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Effects of an early life 
diet containing large 
phospholipid‑coated lipid globules 
on hepatic lipid metabolism in mice
Onne A. H. O. Ronda1, Bert J. M. van de Heijning2, Ingrid Martini4, Albert Gerding4, 
Justina C. Wolters1,3, Ydwine T. van der Veen1, Martijn Koehorst1, Angelika Jurdzinski1, 
Rick Havinga1, Eline M. van der Beek1,2, Folkert Kuipers1,4 & Henkjan J. Verkade1*

We recently reported that feeding mice in their early life a diet containing a lipid structure more similar 
to human milk (eIMF, Nuturis) results in lower body weights and fat mass gain upon high fat feeding 
in later life, compared to control (cIMF). To understand the underlying mechanisms, we now explored 
parameters possibly involved in this long‑term effect. Male C57BL/6JOlaHsd mice, fed rodent diets 
containing eIMF or cIMF from postnatal (PN) day 16–42, were sacrificed at PN42. Hepatic proteins 
were measured using targeted proteomics. Lipids were assessed by LC–MS/MS (acylcarnitines) and 
GC‑FID (fatty‑acyl chain profiles). Early life growth and body composition, cytokines, and parameters 
of bile acid metabolism were similar between the groups. Hepatic concentrations of multiple proteins 
involved in β‑oxidation (+ 17%) the TCA cycle (+ 15%) and mitochondrial antioxidative proteins 
(+ 28%) were significantly higher in eIMF versus cIMF‑fed mice (p < 0.05). Hepatic l‑carnitine levels, 
required for fatty acid uptake into the mitochondria, were higher (+ 33%, p < 0.01) in eIMF‑fed mice. 
The present study indicates that eIMF‑fed mice have higher hepatic levels of proteins involved in fatty 
acid metabolism and oxidation. We speculate that eIMF feeding programs the metabolic handling of 
dietary lipids.

Abbreviations

Transcripts and proteins are provided according to the species‑specific nomenclature
(T) (U/C/H) (D) CA  (Tauro) (urso/cheno/hyo) (deoxy-) cholic acid
(T) (α/β/ω)-MCA  (Tauro-) α/β/ω-muricholic acid
36B4  60S acidic ribosomal protein P0
ACAA2  3-Ketoacyl-CoA thiolase, mitochondrial
ACACA   Acetyl-CoA carboxylase 1
ACADS/M/VL  Short/medium/very-long-chain specific acyl-CoA dehydrogenase, mitochondrial
ACO2  Aconitate hydratase, mitochondrial
AMPK  Adenosine monophosphate-activated protein kinase
ATGL  Adipose triglyceride lipase
ATP5B  ATP synthase subunit beta, mitochondrial
BW  Body weight
CD36  Cluster of differentiation 36
CE  Cholesterol ester
cIMF  Control infant milk formula
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COX5A  Cytochrome c oxidase subunit 5A, mitochondrial
CPT1a/2  Carnitine palmitoyltransferase 1A/2, mitochondrial
CS  Citrate synthase, mitochondrial
CXCL-1  Chemokine (C-X-C motif) ligand 1
CYCS  Cytochrome c, somatic
DECR1  2,4-Dienoyl-CoA reductase, mitochondrial
DGAT1/2  Diacylglycerol O-acyltransferase 1/2
DLAT  Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase 

complex, mitochondrial
DLD  Dihydrolipoyl dehydrogenase, mitochondrial
DLST  Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehy-

drogenase complex, mitochondrial
ECHS1  Enoyl-CoA hydratase, mitochondrial
ECI1  Enoyl-CoA delta isomerase 1, mitochondrial
eIMF  Experiment infant milk formula
ELOVL3/5/6  Fatty acid elongase 3/5/6
Epi  Epididymal fat pad
ETFA/B  Electron transfer flavoprotein subunit alpha/beta, mitochondrial
ETFDH  Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial
FABP1  Fatty acid binding protein 1
FADS1/2  Fatty acid desaturase 1/2
FAME  Fatty acid methyl ester
FASN  Fatty acid synthase
FC  Free cholesterol
FH  Fumarate hydratase, mitochondrial
FXR  Farnesoid X receptor
GC-FID  Gas chromatography-flame ionization detector
GPX4  Phospholipid hydroperoxide glutathione peroxidase
HADH  Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial
HADHA/B  Trifunctional enzyme subunit alpha/beta, mitochondrial
HMOX1  Heme oxygenase 1
HSL  Hormone sensitive lipase
IDH2  Isocitrate dehydrogenase [NADP], mitochondrial
IDH3A  Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial
IFNg  Interferon gamma
IL-1/2/5/6/10 b  Interleukin 1/2/5/6/10 (beta)
IMF  Infant milk formula
IQR  Interquartile range
LC–MS/MS  Liquid chromatography–tandem mass spectrometry
MCP-1  Monocyte chemoattractant protein 1
MDH2  Malate dehydrogenase, mitochondrial
MFGM  Milk fat globule membrane
NDUFS1  NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
NEFA  Non-esterified fatty acid
NRF  Nuclear respiratory factor
OGDH  2-Oxoglutarate dehydrogenase, mitochondrial
PDHA1  Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial
Peri  Perirenal fat pad
PGC1α  Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
Phos  Phospholipids
PN  Postnatal day
PPAR-A/G1  Peroxisome proliferator-activated receptor alpha / gamma isoform 1
PRDX6  Peroxiredoxin-6
SDHA  Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial
SDHB  Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial
SLC25A1  Tricarboxylate transport protein, mitochondrial
SLC25A11  Mitochondrial 2-oxoglutarate/malate carrier protein
SLC25A22  Mitochondrial glutamate carrier 1
SLC25A3  Phosphate carrier protein, mitochondrial
SLC25A5  ADP/ATP translocase 2
SOD2  Superoxide dismutase [Mn], mitochondrial
Srebp-1c  Sterol regulatory element-binding protein 1
SUCLA2  Succinate-CoA ligase [ADP-forming] subunit beta, mitochondrial
SUCLG1  Succinate-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial
SUCLG2  Succinate-CoA ligase [GDP-forming] subunit beta, mitochondrial
TC  Total cholesterol
TCA cycle  Tricarboxylic acid cycle (citric acid cycle)
TG  Triglyceride
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TNFα  Tumor necrosis factor alpha
UQCRC2  Cytochrome b-c1 complex subunit 2, mitochondrial

Milk is an emulsion of fat in water. Its fat droplets are encapsulated by the milk fat globule membrane (MFGM). 
The MFGM consists of a unique tri-layer phospholipid membrane and envelopes milk fat  globules1,2. These 
globules have a mode diameter (the particle diameter most abundant by volume) of approx. 3–5 µm2–4. Current 
infant formulae contain plant-based lipids globules, which are primarily emulsified by proteins, typically do not 
contain an  MFGM2,5. The lipid globules in typical infant formulae have a mode diameter of approx. 0.4 µm2,5. The 
physicochemical structure of milk fat globules (the MFGM, i.e. a phospholipid membrane and large diameter), 
modulates gastrointestinal lipolysis, postprandial lipemia and, to some extent, the postabsorptive metabolism 
of absorbed  fats6–8.

Breast milk feeding is epidemiologically associated with a lower incidence of obesity in childhood and adult-
hood, versus infant milk formula (IMF)-feeding9. A distinct compositional and/or physicochemical difference 
between human milk and formulae have been suggested to underlie these long-term differences. One of the 
potential drivers for the difference in obesity incidence is thought to be (metabolic) ‘programming’; a stimulus 
or insult during a sensitive window of development, which has long-term effects on an  organism10,11. When the 
physicochemical structure of human milk lipid droplets is mimicked in a rodent diet mixed with an experimental 
infant milk formula (eIMF) and fed to mice in early life, these mice gain less body weight and fat mass when 
challenged with a Western style diet later in life compared to a rodent diet mixed with control IMF (cIMF)12–14. 
The eIMF is a concept infant milk formula with large, phospholipid coated lipid droplets (mode diameter 3–5 μm; 
Nuturis)2.

The physicochemical structure of eIMF (large lipid droplets, MFGM-coated) may be responsible for the 
observed effects on later-life body weight and fat mass gain, for these effects are not found using an IMF con-
taining small MFGM-coated lipid  droplets5 and neither upon adding MFGM as an ingredient (in free form)15. 
The underlying mechanism of the long-term (programming) effect of eIMF on body weight and fat mass gain 
has not yet been elucidated. Rapid weight gain in human infancy increases the later-life risk of obesity, type 
2 diabetes, the metabolic syndrome and cardiovascular  disease16,17. A later-life environment which includes 
overnutrition and physical inactivity (an obesogenic environment) amplifies the aforementioned risk  factors17. 
The “Thrifty Phenotype” hypothesis proposes that poor nutrition during early life programs the tissues to more 
readily store energy whenever  available17. Adipose tissue is largely responsible for storing that surplus energy, 
and hence forms a buffer against variations in (lower) dietary intake and (higher) expenditure of  energy18,19. 
Beyond its function as an energy storage depot, adipose tissue is recognized as an endocrine  entity17–20. It 
plays important roles in the regulation of food intake, energy expenditure and immune  function18. Adipose 
tissue mediates these effects through, among others, the secretion of (peptide) hormones such as leptin and 
 adiponectin17,19,20. Leptin plays an important neuroendocrine role in metabolic flexibility, defined as the abil-
ity to efficiently adapt the metabolism by substrate sensing, trafficking, storage, and utilization, dependent on 
availability and  requirement21. Metabolic flexibility is not a binary phenomenon, but involves tightly regulated 
adjustments mediated by a large array of  messengers21. Many of these messengers, including insulin, gluca-
gon, and bile acids, show a postprandial response. The postprandial increase in plasma bile acids is known to 
increase insulin sensitivity and energy  expenditure21,22. The bile acid-activated nuclear receptor FXR (farnesoid 
X receptor, NR1H4) is expressed in adipose tissue where it is a determinant of adipose tissue  architecture22. FXR 
contributes to whole-body lipid  homeostasis22. Of interest, in formula-fed piglets, hepatic bile acid synthesis is 
higher than in breastfed  piglets23. It is suggested that low dietary cholesterol intake (typical in formula feeding 
versus breastmilk), or cholesterol bioavailability, stimulates cholesterol synthesis, cholesterol conversion to bile 
acids, and biliary bile acid  secretion23. Previously, our group established that the murine intestine can function 
as an environmental sensor for cholesterol and is able to retain an active metabolic memory for early postnatal 
cholesterol conditions through epigenetic silencing of the main cholesterol transporter,  NPC1L124. It is not 
yet known which mechanism underlies these  observations24. Low cholesterol uptake in early life may not only 
program for altered cholesterol metabolism in later life, but also for altered bile acid metabolism. It remains to 
be further evaluated whether the bile acid pathways are affected long term through programming mechanisms 
by postnatal feeding of structured lipids (i.e. eIMF versus cIMF).

Metabolic flexibility is, to some extent, limited by the maximum rate of substrate utilization (the capacity). The 
liver, adipose tissue, heart and skeletal muscles govern systemic metabolic  flexibility21. Adipose tissue and skeletal 
muscle tissue likely play the biggest  role25. The liver is a central organ in lipogenesis, ketogenesis, gluconeogenesis 
and glycogenolysis among other metabolic homeostasis  functions21. Its central role in these processes, and its 
relatively high metabolic fluxes and resting metabolic rate in  men26,27 and  mice27, make it an interesting organ 
to study in terms of metabolic flexibility and rate of  oxidation21,28. Mitochondria play a crucial role in deter-
mining the maximal substrate utilization rate and therefore determine, to some extent, metabolic  flexibility21. 
Herein, the exercise-activated transcriptional co-activator PGC1α (PPAR gamma coactivator 1-alpha) responds, 
together with the appropriate transcription factors, such as PPARG and its RXR heterodimer, to increased AMP/
ATP ratios via  AMPK29. PGC1α is involved in the regulation of expression of genes involved in mitochondrial 
energy homeostasis and metabolic  adaptations28, including nuclear respiratory factors (NRFs) and Peroxisome 
proliferator-activated receptors (PPARs). NRFs and PPARs regulate the expression of nuclear genes involved in 
oxidative phosphorylation, substrate transportation and fatty acid  oxidation21,30.

We aim to get a better understanding of the underlying mechanisms of eIMF-induced early life programming 
with regards to its long-term effects on body weight and fat mass gain. We determined the possible involvement of 
a set of relevant metabolic parameters in the long-term effect of eIMF on body weight and fat mass gain. We com-
pared eIMF and cIMF-fed mice with respect to early life growth rate and body composition, plasma adipokines 
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and cytokines and parameters of bile acid metabolism. To assess lipid metabolism, we assessed (adipose) tissue 
weights, hepatic markers of mitochondrial substrate utilization, plasma lipid profiles, fatty acyl chain profiles 
and relevant gene expression patterns.

Results
Early life growth, plasma lipids and adipokines. Body weight (Fig.  1A), fat mass and lean mass 
(Fig. 1B) gain, and tissue weights (Fig. 1D) were similar between groups. At weaning (PN21), after 5 days of IMF 
feeding, unfasted plasma triglycerides, cholesterol and NEFA were subtly lower, whereas phospholipids were 
higher in eIMF- versus cIMF-fed mice (Fig. 1C). At PN42, after a 4 h fast, plasma lipids were similar between 
groups, though adipokines leptin and adiponectin were lower in eIMF-fed mice (Fig. 1E). The calculated average 
(SD) leptin/adiponectin ratio was 0.24 (0.13) versus 0.30 (0.17) for eIMF and cIMF, respectively (NS). Other adi-
pokines and cytokines (resistin, MCP-1, TNFα, IL-6, Fig. 1E,F), glucostatic hormones (Fig. 1G) and cytokines 
(Fig. 1H) were similar between groups. The plasma bile acid profiles were similar between IMF groups at PN21 
(data not shown) and at PN42 (Fig. 1I), suggesting similar luminal bile acid composition in terms of hydropho-
bicity.

Figure 1.  Body weight, fat mass and lean mass gain during eIMF or cIMF feeding. Plasma lipids, adipokines, 
cytokines and bile acids at PN42. Body weight (A), fat and lean mass (B) are expressed in absolute weights. 
Plasma lipids at PN21 (weaning) and at PN42 (C). All other parameters were measured at PN42. Liver, 
epididymal (epi) and perirenal (peri) fat pads weights obtained at dissection at PN42 are expressed absolutely 
(D). Plasma adipokines (E,F), glucostatic hormones (G) and cytokines (H, all 4 h fasting at PN42) are expressed 
as absolute concentration. Plasma bile acid species are expressed as a percentage (I, PN42). TG triglycerides, TC 
total cholesterol, FC free cholesterol, CE cholesterol ester, NEFA non-esterified fatty acids, Phos phospholipids, 
MCP-1 monocyte chemoattractant protein-1, TNFα tumor necrosis factor alpha, IL-1b/2/5/6/10 interleukin 
1b/2/5/6/10, IFNg interferon gamma, CXCL-1 CXC chemokine ligand 1, (T-) (L) CA (tauro-) (litho) cholic acid, 
(T/G-) (U/C/H) DCA (tauro-) (urso/cheno/hyo) deoxycholic acid, (T)A/B-MCA (tauro-) α/β-muricholic acid. 
(A–I) n = 12–16; (A,B) Median ± interquartile range. (C–I) Tukey boxplots and scatter plots. Exact two-sided 
Mann–Whitney U test **p < 0.01, *p < 0.05.
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Markers of fatty acid oxidation. Using mass spectrometry technology, we quantified hepatic concentra-
tions of mitochondrial proteins involved in β-oxidation (Fig. 2A), the TCA cycle (Fig. 2B), electron transport 
(Fig. 3A), antioxidative proteins (Fig. 3B), and substrate transportation (Fig. 3C). Fatty acids, once transported 
into the mitochondrion’s matrix via the carnitine shuttle, are successively chain-shortened via the β-oxidation 
cycle (Fig. 2A,C). We noted higher protein concentrations of ACADVL, DECR1, HADHB, and ETFB in eIMF-
fed mice, suggesting a higher β-oxidation capacity. ACADM and HADHA were non-significantly higher in 
eIMF-fed mice. Each β-oxidation cycle results in an acetyl-CoA and a 2C-shortened acyl-CoA. The acetyl-CoA 
can enter the TCA cycle. During the β-oxidation cycle, several electron carriers are reduced (that is, they accept 
electrons), which are oxidized by the electron transport chain. The tricarboxylic acid (TCA) cycle (Fig. 2B,D) 
oxidizes acetyl-CoA derived from a variety of sources, including glycolysis and the aforementioned β-oxidation. 
Protein concentrations of DLD, OGDH, DLST, SUCLA2, SUCLG1 and SDHB were higher in eIMF-fed mice, 
suggesting a higher TCA cycle capacity. Each TCA cycle reduces several electron carriers, which are used by the 
electron transport chain.

Markers of oxidative phosphorylation. Oxidative phosphorylation (Fig. 3A,D) encompasses the last 
step in substrate oxidation towards ATP production. Herein, energy from the chemical bonds in fatty acids and 
carbohydrates, carried by electron carrier molecules, is used to create a proton gradient across the inner mito-
chondrial membrane. Protons are obtained from water molecules, whereby oxygen radicals are generated. The 
free radicals are oxidized back to water by various peroxidase and dismutase enzymes. The proton gradient is 
finally used to synthesize ATP from ADP and inorganic phosphate. We noted a higher protein concentrations 
of cytochrome c (CYCS), though a lower concentration of COX5A in eIMF-fed mice (Fig. 3A). Antioxidant 
enzymes SOD2 and GPX4 were higher in eIMF-fed mice (Fig. 3B). Hepatic mitochondrial substrate carriers 
(Fig. 3C) SLC25A1, A3, A5, A11 and A22 had similar protein levels between groups.

Hepatic l‑carnitine and acylcarnitine species. Higher tissue levels of l-carnitine are expected upon 
higher β-oxidation rate, to allow for fatty acid transportation across the mitochondrial membrane. Therefore, 
we measured hepatic free and bound carnitine species (Table 1). The cIMF and eIMF diets contained similar 
l-carnitine levels (32 ng/g and 37 ng/g respectively, both within the EU legal margins for infant formulae). Yet, 
hepatic free l-carnitine levels were significantly higher (+ 33%, p < 0.01) in eIMF-fed mice. Bound acylcarnitine 
species (C2–C18) were comparable between groups. Of note, the sum of hydroxybutyrylcarnitine and malonyl-
carnitine, which are analytically indistinguishable, was higher (+ 27%, p < 0.05). Mainly as a result of higher free 
l-carnitine, the free to bound carnitine ratio was higher (+ 56%, p < 0.01) in eIMF-fed mice.

Figure 2.  Hepatic levels of proteins involved in β-oxidation and the tricarboxylic acid (TCA) cycle at PN42. 
Mitochondrial proteins involved in fatty acid β-oxidation (A), and the TCA cycle (B), were quantified in whole 
liver homogenates by targeted  proteomics50 using isotopically (13C-) labeled standards derived from synthetic 
peptide concatemers (QconCAT) using mass spectrometry technology. Schematic representation of β-oxidation 
(C), and the TCA cycle (D) with the quantified targets placed at their respective position for the purpose of 
clarification. All values are expressed as nanomole per gram total protein. (A,B) n = 8; Tukey boxplots and 
scatter plots. Exact two-sided Mann–Whitney U test **p < 0.01, *p < 0.05, #p < 0.1.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:16128  | https://doi.org/10.1038/s41598-020-72777-y

www.nature.com/scientificreports/

Hepatic mRNA expression markers of lipid metabolism. To further characterize the short-term (i.e. 
26 days) effect of eIMF-feeding on lipid synthesis (Fig. 4A), fatty acid species conversion (Fig. 4B), lipid metabo-
lism (Fig. 4C) and mitochondrial targets (Fig. 4D), we performed qPCR analyses and determined the hepatic 
fatty acyl-chain profile (Fig. 4E). Hepatic expression of genes related to lipid synthesis (Fig. 4A; Acaca, Fasn, 
Srebp-1c, Dgat1, Dgat2) was similar between groups. Expression of fatty acid elongation genes (Fig. 4B) Elovl3 
(+ 44%) and Elovl5 (+ 53%) was higher in eIMF-fed mice. Expression of Elovl6, and genes involved in fatty acid 
desaturation (Fads1 and Fads2), were similar between groups. Expression of the fatty acid transporter Cd36 was 
non-significantly higher (Fig. 4C, + 31%, p = 0.06), and the liver-type fatty acid binding protein Fabp1 was higher 
(+ 20%). Ppar-a was similar between groups. Expression of Pparg (+ 45%) was higher in eIMF. Expression of the 
triacylglycerol lipase Atgl and the diacylglycerol lipase Hsl were similar between groups. Mitochondrial biogen-
esis is regulated by Pgc1a (Fig. 4D), which had similar expression levels between groups. In addition, its down-
stream target, Hmox1 and Fasn, were similar. Expression levels of citrate synthase (Cs) and Sod2 were similar 
between groups. This suggests that under these conditions the effect on SOD2 protein levels is regulated beyond 
transcription. Cpt1a expression was non-significantly higher (+ 21%, p = 0.08) in eIMF-fed mice. Mice fed eIMF 
had a subtly different hepatic fatty acyl-chain profile (Fig.  4E), whereas the diets had a similar composition 
(Table 2). Of note, the hepatic presence of the dominant dietary ω-3 and ω-6 moiety (18:3ω3 and 18:2ω6) was 
lower (− 36% and − 22% respectively, p < 0.001) in eIMF-fed mice. Derivative ω-3 fatty acids (20:5ω3, 22:5ω3 and 
22:6ω3) were lower in eIMF-fed mice, whereas derivative ω-6 fatty acids were similar. The sum of the assessed 
fatty moieties was similar between groups.

Discussion
In the present study, we show that growth rates and body composition were similar during early life eIMF versus 
cIMF feeding. At PN42, corresponding with 26 days of either eIMF or cIMF feeding, plasma cytokines and bile 
acid metabolism were similar between groups. These data render it unlikely that the long-term effects of eIMF 
on body weight and fat mass gain following a Western-style  diet5,14 are mechanistically related to these param-
eters. At the end of the IMF feeding period, prior to a (high fat) dietary challenge, we do see significantly higher 
levels of hepatic proteins involved in fatty acid oxidation and the TCA cycle. Our data suggest that the hepatic 

Figure 3.  Hepatic levels of proteins involved in oxidative phosphorylation, antioxidation and substrate 
transport at PN42. Mitochondrial proteins involved in oxidative phosphorylation (A), antioxidation (B), and 
substrate transport (C) were quantified in whole liver homogenates by targeted  proteomics50 using isotopically 
(13C-) labeled standards derived from synthetic peptide concatemers (QconCAT) using mass spectrometry 
technology. Schematic representation of oxidative phosphorylation and mitochondrial antioxidation with 
the quantified targets placed at their respective positions (D) for the purpose of clarification. All values are 
expressed as nanomole per g total protein. (A–C) n = 8; Tukey boxplots and scatter plots. Exact two-sided 
Mann–Whitney U test ***p < 0.001, **p < 0.01, *p < 0.05.
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activity of the TCA cycle, i.e. the average rate at which lipids and/or carbohydrates are being oxidized, is higher 
after early life eIMF feeding in mice.

Our data show higher levels of a range of hepatic proteins (and enzymes) involved in β-oxidation, TCA cycle, 
antioxidative enzymes, together with higher carnitine levels, and a higher hepatic expression of Fabp1. These 
observations led us to speculate that hepatic β-oxidation rate (or at least, its capacity) is higher in eIMF-fed 
mice (Figs. 2,3). The higher hepatic protein levels of the mitochondrial antioxidants SOD2 and GPX4 possibly 
indicate a higher net capacity to remove reactive oxygen species. The antioxidant protein superoxide dismutase 
1 (SOD1) and cytosolic catalase T (CTT1) also play major roles in the removal of superoxide anion radicals 
and  H2O2 in the  liver31,32. As electron chain complexes I and III produce oxygen radicals (i.e. reactive oxygen 
species) upon proton pumping, we speculate that the higher SOD2 and GPX4 levels are the result of a higher 
ATP synthesis  rate33–36. Hepatic protein levels of citrate synthase (CS), of which the activity is considered the 
rate-limiting step in the TCA  cycle37, were similar between our groups (Fig. 2B). Yet, CS activity can vary with 
similar CS protein levels, such as when comparing a resting state to an active  state37. The mitochondrial protein 
levels and the concomitantly higher l-carnitine levels are suggestive, but not conclusive, of an average inter-day 
higher rate of oxidation.

The TCA cycle can dissipate acetyl-CoA derived from the catabolism of lipids, carbohydrates, certain amino 
acids and minor miscellaneous sources (e.g. ethanol, ketone bodies). Higher protein levels of TCA cycle enzymes 
may correspond with a higher TCA cycle flux. The concomitant higher levels of proteins involved in β-oxidation38 
and the higher hepatic carnitine concentration are suggestive of higher β-oxidation  activity39,40. An increased flux 
through the β-oxidation cycle, also yielding more acetyl-CoA, would then require a higher flux through the TCA 
cycle. Carnitine is required for FA transportation into the mitochondrial matrix, and thus for an efficient fatty 

Table 1.  Hepatic l-carnitine and acylcarnitine species at PN42. Liver acylcarnitine species (in nmol/g) 
represent median and interquartile range (IQR). Trace: Near or below lower limit of quantification. A ‘+’ 
symbol indicates the sum of 2 analytically indistinguishable compounds. Exact two-sided Mann–Whitney U 
test. n.s. not significant.

Liver (nmol/g)

P‑value

cIMF eIMF

Median IQR Median IQR

Sum 184 35 214 51 < 0.05

Sum C14–C18 0.40 2 0.27 1 n.s.

Free/bound ratio 3.4 2 5.2 3 < 0.01

Common name Abbreviation

Liver (nmol/g)

P‑value

cIMF eIMF

Median IQR Median IQR

l-Carnitine C0 134 30 172 53 < 0.01

Acetylcarnitine C2 9.9 16 6.4 7 n.s.

Propionylcarnitine C3 0.77 0.8 0.90 0.6 n.s.

Butyrylcarnitine C4 0.20 0.5 0.13 0.3 n.s.

Tiglylcarnitine C5:1 Trace –

Isovaleryl carnitine C5 Trace –

Hexanoylcarnitine C6 Trace –

Octanoylcarnitine C8 Trace –

Decenoylcarnitine C10:1 Trace –

Decanoylcarnitine C10 Trace –

Dodecenoylcarnitine C12:1 0.33 0.1 0.27 0.08 n.s.

Dodecanoylcarnitine C12 Trace –

Tetradecenoylcarnitine C14:1 Trace –

Tetradecanoylcarnitine C14 Trace –

Hexadecenoylcarnitine C16:1 Trace –

Hexadecanoylcarnitine C16 Trace –

Octadecadienoylcarnitine C18:2 Trace –

Octadecenoylcarnitine C18:1 0.10 1.0 0.07 0.7 n.s.

Octadecanoylcarnitine C18 Trace –

Butyrylcarnitine + Malonylcarnitine C4OH + C3DC 3.1 0.7 4.1 1.6 < 0.05

3-OH-isovalerylcarnitine + Methylmalonylcarnitine C5OH + C4DC 0.60 0.2 0.70 0.2 n.s.

Glutarylcarnitine C5DC 11 12 10 7 n.s.

3-Methylglutarylcarnitine C6DC 0.87 1.5 0.73 0.3 n.s.

3-OH-Dodecanoylcarnitine C12OH 6.9 2.9 6.0 2 n.s.
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acid oxidation (Table 1). Hepatic carnitine can be obtained from the diet, can be locally biosynthesized, or can 
originate from tissue redistribution. Carnitine biosynthesis is higher in conditions in which rates of β-oxidation 
are chronically  elevated39,40. Negligible accumulation of (long-chain) acylcarnitine species, seen in the livers of 
both cIMF and eIMF-fed mice, implies that β-oxidation does not outpace the TCA cycle in this  tissue29,41. This 
implication is backed up by the simultaneously higher levels of proteins involved in β-oxidation and proteins 
involved in the TCA cycle, and the higher fractional and absolute levels of l-carnitine. These observations suggest 
a more active fat metabolism and oxidation, but they are not conclusive. In vivo measurements of mitochondrial 
substrate utilization, using (for instance) isotopically-labelled lipid tracers, would be helpful to quantitate rates 
of oxidation. This type of experiments was beyond the scope of the present study, but, to our opinion, would be 
worthwhile as subsequent next step. Recently, we found that early life eIMF feeding (versus cIMF) programs later 
life postabsorptive lipid trafficking in high-fat diet but not in low-fat diet fed  mice42. It is not yet known whether 
the effects on mitochondrial protein levels (this study and Kodde et al.43) and the effects on postabsorptive lipid 
trafficking are mechanistically related.

The observations on lower leptin and adiponectin levels in mice fed eIMF (Fig. 1E) may offer insights into 
the mechanism behind the differences found in body weight and composition in later  life11,20. Leptin is involved 
in the regulation of food intake and is primarily synthesized and secreted by adipose tissue, in proportion to 
the amount of body  fat19. Adiponectin is a classic anti-inflammatory agent and is known to enhance fatty acid 
 oxidation19. Plasma adiponectin is lower in obese  subjects19, so is thought to negatively correlate with the amount 
of body  fat44. We are unsure how to interpret our data, which discrepantly show lower plasma leptin and lower 
adiponectin levels, and a similar leptin-to-adiponectin ratio (Fig. 1E). In human subjects, plasma adiponectin 
levels can be decreased by unprocessed diets versus ultra-processed  diets45. Possibly, ultra-processed diets are 
more similar to cIMF than to eIMF, with regards to the physicochemical structure . After all, the eIMF, compared 
to cIMF, more closely resembled breastmilk with regards to physicochemical  structure2. It is not well under-
stood how plasma adiponectin levels are regulated (if at all) by food intake, composition or physicochemical 
structure. Though, our data do suggest that plasma adiponectin levels are also regulated by means other than 
by the amount of body  fat19,44.

Previously, it was noted that, upon a Western style diet challenge, gene and protein expression of mito-
chondrial oxidative capacity markers were higher in skeletal muscle and adipose tissue in eIMF compared to 
cIMF-primed  mice43. It is not yet known whether the observed effects on hepatic β-oxidation proteins persist 
into adulthood. We speculate that this early life phenomenon may be a potential trigger for, or consequence of, 
metabolic programming, and is mechanistically involved in the observed long-term effect on body weight and 
fat mass gain.

Figure 4.  Hepatic mRNA gene expression of lipid metabolism genes at PN42. Gene expression patterns, 
normalized to 36b4 and shown as fold-change versus cIMF, for lipid synthesis (A), fatty acid conversion 
enzymes (B), lipid metabolism (C) and mitochondria (D). The hepatic fatty acyl chain profile (E) is shown as 
fold-change versus cIMF. See Table 2 for fatty acyl-chain abbreviations. Saturated Σ saturated moieties, MUFA 
Σ mono-unsaturated moieties, PUFA Σ poly-unsaturated moieties, total Σ all assessed fatty moieties. (A–E) 
n = 14–16; Tukey boxplots and scatter plots. Exact two-sided Mann–Whitney U test ***p < 0.001, **p < 0.01, 
*p < 0.05, #p < 0.1.
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Methods
Animals and study design. Experimental procedures were approved by an external independent animal 
experiment committee (CCD, Central Animal Experiments Committee, The Netherlands), and after positive 
advice by the Committee for Animal Experimentation of the University of Groningen. Subsequently, the study 
design was approved by the local Animal Welfare Body Procedures complied with the principles of good labora-
tory animal care following the European Directive 2010/63/EU for the use of animals for scientific purposes. All 
animals were kept in a temperature-controlled room (21 ± 1 °C, 55 ± 10% humidity, lights on 8 AM–8 PM) in 
type 1L (360 cm2) polysulfone cages bearing stainless-steel wire covers (UNO BV, the Netherlands), with wood 
shaving bedding, Enviro-dri (TecniLab, The Netherlands) and cardboard rolls. All mice were handled by the 
same researcher (OR). Virgin C57BL/6JOlaHsd breeders (11M, 22F) 12 weeks of age (Envigo, The Netherlands) 
were acclimatized for 2 weeks. They were time-mated in 2F + 1M couples.  See12 for the paradigm used. Males 
were removed after 2 days. Pregnancy was confirmed by a > 2 g increase in body weight after 1 week. Pregnancy 
occurred in 15 females. Nonpregnant females were mated again for a maximum of 4 times. Delivery day was 
recorded as postnatal day (PN) 0. Pups were randomized between dams, and litters were culled to 4M + 2F at 
PN2, weaned at PN21, and diets were provided as daily freshly prepared dough balls (40% water) from PN16 to 
 PN4212,13. Care was taken to minimize handling and stress prior to weaning. No measurements were made prior 
to weaning. It was reasoned that handling prior to weaning may have disturbed the IMF’s metabolic program-
ming potential and/or the stress of handling may have programmed the pups in itself. It was assumed that any 
differences measured at PN21 were due to the IMF. This study was not performed blinded as the programming 
diets were visually distinct. Breeders and female offspring were terminated  (CO2) at weaning, in compliance with 
the AVMA Guidelines for the Euthanasia of Animals.

Programming diets. Two IMF powders (Nutricia Cuijk B.V., Cuijk, the Netherlands) were used. The IMF 
powders had a similar macro- and micronutrient content (Table 3), as provided by the supplier. The lipid moie-
ties of the two IMF powders both comprised about 50% vegetable oil and 50% milkfat and had a similar fatty 
acid profile (Table 2), as assessed internally with methodology shown below. The cIMF comprised fat globules 
with a volume moment mean (De Brouckere Mean Diameter; D[4,3]) of 0.8 µm and a mode diameter 0.5 µm. 

Table 2.  Fatty acid composition of the diets. Fatty acid composition (FA weight%) of the diets (given during 
postnatal day 16–42), as measured by fatty acyl chain profiling.

Common name Abbreviation Control IMF Experimental IMF

Σ Saturated moieties 44 42

Myristic acid 14:0 8.9 7.1

Palmitic acid 16:0 26 25

Stearic acid 18:0 7.8 8.9

Arachidic acid 20:0 0.28 0.32

Behenic acid 22:0 0.27 0.39

Lignoceric acid 24:0 0.17 0.26

Cerotic acid 26:0 0.032 0.039

Σ Monounsaturated moieties 36 39

Palmitoleic acid 16:1ω7 1.2 1.1

Vaccenic acid 18:1ω7 1.9 1.9

Oleic acid 18:1ω9 33 35

Gondoic acid 20:1ω9 0.38 0.42

Erucic acid 22:1ω9 0.080 0.13

Nervonic acid 24:1ω9 0.053 0.074

Σ Polyunsaturated moieties 20 19

Σ ω-3 species 3.4 3.4

α-Linolenic acid 18:3ω3 2.8 2.8

Eicosapentaenoic acid 20:5ω3 0.12 0.12

Docosapentaenoic acid 22:5ω3 0.090 0.099

Docosahexaenoic acid 22:6ω3 0.38 0.38

Σ ω-6 species 16 16

Linoleic acid 18:2ω6 16 15

γ-linolenic acid 18:3ω6 0.050 -

Eicosadienoic acid 20:2ω6 0.046 -

Dihomo-γ-linolenic acid 20:3ω6 0.091 0.12

Arachidonic acid 20:4ω6 0.44 0.43

Σ ω-6/Σ ω-3 ratio 4.8 4.7

Mead acid 20:3ω9 0.38 0.42
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The eIMF comprised phospholipid-coated (Lipamin M 20, Lecico, France) lipid globules with a D[4,3]) of 7 µm, 
and a mode diameter 4.2 µm, explained in more detail  elsewhere2. The eIMF (Nuturis) is defined as a concept 
infant milk formula with large, phospholipid coated lipid droplets with mode diameter 3–5 μm2. IMF powders 
(283 g/kg feed) were supplemented with protein and carbohydrate (Ssniff Spezialdiäten GmbH, Soest, Germany) 
to obtain AIN-93G-compliant diets, with a fat moiety (~ 7 w%) derived entirely from  IMF46.

Body composition. Lean and fat mass was quantified by time-domain nuclear magnetic resonance (LF90II, 
Bruker Optics, Billerica, MA, USA), not requiring fasting or anesthesia as described  elsewhere14. Measurements 
were done in the same animals at PN28, PN35 and PN41.

Termination. Mice were anaesthetized (isoflurane/O2) after a 4-h fasting period (during light phase; 
9 AM–1 PM) and sacrificed by heart puncture; a terminal blood sample was drawn.

Assays. Plasma was analyzed using the V-PLEX Proinflammatory Panel 1 (mouse) kit (K15048D), Mouse 
Adiponectin Kit (K152BXC), Mouse Leptin Kit (K152BYC), Mouse MCP-1 Ultra-Sensitive Kit (K152AYC), 
Mouse/Rat Total Active GLP-1, Insulin, Glucagon Kit (K15171C) and the Mouse/Rat Resistin Kit (K152FNC). 
Analyses were performed according to the manufacturer’s instructions (Meso Scale Diagnostics LLC, USA). 
Plasma was analyzed using commercially available kits for triglycerides (Roche, 11877771216), total cholesterol 
(Roche, 11491458216), free cholesterol (Spinreact, 41035), NEFA (Sopachem, 157819910935), and phospholip-
ids (Sopachem, 157419910930). Esterified cholesterol was calculated as the difference between total and free.

Table 3.  Calculated nutrient composition of the diets. Calculated nutrient composition (in g/kg) of the diets 
(given during postnatal day 16–42).

Control IMF Experimental IMF

Carbohydrate 609 618

Mono/di-saccharides 225 235

 Glucose 3.7 3.4

 Lactose 134 144

 Sucrose 85 85

 Other sugars 2.6 2.4

Polysaccharides 380 380

 Maltodextrin 101 101

 Corn starch 280 280

 Other 0.84 0.68

Fiber 49.0 48.2

Cellulose 32.0 32.0

Fructo-oligosaccharides 1.7 1.4

Galacto-oligosaccharides 15.3 14.3

Lipids 77.2 70.6

Vegetable fat 37.5 32.9

Milkfat 38.6 36.7

Other animal fat 1.1 0.98

Phospholipids 0.084 1.1

Cholesterol 0.12 0.12

Protein 199 198

Whey 17.6 16.5

Casein 181 181

Particle size Mean SD Mean SD

Mode diameter (µm) 0.5 0.08 4.2 0.9

D [4,3] (µm) 0.81 0.2 6.8 0.2

D [3,2] (µm) 0.43 0.004 0.86 0.1

Surface area  (m2/g) 15 0.2 7.7 1.0

Total energy, kcal/g (kJ/g) 3.87 (16.2) 3.87 (16.2)



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16128  | https://doi.org/10.1038/s41598-020-72777-y

www.nature.com/scientificreports/

Plasma bile acids. Using liquid chromatography-mass spectrometry, plasma bile acid species were 
 quantified47. To 25  µl of plasma, we added a mixture of internal standards (isotopically labelled bile acids). 
Samples were centrifuged at 15,800×g and the supernatants were transferred and evaporated at 40 °C under a 
stream of  N2. Samples were reconstituted in 200 µl methanol:water (1:1), mixed and centrifuged at 1800×g for 
3 min. The supernatant was filtered using a 0.2 µm spin-filter at 2000×g for 10 min. Filtrates were transferred to 
vials and 10 µl was injected into the LC–MS system. The LC–MS system consisted of a Nexera X2 Ultra High 
Performance Liquid Chromatography system (SHIMADZU, Kyoto, Japan), coupled to a Sciex Qtrap 4500 MD 
triple quadrupole mass spectrometer (SCIEX, Framingham, MA, USA). Data were analyzed with Analyst MD 
1.6.2 software.

Fatty‑acyl chain profiling. Fatty acid methyl esters (FAMEs) were quantified using gas  chromatography14,48. 
Cryogenically crushed tissues were homogenized in Potter–Elvehjem tubes in ice-cold phosphate buffered saline 
(PBS) solution. A known quantity of homogenized tissue, plasma or food was transferred to glass tubes, and 
capped with silicone-ptfe septum screw caps. An internal standard (heptadecanoic acid, C17, Sigma, St. Louis, 
MO, USA) was added. Lipids were trans-methylated at 90 °C for 4 h in 6 M HCl:methanol (ratio 1:5), liquid–liq-
uid extracted twice using hexane, transferred to a clean tube, dried at 45 °C under a stream of  N2, reconstituted 
in hexane and transferred to GC vials with inserts. Samples were analyzed by gas chromatography as previously 
 described48. The GC system consisted of 6890N network gas chromatograph (Agilent) and was equipped with a 
HP- ULTRA 1 (50 m length × 0.2 mm diameter, 0.11 µm film thickness) column.

Acylcarnitine profiling. Acylcarnitine species were quantified using liquid chromatography-tandem mass 
 spectrometry49. To 50 µl liver homogenate, prepared as described above, a mixture of internal standards (isotopi-
cally labelled acylcarnitine species) and acetonitrile was added. Samples were mixed and centrifuged (15,000×g) 
to precipitate proteins. Supernatant was transferred to GC vials. Samples were analyzed using LC–MS/MS as 
previously  described49. The LC–MS/MS system consisted of an API 3000 LC–MS/MS equipped with a Turbo ion 
spray source (Applied Biosystems/MDS Sciex, Ontario, Canada). Data were analyzed with Analyst and Chem-
oview software (Applied Biosystems/MSDSciex).

Targeted proteomics. Targeted quantitative proteomics was performed on mitochondrial targets involved 
in substrate transport, fatty acid oxidation, the tricarboxylic acid (TCA) cycle, and the detoxification of reac-
tive oxygen species. We used isotopically labeled concatemers as internal standards designed to target murine 
mitochondrial proteins. The internal standards were derived from synthetic peptides (PolyQuant GmbH, Bad 
Abbach, Germany) developed as previously  described50. The method relies on targeted LC–MS/MS in the 
selected reaction monitoring (SRM) mode to quantify 55 murine mitochondrial proteins in a single  run50. This 
method was optimized in isolated mitochondrial fractions from mouse and rat liver and cultured human fibro-
blasts and in total liver extracts from mice, rats, and humans. In this study, we used total liver extracts. The 
targeted proteomics approach is suitable and validated for the quantification of proteins in the mitochondrial 
energy metabolic pathways in mouse, rat, and human  samples50–52. In our proteomics approach, the exact amino 
acid sequence of the peptides is known, and bona fide reference samples were available to test the performance 
of the assay in the context of the particular experiment. Targeted LC–MS/MS proteomics is a powerful and supe-
rior alternative for immune-based quantitative techniques, when internal controls are  available50,53.

Gene expression. Quantification of gene expression was performed as previously  described24. Using TRI-
Reagent (Sigma, St. Louis, MO), total RNA was extracted from cryogenically crushed whole livers. RNA was 
quantified by NanoDrop (NanoDrop Technologies, Wilmington, DE, USA). Integrity was confirmed by observ-
ing ribosomal bands on 1% agarose in TAE. cDNA was synthesized using M-MLV (Invitrogen, Breda, the Neth-
erlands) and random nonamers (Sigma). cDNA was quantified by relative standard curves using quantitative 
real-time PCR as previously  described24. Primer and TaqMan probe sequences are given in Table 4.

Statistical analysis. Statistics were performed using IBM SPSS for Windows, version 23 (IBM Corpora-
tion, Armonk, NY, USA). Time-series are plotted as median and interquartile range. Data are plotted as Tukey 
box-and-whisker plots and scatter plots. Analyses were carried out on all mice or samples whenever technically 
feasible and material was available. No data were excluded. Data were not assumed to be normally distributed, 
so were tested non-parametrically using the exact two-sided Mann Whitney U test. A p < 0.05 was considered 
statistically significant. Figures 1,2,3,4 were rendered using GraphPad Prism version 5 for Windows (GraphPad 
Software, La Jolla California USA, https ://www.graph pad.com).

Ethics approval. Experimental procedures were approved by an external independent animal experiment 
committee (CCD, Central Animal Experiments Committee, The Netherlands), and after positive advice by the 
Committee for Animal Experimentation of the University of Groningen. Subsequently, the study design was 
approved by the local Animal Welfare Body Procedures complied with the principles of good laboratory animal 
care following the European Directive 2010/63/EU for the use of animals for scientific purposes. This study was 
not performed blinded as the programming diets were visually distinct. Breeders and female offspring were ter-
minated  (CO2) at weaning, in compliance with the AVMA Guidelines for the Euthanasia of Animals.

https://www.graphpad.com
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Data availability
All data generated or analyzed during this study are included in this published article. The programming diets 
used in this study (see “Methods” section) are available from the corresponding author on reasonable request.
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