

Botrytis 
cinerea

V. labrusca Isabella 5560 LAB Wild species United States of 
America 7 9 Unknown PR/R

V. rotundifolia
Muscadinia 
Rotundifolia 
Michaux cv. 
Rotundifolia

13586 ROT Wild species United States of 
America 9 9 Unknown PR/R

V. riparia 
Michaux

Riparia Gloire 
de Montpellier 4824 RIP Wild species United States of 

America 9 9 Unknown PR/R

V. candicans 
Engelmann

Vitis Candicans 
Engelmann 13508 CAN Wild species United States of 

America 7 9 Unknown PR/R

V. rupestris 
Scheele Rupestris du lot 10389 RU Wild species United States of 

America 7 7 9 PR/R

V. vinifera

Subsp. sylvestris SYL Wild plant Portugal 3 3 5 PR/R

Subsp. sativa cv. 
Regent 4572 REG

Cultivated 
hybrid (crossing 
V. vinifera cv. 
Diana X cv. 
Chambourcin)

Germany 7 9 Unknown PR/R

Subsp. sativa cv. 
Riesling Weiss 10077 RL Cultivated 

grapevine Germany 3 3 1/3 S

Subsp. sativa cv. 
Pinot Noir 9279 PN Cultivated 

grapevine France 3 3 1/3 S

Subsp. sativa 
cv. Cabernet 
Sauvignon

1929 CS Cultivated 
grapevine France 1/3 1/3 5 S

Subsp. sativa cv. 
Trincadeira 15685 TRI Cultivated 

grapevine Portugal 1/3 1/3 1/3 S

https://www.ncbi.nlm.nih.gov/
https://www.vivc.de/
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Expression stability of the candidate RGs was evaluated by three statistical algorithms, GeNorm, Normfinder 
and Bestkeeper, and a final rank was established with the RefFinder  tool39,40. Ranking order of the most stable 
to the least stable genes is presented in Table 3. In all the Vitis species and V. vinifera cultivars analysed, genes 
encoding for UBQ and SAND were ranked as the most stable genes presenting the lowest M value (M = 0.859), 
followed by GAPDH (M = 0.990) and EF1α (M = 1.027). For all Vitis samples analysed, UBQ was considered as 
the most stable gene with an expression stability value (SV) of 0.552 (Table 3), followed by AP2M (SV = 0.744), 
GAPDH (SV = 0.745) and β-TUB (SV = 0.766).

Figure 1.  Principal component analysis (PCA) and hierarchical clustering analysis (HCA) of untargeted 
metabolomics obtained in positive  (ESI+) and negative  (ESI−) ionization modes. (a,b) PCA score plots. Squares 
represent wild Vitis, while circles represent domesticated V. vinifera; (c,d) HCA dendrograms. Vitis genotypes 
abbreviations are indicated in Table 1. Variance explained by each principal component is indicated in 
parenthesis.
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In this study, BestKeeper analysis considered α-TUB and SAND as the most stable genes for all Vitis samples, 
with standard deviation (SD) values of 0.92 and 1.01, respectively (Table 3). 60S (SD = 1.07) was the third and 
EF1α (SD = 1.09) was the fourth most stable genes.

Considering the 3 algorithms, a final rank was established by  RefFinder32. The results revealed that, in grape-
vine leaves, the four most stable genes for normalization were UBQ, SAND, EF1α and AP2M (Table 3).

Based on the putatively identified metabolites, respective metabolic pathways and the existing knowledge 
regarding markers for pathogen resistance/susceptibility in grapevine, several genes coding for enzymes in the 
biosynthesis or catabolism of the most discriminating metabolites were selected, namely: quercetin 3-O-glucoside 
(isoquercitrin), dihydroquercetin, caffeic acid, leucocyanidin, dodecanoic acid, hexadecanoic acid, catechin, 
epicatechin and myo-inositol.

A total of 7 genes were selected for expression analysis, coding for the following enzymes: caffeic acid O-meth-
yltransferase (COMT), catalyses the conversion of caffeic acid to ferulic acid; leucoanthocyanidin reductase 2 
(LAR2), catalyses the synthesis of catechin from leucocyanidin; anthocyanidin reductase (ANR), responsible for 
the synthesis of epicatechin from cyanidin; fatty acyl-ACP thioesterase B (FatB), responsible for the synthesis 
of hexadecanoic acid from hexadecanoyl-ACP and of dodecanoid acid from dodecanoyl-ACP; myo-inositol 
monophosphatase (IMPL1), catalyses the hydrolysis of myo-inositol phosphate into myo-inositol and phosphate; 
flavonoid 3′,5′-hydroxylase (F3′5′H), involved in several reactions in the flavonoid biosynthesis pathway; and 
UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), catalyses the formation of flavonol 3-O-glucosides, 
using UDP-glucose as sugar donor (Table 4). The quantification cycle (Cq) value of the genes of interest in all Vitis 
genotypes were extracted and normalized by the geometric mean of the quantification cycles of UBQ, SAND and 
EF1α, for data normalization. For each gene, Bartlett’s test was used to access homoscedasticity of our samples 
and the non-parametric Wilcox–Mann–Whitney U test was performed, identifying the discriminating genes 

Figure 2.  Orthogonal partial least squares discriminant analysis (PLS-DA) models for the classification into 
resistant/partial resistant and susceptible groups using of untargeted metabolomics data obtained in positive 
 (ESI+) and negative  (ESI−) ion modes. (a,b) Score plots for the predictive and first orthogonal components. 
Squares represent wild Vitis, while circles represent domesticated V. vinifera. Confidence ellipses are drawn for 
the two classification groups: resistant/partial resistant (blue) and susceptible (red); (c,d) Significance diagnostic 
showing the distribution of predictive accuracy in permutation tests and the p-value of the test for accuracy. 
1000 permutations were randomly sampled. Vertical lines indicate the accuracy of model with labels non-
permuted. Accuracy was estimated by sevenfold stratified cross-validation. Vitis genotypes abbreviations are 
indicated in Table 1.
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between our comparison groups. Only genes considered statistically significant in both tests (p-value < 0.05) 
were considered to be possible and reliable genetic biomarker (see Supplementary Table S2 online). ANR, UFGT, 
F3′5′H and FatB genes were, therefore, excluded (Fig. 4). On the other hand, COMT, LAR2 and IMPL1 are clearly 
significantly different between susceptible and resistant/partial resistant groups, presenting lower Cq values on 
the susceptible groups (higher expression), (see Supplementary Table S2 online). Among these, the gene with 
most significance when its level is compared between groups is LAR2 (Fig. 4, see Supplementary Table S2 online), 

Figure 3.  Flavonoid (a) and Flavone and flavonol (b) biosynthesis pathways from V. vinifera showing the 
discriminatory putative metabolites between resistant/partial resistant and susceptible groups (FDR corrected 
p-value < 0.01). Metabolite’s KEGG identifiers were used in the R package Pathview, coloured in agreement 
with their |log2(FC)| values, between resistant/partial resistant and susceptible plants: more accumulated in the 
resistance/tolerance group are blue, more accumulated in the susceptibility group are red and those unchanged 
are grey, setting the limits between − 5 and 5.
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which encodes for the enzyme leucoanthocyanidin reductase 2, responsible for the synthesis of catechin from 
leucocyanidin and has a higher expression in the group of susceptible plants.

Discussion
Grapevine is affected by diverse pathogens, particularly fungi and oomycetes, which, if not controlled, can affect 
the entire vineyard and cause a drastically reduction of the production, berry quality and yield. Downy and 
powdery mildews, black rot and gray mold gained the European Union’s attention and were recently flagged as 
the grapevine diseases with higher impact in  Europe3. European Union is committed to “increase resilience of 
grape vines to pests and diseases and support the productivity of the sector in sustainable ways”, focusing on the 
breeding of new resistant varieties that maintain the grape qualities for wine  production3. Its success depends 
on the understanding of the innate resistance mechanisms against pathogens and the identification of resist-
ance/susceptibility-related biomarkers towards the development of assays to assist future breeding programs 
and introgression line analysis. The development of new crossing hybrids by the combination of wild American 
and Asian Vitis, that present innate resistance towards different  pathogens41, with V. vinifera (susceptible) offer a 
promising alternative to the use of pesticides and contribute to an environmentally sustainable viticulture. Vitis 
riparia and V. labrusca, analysed in our study, exhibit resistant traits to P. viticola41 (https ://www.vivc.de/) and 
have been effectively used in for resistance introgression. A successful hybrid example is V. vinifera ‘Regent’, with 

Table 2.  Candidate reference genes for qPCR. Genes, gene accession numbers, primer sequences (Fw, 
forward; Rev, reverse), amplicon length (bp, base pairs) and qPCR annealing (Ta) and melting (Tm) 
temperatures are indicated. a Alternative splicing variant.

Gene
(NCBI accession number) Primer sequence Amplicon length (bp) Ta (°C) Tm (°C)

60S
(XM_002270599.3)

Fw: ATC TAC CTC AAG CTC CTA GTC 
Rev: CAA TCT TGT CCT CCT TTC CT 165 60 79.6

TTC7B
(XM_002283371.4)

Fw: GCT CTG TTG TTG AAG ATG GG
Rev: GGA AGC AGT TTG TAG CAT CAG 156 60 79.9

EF1α
(XM_002284888.3)

Fw: GAA CTG GGT GCT TGA TAG GC
Rev: ACC AAA ATA TCC GGA GTA AAAGA 164 60 79.7

UBQ
(XR_002030722.1)

Fw: GCC CTG CAC TTA CCA TCT TTAAG 
Rev: GAG GGT CGT CAG GAT TTG GA 75 60 78.9

SAND
(XM_002285134.3)

Fw: CAA CAT CCT TTA CCC ATT GAC AGA 
Rev: GCA TTT GAT CCA CTT GCA GAT AAG 76 60 79.2

GAPDH
(XM_002263109.3)

Fw: TCA AGG TCA AGG ACT CTA ACACC 
Rev: CCA ACA ACG AAC ATA GGA GCA 226 60 81.3

ACTINa

(XM_019223591.1)
Fw: ATT CCT CAC CAT CAT CAG CA
Rev: GAC CCC CTC CTA CTA AAA CT 89 55 77.5

α-TUB
(XM_002285685.4)

Fw: CAG CCA GAT CTT CAC GAG CTT 
Rev: GTT CTC GCG CAT TGA CCA TA 119 60 78.8

AP2M
(XM_002281261.3)

Fw: CCT CTC TGG AAT GCC TGA TTT 
Rev: CTT TAG CAG GAC GGG ATT TA 89 55 75.0

β-TUB
(XM_002275270.3)

Fw: TGA ACC ACT TGA TCT CTG CGA CTA 
Rev: CAG CTT GCG GAG GTC TGA GT 86 60 82.3

Table 3.  Candidate reference genes ranking for all Vitis samples calculated by GeNorm, NormFinder and 
BestKeeper. Genes are ordered by the final ranking. SV, Stability value; SD, Standard deviation of Cq value; 
r, Pearson coefficient of correlation; *p ≤ 0.01. p-value associated with the Pearson coefficient of correlation; 
Ranking order is indicated in parenthesis.

Reference gene

GeNorm NormFinder BestKeeper

Ranking mean Final rankingM value SV SD r

UBQ 0.859 (1) 0.552 (1) 1.13 (5) 0.90* 2.33 1

SAND 0.859 (1) 0.791 (6) 1.01 (2) 0.81* 3.00 2

EF1α 1.027 (3) 0.767 (5) 1.09 (4) 0.85* 4.33 3

AP2M 1.105 (4) 0.744 (2) 1.20 (6) 0.86* 4.33 3

GADPH 0.990 (2) 0.745 (3) 1.31 (8) 0.90* 4.67 4

α-TUB 1.181 (6) 1.122 (7) 0.92 (1) 0.59* 5.00 5

β-TUB 1.132 (5) 0.766 (4) 1.21 (7) 0.84* 5.67 6

60S 1.245 (7) 1.287 (8) 1.07 (3) 0.63* 6.33 7

ACT 1.439 (8) 2.056 (10) 1.63 (9) 0.69* 9.33 8

TTC7B 1.602 (9) 1.972 (9) 1.98 (10) 0.78* 10.00 9

https://www.vivc.de/
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a broad partial resistance to the most significant pathogens (information from https ://www.vivc.de/). In breeding 
programs, the expression of the resistant trait takes too long to be observable in the progeny. The identification 
of metabolic biomarkers may allow a fast and accurate identification of the seedlings that inherited the resistant 
traits soon after germination.

The comparison of different Vitis metabolomes, without being submitted to any stress, will allow the detection 
of relevant metabolic variations between grapevine genotypes and uncover potentially innate defence compounds 
that could be used as biomarkers in breeding-programs.

For that purpose, we have conducted an untargeted metabolome characterization of eleven Vitis genotypes 
presenting different levels of resistance to downy and powdery mildews and black rot. Vitis vinifera cultivars 
Pinot noir, Riesling, Trincadeira and Cabernet sauvignon are susceptible, whereas the inter-specific hybrid V. 
vinifera Regent (that combines both Vitis vinifera and American Vitis genetic background) and the V. vinifera 
subspecies sylvestris present a higher tolerance towards these pathogens, when compared to the other genotypes.

From our untargeted metabolomics data, two groups, V. vinifera cultivars and wild Vitis, were immediately 
defined and separated based on their metabolic profile. Vitis rupestris appears to be an exception to this overall 
separation trend. However, the metabolic profile of this wild Vitis is closer to the interspecific hybrid ‘Regent’ 
and cultivar ‘Trincadeira’. ‘Regent’ is considered partially resistant to downy and powdery mildews, harbour-
ing one RPV and two REN  loci8 (https ://www.vivc.de/). On ‘Regent’ pedigree, backcrosses were made with V. 
vinifera, thus, it is expected that its metabolic profile clusters together with V. vinifera genotypes. Concerning 
the metabolome variation, it was observed to be larger in V. vinifera cultivars. This difference was somewhat 
expected, considering that domesticated grapevine cultivars present a genetic background tailored according to 

Table 4.  Genes of interest and their encoding enzymes selected for gene expression analysis. EC numbers, 
gene accession numbers, primer sequences (Fw, forward; Rev, reverse), amplicon length, qPCR annealing 
(Ta) and melting (Tm) temperatures and amplification efficiency are indicated. a Alternative splicing variants. 
b Alternative locus variants.

Metabolites Enzyme Abbreviation EC number

Gene
NCBI accession 
number Primer sequence

Amplicon length 
(bp) Ta (°C) Tm (°C)

Amplification 
efficiency

Caffeic acid
Caffeic acid 
3-O-methyltrans-
ferase

COMT EC 2.1.1.68 XM_003634113.2

Fw: GTA TGA 
CCC CAA CAA 
CTA TC

88 60 78.4 1.88 ± 0.02
Rev: GAC CAT 
GGG GAG AAC 
TGA 

Catechin Leucoanthocyani-
din reductase 2 LAR2 EC 1.17.1.3 NM_001281160.1

Fw: TGT AAC 
CGT GGA AGA 
AGA TGA 

92 60 80.6 1.88 ± 0.02
Rev: ATG AAG 
ATG TCG TGA 
GTG AAG 

Epicatechin Anthocyanidin 
reductase ANR EC 1.3.1.77 NM_001280956.1

Fw: ATC AAG 
CCA GCA ATT 
CAA GGA 

93 60 76.2 1.88 ± 0.006
Rev: CAG CTG 
CAG AGG ATG 
TCA AA

Dodecanoic acid/
hexadecanoic acid

Palmitoyl-acyl 
carrier protein 
thioesterase B

FatB EC 
3.1.2.21/3.1.2.14 XM_019223124.1

Fw: TCG CAA 
ACC CTA GAA 
ACC AAT 

112 60 77.5 1.93 ± 0.05
Rev: AAT GAG 
GGA AGG AGG 
AAA ATG 

Myo inositol Myo-inositol 
 monophosphatasea IMPL1 EC 3.1.3.25 XM_002276661.3

Fw: ATC CCA 
AAC GCT ACC 
CAA AAA 

119 60 80.9 1.96 ± 0.02
Rev: TAA CAG 
CTT CCA TCA 
CAA CCT 

Quercetin/dihyd-
roquercetin

Flavonoid 
3′,5′-hydroxylaseb F3′5′H EC 1.14.14.81 XM_003632164.3

Fw: GTG GTG 
CCG GAG ATG 
TTA 

173 56 80.1 1.83 ± 0.05
Rev: TGC GAT 
GGA CGG AAT 
AAA AT

Quercetin-3-O-
glucoside (Iso-
quercitrin)

UDP-
glucose:flavonoid 
3-O-glucosyltrans-
ferase

UFGT EC 2.4.1.91 AF000372.1

Fw: AGG GGA 
TGG TAA TGG 
CTG T

151 60 84.7 1.97 ± 0.01
Rev: ATG GGT 
GGA GAG TGA 
GTT AG

https://www.vivc.de/
https://www.vivc.de/
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breeders most wanted characteristics, as the result of gene transfer during multiple crossings and  selection42,43. 
For the wild species, no agronomic selection events have been pursued and thus they maintain a closer metabolic 
profile background.

Overall, our data predictor component was capable of discriminate between susceptible and resistant/partial 
resistant grapevine groups. The performance of these predictors is very encouraging in the context of sustain-
able agricultural practices. The prediction of resistance or susceptibility from plant leaf extracts using extreme-
resolution metabolic profiling has the potential to analyse and then select crossed plants in still early development 
stages of their development, prior to infection, decreasing preventive pesticide use.

For the discriminant analysis, a resistant/partial resistant and susceptible group were considered, and 190 
metabolites allowed the discrimination between them.

Of those, caffeic acid, catechin, epicatechin, leucocyanidin, quercetin-3-O-glucoside and derivatives, and 
dihydroquercetin, were found to have significant differences between the two groups. Dodecanoic acid and 

Figure 4.  Boxplot of quantification cycles (Cq) values for the different genes of interest in susceptible (S) and 
partial resistant/resistant (PR/R) genotypes. (a) FatB, (b) COMT, (c) ANR, (d) LAR2, (e) UFGT, (f) F3′5′H, (g) 
IMPL1 (gene names are indicated in Table 4). Cq values were normalized by the geometric mean of the Cq of 
UBQ, SAND and EF1α. Data for susceptible plants are represented in red and data for resistant/partial resistant 
are in blue.
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hexadecanoic and myo-inositol derivatives were also found to be discriminative. Some of the identified com-
pounds were already reported as important in grapevine innate  resistance18–20 and others as possible infection-
associated resistance/partial resistance  biomarkers17,21,44–46. In 2008, Figueiredo and co-workers, compared the 
metabolic profiles of a tolerant and a susceptible grapevine  cultivar20. The accumulation of some metabolites, 
such as inositol and caffeic acid, was observed and a possible relation to innate resistance towards downy mildew 
was suggested. Also, the analysis of the leaf surface compounds from different cultivars, displaying different 
degrees of resistance and susceptibility to P. viticola, was reported by Batovska and co-workers18. In this study, 
10 metabolites were highlighted as possible biomarkers for the prediction of downy mildew resistance and sus-
ceptibility, in which hexadecanoic acid was related to resistance in grapevine.

Some compounds were also marked as discriminatory between Vitis genotypes and linked to higher resist-
ance/susceptibility to  pathogens14,15,17. In a time-course infection assay of grapevine leaves with downy mildew, 
different metabolites between inoculated and control samples were  identified17. Within these metabolites we can 
highlight quercetin-3-o-glucoside, myo-inositol and hexadecanoic acid, also detected in our study. Moreover, 
recently, Nascimento and co-workers have identified several metabolic classes, such as flavonoids, associated 
to grapevine defenses against downy  mildew14. Although stilbenoids are well known plant-derived defense 
 compounds16,21, no difference in resistant/partial resistant and susceptible Vitis genotypes was observed at the 
constitutive level, which is not unexpected as stilbenoids mainly occur as phytoalexins, that are produced dynami-
cally in response to biotic or abiotic  stress21,47,48.

Discriminative compounds between resistant/partial resistant and susceptible Vitis genotypes, with KEGG 
ID were mapped into biochemical pathways, revealing an enrichment in the flavonoid biosynthesis pathway, 
already described as involved in pathogen  response49,50. These results are in line with previous studies where 
phenolic compounds were proven to play an important role in biotic and abiotic stress  resistance51–53. Some of 
these discriminative compounds, that are end products of these pathways, were selected and genes coding for 
enzymes involved in their metabolic reactions were chosen, particularly from quercetin derivatives, caffeic acid, 
catechin/epicatechin metabolism, myo-inositol and dodecanoic acid were selected. The expression of these genes 
was analysed to assess their changes in resistant/partial resistant and susceptible plants.

Reference genes for our experimental conditions were defined and candidate gene expression was assessed. 
Three of the selected genes, COMT, LAR2 and IMPL1 allowed the discrimination between the susceptible and 
resistant/partial resistant groups. Albeit all these genes showed expression differences between susceptible and 
resistant/partial resistant Vitis, LAR2 (catechin biosynthesis pathway) seems to present a higher discriminative 
potential. In fact, recent functional genomic studies in grapevine LAR enzymes confirmed that LAR2 is involved 
in the conversion of leucocyanidin into ( +)-catechin and (−)-epicatechin54. Moreover, catechin is a naturally 
occurring flavonol with high antioxidant properties. It has been previously identified as being involved in grape-
vine defence  mechanisms44. Also, catechin together with other phenolic compounds, were shown to inhibit the 
activity of enzymes that are essential for fungal propagation and sporulation of different fungi isolated from 
Petri-disease-infected  grapevines46. On the other hand, catechin can be degraded by different fungi and used 
as carbon source for  growth55–57. Leaves from all susceptible V. vinifera cultivars had higher levels of catechin/
epicatechin and an over-expression of LAR2 gene. We hypothesize that, instead of being part of an effective 
defence mechanism for the plant, pathogens may be using catechin to develop and establish a successful infection.

With this work, we uncovered an important part of the metabolic map of the pathogen-resistance metabo-
lism in grapevine, identifying key metabolic players. By assessing gene expression of key metabolic enzymes, 
we propose that both catechin/epicatechin and LAR2 may be putative biomarkers of susceptibility. Despite the 
fact that further studies have to be conducted with a larger dataset to validate our hypothesis, we consider that 
our results open new insights towards the development of assays for progeny selection in breeding programs.

The study of constitutive expression and accumulation of compounds in grapevine is extremely important 
as it can uncovered differences associated to resistance/susceptibility to different fungal/oomycete pathogens.

Materials and methods
Plant material. Five wild Vitis species, one Vitis vinifera subsp. sylvestris (wild plants that grow into Portu-
guese river basins) and five Vitis vinifera cultivars were investigated (Table 1).

The resistance of Vitis genotypes was accessed through bibliographic searches following the classification of 
Organisation Internationale de la Vigne et du Vin (https ://www.oiv.int) and the phenotype behavior observed in 
field conditions into the Portuguese Ampelographic Vitis Collection (Colecção Ampelográfica Nacional, CAN). 
CAN is property of INIAV-Estação Vitivinícola Nacional (Dois Portos), located at Quinta da Almoinha, 60 km 
north of Lisbon (9º 11′ 19″ W; 39º 02′ 31″ N; 75 m above sea level).

Established since 1988 and replicated to a new place in 2013 and 2014, according to maintenance conditions: 
established in homogeneous modern alluvial soils (lowlands) as well as well drained soil; rootstock of a unique 
variety (Selection Oppenheim 4–SO4) was used for all accessions including other Vitis species and other root-
stocks represented in the field; each accession comes from one unique plant. CAN occupy nearly 2 ha of area and 
the climate of this region is temperate with dry and mild summer, in almost all regions of the northern mountain 
system Montejunto-Estrela and the regions of the west coast of Alentejo and  Algarve58.

For plant material collection, the best possible health status was guaranteed for all accessions was confirmed: 
plants were tested for the principal grapevine fungal/oomycetes diseases as well as grapevine viruses (healthy 
genotypes and synonym accessions were planted in continuous line for didactic proposes); same trailing system 
(bilateral cordon, Royat), canopy maintenance and agricultural management.

Three leaves (third to fifth from the shoot to apex) were harvested in each one of 7 plants of accession (bio-
logical replicate) and immediately frozen in liquid nitrogen and stored at − 80 °C until analysis. All genotypes 
leaves were collected in the same day at the same time. Three biological replicates containing leaves from 2 to 3 

https://www.oiv.int
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different plants were analyzed. In overall, four wild Vitis species, one Vitis vinifera subsp. sylvestris (wild plants 
that grow into Portuguese river basins) and five Vitis vinifera cultivars were used in this experiment (Table 1).

Metabolite extraction and FT‑ICR‑MS analysis. Metabolite extraction was performed as previously 
 described28. Briefly, 0.1 g of plant material was extracted with 1 mL of 40% methanol (LC–MS grade, Merck)/40% 
chloroform (Sigma Aldrich)/20% water (v/v/v). Samples were vortexed, kept in an orbital shaker at room tem-
perature and centrifuged for phase separation. The aqueous/methanol layer was further processed by solid-
phase extraction using Merck LiChrolut RP-18 columns, pre-equilibrated and extracted with methanol. The 
methanol fraction was evaporated under a nitrogen stream and reconstituted in 1 mL of methanol. For FT-ICR-
MS analysis, samples were diluted 1000-fold in methanol and human leucine enkephalin (Sigma Aldrich) was 
added for internal calibration of each mass spectrum ([M+H]+  = 556.276575 Da or [M−H]− = 554.262022 Da). 
For positive ionization mode analysis  (ESI+), formic acid (Sigma Aldrich, MS grade) was added to all samples 
at a final concentration of 0.1% (v/v). Samples were analysed by direct infusion on an Apex Qe 7-T Fourier 
Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS, Brüker Daltonics). Spectra were acquired 
at both positive  (ESI+) and negative  (ESI−) electrospray ionization modes, in the mass range of 100 to 1000 Th, 
with an accumulation of 250 scans for each spectrum.

Data pre‑processing and profiling by multivariate statistical analysis. Data Analysis 5.0 (Brüker 
Daltonics, Bremen, Germany) was used to internally calibrate each mass spectrum using leucine enkephalin 
for single point calibration. Peaks were considered at a minimum signal-to-noise ratio of 4. The data matrix for 
statistical analysis was created by peak alignment at 1 ppm difference tolerance. Only peaks occurring in more 
than two thirds of the replicate samples for each cultivar were selected for further analysis. Missing values were 
imputed by half of the global minimum value of all spectra. Data was normalized by the signal of the standard 
leucine enkephalin in each sample, transformed using the generalized log-transformation and Pareto scaled. The 
transformation with generalized log has been shown to correct for heteroscedasticity and reduce the  skewness59. 
Two unsupervised methods were applied to investigate the metabolic profile similarities between Vitis samples. 
Sample Hierarchical Clustering (agglomerative) was performed, for each ionization mode, using Euclidian dis-
tance as the metric and Ward as the method for cluster aggregation. Principal Component Analysis (PCA) mod-
els for each ionization mode were also built, retaining a minimum number of principal components necessary to 
explain 95% of variance (12 components for  ESI+ PCA and 15 components for  ESI− PCA).

Classifiers for resistant/partial resistant (n = 21) vs. susceptible (n = 12) genotypes were obtained by building 
Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models. Two target groups were defined: 
a “resistant/partial resistant” attributed to all the wild Vitis plus the domesticated V. vinifera ‘Regent’, and the 
“susceptible” group, attributed to all the remaining domesticated V. vinifera cultivars, for model training. Group 
labels were encoded as + 1, − 1, and the signs of the dependent-variable components of the partial least squares 
fitted models were used as decision rules for classification. Model accuracy,  R2 and  Q2 metrics were estimated by 
sevenfold stratified cross-validation. For each model, a permutation test was carried out to assess its significance, 
by sampling 1000 label permutations. All analysis were carried out using the package metabolinks (https ://githu 
b.com/aefer reira /metab olink s), which uses packages  scipy60 and scikit-learn61.

Univariate statistical analysis, metabolite annotation and pathway mapping. The significance 
of variables in data matrices for  ESI+ and  ESI− was assessed by performing two-tail t-tests to compare variables 
in “resistant/partial resistant” (n = 21) and “susceptible” (n = 12) groups. p-values were corrected for multiple 
testing by the Benjamini–Hochberg procedure. An FDR-corrected p-value cut-off of 0.01 was used for further 
consideration of a variable in the analysis. Variables were then sorted according to the fold-change defined as 
the ratio of the averages of “resistant/partial resistant”/“susceptible”. A variation of at least |log2(FC)| ≥ 1 was 
required for a variable to be considered discriminatory.

For metabolite annotation, the m/z values of discriminatory peaks were submitted to MassTRIX 3  server34 
(https ://masst rix.org, accessed in April 2020), allowing for the presence of adducts M +H+, M +K+ and M +Na+ for 
positive scan mode and the adducts M−H+ and M+Cl− for negative mode. A maximum m/z deviation of 2 ppm 
was accepted; “KEGG (Kyoto Encyclopaedia of Genes and Genomes)/HMDB (Human Metabolome Database)/
LipidMaps without isotopes” was selected for database search; Vitis vinifera was selected as the organism. For 
compound taxonomical classification, each KEGG’s metabolite identifier obtained from the MassTRIX search 
was further annotated according to the relevant ontologies of KEGG’s BRITE  hierarchies62, if any existed for the 
identifier. For the “lipids” ontology the LipidMaps lipid classification  system63 was used. Discriminatory com-
pounds were mapped into metabolic pathways using  Pathview64 (https ://pathv iew.uncc.edu), selecting the Vitis 
vinifera Flavonoid biosynthesis (“vvi00941”) and Flavone and Flavonol Biosynthesis (“vvi00944”) pathways. For 
visualization, log2(FC) values were colour coded within the boundaries of − 5 (red, abundant in the “susceptible” 
group) and 5 (blue, abundant in “resistant/partial resistant” group).

Total RNA extraction and cDNA synthesis. Total RNA was extracted from the leaves of the different 
Vitis samples using the Spectrum Plant Total RNA Kit (Sigma-Aldrich, USA), according to the manufacturer’s 
instructions. Residual genomic DNA (gDNA) contamination was removed with On-Column DNase Digestion 
I Set (Sigma-Aldrich, USA), following the manufacturer’s instructions. After extraction, all RNA samples were 
quantified, and the purity determined with the absorbance ratios at 260/280 and 260/230  nm using a Nan-
oDrop-1000 spectrophotometer (Thermo Scientific). RNA integrity was verified by agarose gel electrophoresis. 
To confirm the absence of contaminating gDNA, a qPCR analysis of a target on the crude of total  RNA65,66 was 
performed using EF1α as target. Complementary DNA (cDNA) was synthesized from 2.5 µg of total RNA using 

https://github.com/aeferreira/metabolinks
https://github.com/aeferreira/metabolinks
https://masstrix.org
https://pathview.uncc.edu
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RevertAid H Minus Reverse Transcriptase (Fermentas, Ontario, Canada) anchored with Oligo(dT)23 primer 
(Sigma-Aldrich, USA), as previously  described36. For gene expression analysis, ‘Cabernet sauvignon’ was not 
included in the dataset due to the lack of sufficient plant material from the same collection used for metabo-
lomics studies.

Reference genes selection and expression analysis. Ten candidate genes were selected based on their 
previous description as good qPCR reference genes for Arabidopsis thaliana35 and  grapevine36,37,67 (Table 2). Nine 
of the selected genes were previously described as reference genes for grapevine: 60S ribosomal protein L18 (60S), 
small nuclear ribonucleoprotein SmD3 [currently annotated as Tetratricopeptide repeat protein 7B (TPR7B), elon-
gation factor 1-alpha (EF1α), ubiquitin-conjugating enzyme (UBQ), SAND family protein (SAND), Actin (ACT ), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alpha-tubulin 3-chain (α-TUB) and beta-tubulin 1-chain 
(β-TUB)67–71. The other gene was retrieved from NCBI (https ://www.ncbi.nlm.nih.gov/) as being homologous to 
Arabidopsis adaptor protein-2 MU-adaptin (AP2M).

qPCR analysis was carried out in a StepOne Real-Time PCR system (Applied Biosystems, Sourceforge, USA), 
using Maxima SYBR Green qPCR Master Mix (2×) kit (Fermentas, Ontario, Canada), following supplier’s instruc-
tions. Thermal cycling analysis of all genes was performed under the following conditions: initial denaturation 
step at 95 °C for 10 min; followed by 40 cycles of denaturation at 95 °C for 15 s plus annealing for 30 s (annealing 
temperatures for each primer pair were indicated at Table 4). Each set of reactions included a negative control 
without cDNA template. Non-specific PCR products were analysed by melting curves (see Supplementary Fig-
ure F2 online [a–j]). Three biological replicates and two technical replicates were used for each sample. To assess 
the amplification efficiency of each reference/candidate gene, a pool of all cDNA samples was diluted (1:4) and 
used to generate a five-point standard curve based on a tenfold dilution series.

Determination of reference gene stability. To evaluate reference gene stability, all Vitis genotypes were 
analysed together and the three publicly available software tools GeNorm v. 3.565,  NormFinder72 and the Best-
Keeper  tool73 were used.

GeNorm is based on the pairwise variation of a single reference candidate gene relative to all other genes. 
GeNorm algorithm calculates a gene expression stability measure (M value) for each gene, based on the average 
pairwise expression ratio between a gene and each of the other genes being compared in the analysis. Accord-
ingly, a gene displaying a low M value presents a low variance in its expression. NormFinder is based on a vari-
ance estimation approach, which calculates an expression stability value (SV) for each gene analysed. It enables 
estimation of the overall variation of the reference genes, considering intra and intergroup variations of the 
sample set. According to this algorithm, genes with lowest SV will be top  ranked72. The BestKeeper tool calculates 
standard deviation (SD) based on quantification cycle (Cq) values of all candidate reference  genes73. Moreover, 
BestKeeper compares each reference gene to the BestKeeper Index (BKI) and calculate a Pearson correlation 
coefficient (r). Higher r values suggest more stable expression. Genes with SD less than 1 and with the highest 
coefficient of correlation have the highest stability. A comprehensive ranking, was established by RefFinder, a 
tool that integrates GeNorm, Normfinder, BestKeeper, and the comparative ΔCt method, based on the rankings 
from each program, allows the assignment of an appropriate weight to an individual gene and calculates the 
geometric mean of their weights for the overall final ranking.

A comprehensive ranking of the candidate reference genes was established by calculating the arithmetic mean 
of the ranking in each algorithm used, as reported  previously32. Each gene was ranked from 1 (most stable) to 
11 (least stable). The definition of the optimal number of genes required for normalization was achieved by 
GeNorm pairwise variation  analysis74. Additionally, RefFinder was used as a verification tool of our  results75 
(https ://www.heart cure.com.au/reffi nder/).

Selection and expression analysis of genes of interest. Genes encoding for enzymes involved in 
biosynthetic or catabolic reactions of the discriminatory metabolites were selected based on the fold-change of 
discriminatory compounds and pathway mapping.

A total of 7 genes were selected for expression analysis, coding for the following enzymes: caffeic acid O-meth-
yltransferase (COMT), leucoanthocyanidin reductase 2 (LAR2), anthocyanidin reductase (ANR); fatty acyl-ACP 
thioesterase B (FatB), myo-inositol monophosphatase (IMPL1), flavonoid 3′,5′-hydroxylase (F3′5′H), and UDP-
glucose:flavonoid 3-O-glucosyltransferase (UFGT). The selection of the genes followed the criteria of the genes 
being functionally described as being involved in the biosynthesis/catalysis of the compounds.

The sequences for the genes coding for the enzymes involved in catechin and epicatechin synthesis used in this 
study were previously described in Vitis76,77 . The remaining genes were selected by comparison of Arabidopsis 
thaliana homologue genes in the Vitis vinifera genome coding genes using the Basic Local Alignment Search Tool 
(BLAST, https ://blast .ncbi.nlm.nih.gov/Blast .cgi). When gene families existed for the selected genes, the choice of 
the gene was made based on information on the literature regarding its involvement in plant resistance/defence.

Genes of interest selected for gene expression analysis were presented in Table 4. Non-specific PCR products 
were also analysed by melting curves (see Supplementary Figure F2 online [k-q]). For each gene, both standard 
curve efficiency and SD were calculated by the Hellemans et al.  equations78 (Table 4).

After qPCR analysis, the quantification cycle (Cq) values of the genes of interest in all Vitis samples, were 
extracted and normalized by the geometric mean of the Cqs of UBQ, SAND and EF1α, described in this work 
as the most stable genes for sample normalization. The ability for each possible gene to discriminate between 
resistant/partial resistant and susceptible cultivars was assessed by testing the homocedasticity of groups with 
Bartlett’s test and by assessing significance of the differences between groups with a Wilcox-Mann–Whitney’s U 
test. All p-values were adjusted for false discovery rate using the Benjamini–Hochberg procedure. Results yielding 

https://www.ncbi.nlm.nih.gov/
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an adjusted p-value ≤ 0.05 were considered statistically significant. Bartlett’s and    Wilcoxon–Mann–Whitney 
tests were performed in  R79, using the ‘bartlett.test’, ‘wilcox.test’ and ‘p.adjust’ functions, respectively.

Data availability
The metabolomics data that support the findings of this study are available in figshare data repository with the 
identifier https ://doi.org/10.6084/m9.figsh are.12357 314 (https ://doi.org/10.6084/m9.figsh are.12357 314)80.
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