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Characterization of semi‑polar 
(202 1) InGaN microLEDs
Ray‑Hua Horng1,2*, Shreekant Sinha3, Yuh‑Renn Wu4, Fu‑Guo Tarntair1, Jung Han5 & 
Dong‑Sing Wuu6

In this paper, semi-polar (202 1) InGaN blue light-emitting diodes (LEDs) were fabricated and 
compared the performance with those of LEDs grown on c-plane sapphire substrate. LEDs with 
different chip sizes of 100 μm × 100 μm, 75 μm × 75 μm, 25 μm × 25 μm, and 10 μm × 10 μm were used 
to study the influence of chip size on the device performance. It was found that the contact behavior 
between the n electrode and the n-GaN layer for the semi-polar (202 1) LEDs was different from that 
for the LEDs grown on the c-plane device. Concerning the device performance, the smaller LEDs 
provided a larger current density under the same voltage and presented a smaller forward voltage. 
However, the sidewall’s larger surface to volume ratio could affect the IQE. Therefore, the output 
power density reached the maximum with the 25 μm × 25 μm chip case. In addition, the low blue-shift 
phenomenon of semi-polar (202 1) LEDs was obtained. The larger devices exhibited the maximum 
IQE at a lower current density than the smaller devices, and the IQE had a larger droop as the current 
density increased for the LEDs grown on c-plane sapphire substrate.

It is well known that there are many advantages of solid state light emitting diodes (LEDs), such as a small size, 
long life, short response time, low power consumption, no need for cooling time after being turned off, et al.1. 
Because LEDs have these advantages, they are used in a wide range of applications, such as displays, indicators, 
automotive uses, lighting, electronic equipment, and biomedical applications. It is worthy to mention that LEDs 
are self-emitting light sources, meaning they can be applied not only to backlights but also to self-emitting dis-
plays. Moreover, they can be fabricated to have more pixels per inch (PPI) than organic LEDs with a dimension 
of LEDs of less than 100 μm, which are known as micro-LEDs (μ-LEDs), and which causes μ-LEDs to be more 
competitive.

On the other hand, InGaN-based μ-LEDs, which can be applied to various displays, have become widely 
popular and have developed rapidly in recent years. The advantages of μ-LEDs are the characteristics of high 
efficiency, high brightness, high reliability, fast response times, self-lighting without a backlight, energy-saving, 
and a small size2. Especially, μ-blue LEDs are not only applied in displays but also in undersea submarine com-
munication, pico-projectors, and surgical devices, etc3–5. For these applications, wavelength stability is the main 
criteria for color tuning. In this work, the leakage current characteristic due to shrinking the device size and 
its effect on electrical and optical characteristics were evaluated. However, small-sized LEDs with dimensions 
less than 50 μm cannot be successfully probed with traditional measurement systems. In order to solve this 
problem, special electrodes for smaller devices were designed and facilitated for measurement using traditional 
measurement equipment. Moreover, most of optoelectronic InGaN-based devices were grown on a c-plane 
sapphire substrate (CPSS). Due to the polarized electric field, the electron–hole recombination efficiency of the 
devices was poor and exhibited the blue shift phenomenon. To address these problems, μ-blue LED epitaxial 
layers with semi-polar (202 1) orientation were also grown on a (224 3) pattern sapphire substrate (SPSS) and 
fabricated for comparison.
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Results and disscusion
The LEDs created on these two blue epitaxial structures had four different sizes: 100 μm × 100 μm, 75 μm × 75 μm, 
25 μm × 25 μm, and 10 μm × 10 μm, which were all used to evaluate the influence of chip size and optical charac-
teristics. In this study, the above LEDs were defined as LED(100), LED(75), LED(25), and LED(10), respectively. 
Four different chip sizes (LED(100), LED(75), LED(25), and LED(10)) of blue LEDs with CPSS and SPSS ori-
entations were fabricated. Among them, the electrode size of the LED(25) and LED(10) devices were too small 
to measure with the probe. In order to measure the optoelectronic properties of the μ-LEDs, an extra p-contact 
electrode was designed. Figure 1a shows the SEM image of a typical LED(25). A large metal area was successfully 
deposited on the sidewall to facilitate the p-metal pad. Figure 1c shows the schematic structural view of the red 
dotted line in Fig. 1a. It was important to obtain the sidewall metal deposition of the light-emitting area, using 
the slope shown in Fig. 1b, by the dry etching mesa process. Therefore, SiO2 could be deposited on the sidewall 
as the passivation layer, and the deposited metal electrode could be easily extended to the electrode area without 
disconnection.

In general, there were no additional processes for the Ohmic contact behavior between the n-metal and n-type 
GaN epitaxial layers for the CPSS LED. However, the deposited n-metal on the n-type GaN epitaxial layer for 
the SPSS LED did not present the Ohmic contact behavior shown in Fig. 2a. The n-electrode and n-type GaN 
of SPSS LED did not get an Ohmic contact at an annealing temperature of 500 °C for 20 min. As the annealing 
temperature neared 550 °C, the contact barrier disappeared between the contact metal and the n-type GaN, even 
at a high resistance of about 20 Ω. In order to improve the contact resistance, the annealing temperature was 
increased. A higher annealing temperature could improve the contact characteristic between the n electrode and 
the n-GaN. But the device becomes worst when an annealing temperature treated at 700 °C, as shown in Fig. 2b. 
It could be because the 700 °C temperature was too high, which affected the contact characteristic between the 
ITO layer and the p-GaN. The contact characteristic between the n-electrode and the n-GaN was improved, but 
the electrical properties of the entire device deteriorated, as shown in Fig. 2b. Based on the above measurement 
results, the optimum annealing parameters for the n-type contact layer processing of SPSS LEDs were 600 °C 
with nitrogen atmosphere for 20 min.

Figure 3a,b show the current density versus the voltage (J–V) of the CPSS and SPSS LEDs using different 
chip sizes, respectively. It was found that the electrical properties of the LEDs were correlated with the different 

Figure 1.   (a) SEM image of metal electrode plated on the side wall, (b) schematic diagram of the cross section 
and (c) schematic structural view of the red dotted line shown in Fig. 1a.

Figure 2.   (a) I–V curves present the contact properties between the n-electrode and the n-GaN layer before 
and after annealing process at different conditions and (b) I–V characteristics of LEDs before and after 
annealing processes at different conditions.
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sizes. The forward voltage increased with the increasing chip size and the smaller LEDs provided a larger cur-
rent density at the same voltage, except for the 75 µm chip in the semipolar plane case. The voltage at current 
density equal to 100 A/cm2 of LED(100), LED(75), LED(25), and LED(10) on CPSS were 3.23 V, 3.14 V, 3.01 V, 
and 2.82 V, respectively. In contrast, the voltage of LED(100), LED(75), LED(25), and LED(10) on SPSS at 100 A/
cm2 were approximately 4.75 V, 4.83 V, 4.24 V, and 4.13 V, respectively. Even the volatge of LED(75) was a little 
higher than that of LED(100) for the SPSS, the tendency of both LEDs were very similar.

The output power density (as a function of the current density) from 5 to 100 A/cm2 was measured by the 
integrating sphere to understand the influence of LEDs with different chip sizes with the CPSS and SPSS. Figure 4 
shows the characteristic of the output power density as a function of the current density for the LEDs with the 
CPSS and SPSS using different chip sizes. The output power density increased as the chip size decreased6 for the 
CPSS LEDs. Nevertheless, the output power density of LED(10) with the CPSS was the lowest among these chips. 

Figure 3.   (a) J–V characteristics of CPSS blue LEDs with different chip sizes. (b) J–V characteristics of SPSS 
blue LEDs with different chip sizes. (c,d) are simulated J–V characteristics of CPSS and SPSS LEDs, respectively.

Figure 4.   (a,b) are output power density versus current density for different chip sizes for CPSS LEDs and SPSS 
LEDs, respectively.
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On the other hand, the output power density as a function of the current density was almost the same for the 
SPSS LEDs with different sizes. However, the output of the SPSS LED was much smaller compared to the CPSS 
LED cases. To explain these trends, it was necessary to first look at the ideality factor:

Using Eq. (1), Fig. 5a illustrates the ideality factor of the CPSS and SPSS LEDs at a current density of 1 A/
cm2 as a function of the chip size. In Eq. (1), q is the elementary charge, k is the Boltzmann constant, and T is 
the absolute temperature7–9. The ideality factor gradually decreased from 3.75 to 2.66 as the chip size increased 
from 10 to 100 μm for the CPSS LEDs. On the other hand, the ideality factor varied from 5.45 to 5.65 as the chip 
size increased from 10 to 100 μm for the SPSS LEDs. An ideality factor of 1 indicated a band to band radiative 
recombination10; when the ideality factor was greater than 2, it indicated defect-assisted tunneling or the non-
radiative recombination phenomenon7, 11.

The experimental results showed that the CPSS data had a smaller ideality factor at the low current density 
region compared to the SPSS data. This could be explained by the better output power density of CPSS compared 
to that of SPSS, as shown in Fig. 4. As the CPSS samples had a mature and well-developed epi-structure, the 
defect-assisted tunneling phenomenon should have been better compared to CPSS12. However, a comparison 
of the ideality factor in the CPSS data with different chip sizes found that the smaller chip sizes had relatively 
larger ideality factors. This may have been due to the influence of sidewall surface defects13. To explain the influ-
ence of sidewall, a simulation was performed to examine the reason for the high ideality factor. The simulation 
used a tail state model near the band edge in the active region to model the influence of defects leakage. Since 
the nonradiative recombination at the sidewall surface state is an important issue affecting IQE, we put a higher 
density of tail states on the sidewall with a much shorter nonradiative lifetime (0.1 ns) to model the efficiency 
in the chips with a small size. Figure 3c,d show the modeled J–V curves for the LEDs grown on CPSS and SPSS, 
respectively. For the CPSS LEDs, the simulation showed that near the turn-on voltage, the current flows through 
sidewall first where most current recombined nonradiatively at low current density region. Of the four differ-
ent chip sizes, the smallest chip had a larger surface to active volume ratio. Therefore, a larger current density 

(1)nideality =
q

kT
×

(

∂ lnI

∂V

)

−1

Figure 5.   (a) Ideality factor of c-plane and semi-polar blue LEDs at 1 A/cm2 as a function of chip sizes. (b) 
nonradaitve recombination distribution of c-plane micro LED near the sidewall edge. (c) The calculated IQE 
curve of the c-plane QW LED. (d) The calculated IQE curve of the semipolar-plane QW LED.
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could be seen near the turn-on voltage, as it had the most current flowing through the sidewall surface states. A 
check of the experimental result at the same voltage showed that the current density was inversely proportional 
to the chip width. Note that the simulation was based on a 2D structure due to computational time limits, thus 
it could only model two sidewalls on the 2D plane instead of four sidewalls. Therefore, for the 10 µ m chip size, 
the actual sidewall to volume ratio would be much larger in real 3D cases. The simulation might underestimate 
the sidewall current through the surface state in the smaller chips At a larger bias, the electrons started to flow 
through the normal chip area14.

Figure 5c shows the simulated IQE curve for the CPSS LEDs. It could be found that the IQE of the 10 µm LED 
chip was lower due to the sidewall nonradiative recombination through defects, as shown in Fig. 5b. Therefore, for 
a current density smaller than 10 A/cm2, most currents were nonradiatively recombined at the sidewall15, 16. This 
result was confirmed with the experimental result, as shown in Fig. 4a, where the 10 µm chip had a lower output 
power density. Nevertheless, the simulated IQE of LED(100) was the highest among these four chips. However, 
the output power also relied on the light extraction efficiency (LEE). The smaller chip sizes could usually provide 
a better LEE due to having a shorter escaping path17–21. For the SPSS LED cases, as the IQE of the SPSS LEDs was 
much worse compared to the CPSS LED cases, the nonradiative lifetime was also short in the bulk active region 
due to the unoptimized epi-layer. Therefore, the relative influences from the sidewall were weaker compared to 
the CPSS LEDs, and there was little difference in the IQE for different chip sizes, as shown in Fig. 5d.

As the size of the LED was reduced, the ratio between the area and the edge became smaller. Therefore, it was 
necessary to evaluate whether the reverse leakage current characteristic of the device would become serious due 
to the reduction in size. Figure 6a,b show the reverse I–V characteristic for four different chip sizes of the blue 
LEDs with CPSS and SPSS, respectively. The leakage current (@− 5 V) of blue LED(100), LED(75), LED(25), 
and LED(10) with CPSS were about − 19.7 pA, − 11.5 pA, − 15.9 pA, and − 73.7 pA, respectively, and the leakage 
current of blue LED(100), LED(75), LED(25), and LED(10) with SPSS were about − 2.3 nA, − 0.4 nA, − 13.3 pA, 
and − 1.1 nA, respectively. There was no large reversed leakage current in the small-size LEDs if the passivation 
step was included in the process; therefore, the leakage current could be effectively reduced. Afterwards, this 
study performed emission microscopy (EMMI) on the c-plane using a 10 μm blue LED to further understand 
the possible leakage path. InGaAs EMMI as a sensor was used and found to be suitable for advance processing 
to find the bright spots indicating possible leakage. The principle of EMMI is to use a microscope and a photo-
detector to detect the photons excited by the electron–hole combination and the hot carriers. The detectable 
wavelength range of 900–1700 nm was relatively high and in the infrared band. The operating voltage and the 
energy of the hot carriers were decreased. The inset of Fig. 6a shows the measurement of the leakage current for 
CPSS LED(10) by InGaAs EMMI. No bright spot was observed when the device was operated at a reverse bias 
from − 5 to − 15 V, but a bright spot was observed at the corner of the device when it was applied to − 20 V. Since 
μ-LEDs do not to be operated at such high voltages during normal application, this result indicated that there 
would be no leakage issue on the device if the sidewall was properly protected.

Figure 7a,b show the characteristics of the wavelength (λp) of the CPSS and SPSS LEDs as a function of 
the current density. The LED(100), LED(75), LED(25), and LED(10) with CPSS were blue-shifted by 2.52 nm, 
2.16 nm, 4.05 nm, and 1.8 nm, respectively, when the current density increased from 10 to 100 A/cm2. In contrast, 
the LED(100), LED(75), LED(25) and LED(10) with SPSS were blue-shifted by 2.07 nm, 2.52 nm, 2.52 nm, and 
0 nm, respectively, when the current density increased from 10 to 100 A/cm2. The typical spectra of LED(25) 
with CPSS and SPSS were shown in the insets of Fig. 7a,b, respectively. Obviously, the wavelength shift phe-
nomenon for the SPSS LEDs was lower than that of the CPSS LEDs under the same device size. The simulation 
result shown in Fig. 7c,d further confirmed the trend. This phenomenon was due to the shielding effect caused 
by the electric field. For the CPSS LEDs, the polarization field was much stronger compared to the SPSS LEDs. 
This polarization caused the quantum confined stark effect (QCSE). When the injected current increased, an 
electric field formed due to the asymmetry of the electron–hole. This field was opposite to the polarized electric 

Figure 6.   (a) Reverse bias I–V characteristics of CPSS LEDs. (b) Reverse bias I–V characteristics of SPSS LEDs. 
Inset is the image measured by InGaAs EMMI.
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field built in MQW, which canceled the QCSE and caused the blue shift. Since the semi-polar epitaxial wafer 
had a much weaker polarization field, it could moderate the shielding effect and improve the problem of blue 
shift in device wavelengths.

Conclusion
In this paper, the c-plane and (224 3) pattern sapphire substrates were used to grow blue epitaxial wafers and 
make devices with light-emitting areas of 100 μm × 100 μm, 75 μm × 75 μm, 25 μm × 25 μm, and 10 μm × 10 μm. 
The different LED sizes of had a great influence on the electrical properties such as J–V curve. The small-sized 
LEDs had a larger current density under the same voltage and presented a smaller forward voltage. The electri-
cal properties of the small-sized CPSS and SPSS LEDs were better than those of the large-size LEDs. Regarding 
the optical characteristics of LEDs, although the IQE of the smaller chip size could be worse due to the sidewall 
surface state, the LEE would have an inverse trend. Therefore, the output power density of the 25 µm chip pro-
vided better output power density in both cases. The larger devices exhibited maximum IQE at the lower current 
density compared to the smaller devices, and the IQE had a larger droop as the current density increased for the 
CPSS LEDs. In addition, the low blue-shift phenomenon of the SPSS LEDs was obtained as compared to that of 
the same size of CPSS LEDs.

Methods
In this study, CPSS and SPSS blue epitaxial structures were grown by metalorganic chemical vapor deposition 
(MOCVD) in a low-pressure reactor. The semipolar (202 1) GaN epilayer was grown on a (224 3) PSS. The offset 
angle of the (224 3) sapphire was adjusted to obtain a (2021)GaN surface exactly parallel to the surface of the 
substrate surface. The angle between (224 3) sapphire and c plane sapphire is 74.64°, while the angle between 
(202 1) GaN and c-plane GaN is 75.09°. Detailed (224 3) PSS preparation and (202 1) GaN growth mechanism 
has been described in our recently publication22. The blue CPSS epilayers consisted of 2 μm thick n-type GaN, 
a 300 nm thick active layer, a 400 nm thick p-type GaN, and a 200 nm thick indium tin oxide (ITO) layer. Cor-
respondingly, the SPSS LED consisted of a 4 μm thick n-type GaN, a 50 nm thick active layer, a 300 nm thick 
p-type GaN, and a 200 nm thick ITO layer. The LEDs created on these two blue epitaxial structures had four 
different sizes: LED(100), LED(75), LED(25), and LED(10), which were all used to evaluate the influence of chip 
size and optical characteristics.

Figure 7.   (a,b) are relationships between the wavelength (λp) and the current density with different chip sizes 
for CPSS and SPSS LEDs, respectively. (c,d) are simulation results of CPSS and SPSS LEDs, respectively. Insets of 
Figs. (a,b) show the typical spectra of LED(25) with CPSS and SPSS, respectively.
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Figure 8 shows the complete process flow chart for the μ-LED fabrication. First, to define the light-emitting 
area on the epitaxial wafer, in step 1, wet etching the ITO and in step 2, dry etching the p-GaN and active layers 
process. Next, in step 3, n-pad and p-pad metals were deposited on n-GaN and ITO using an E-gun evapora-
tion system. This was followed by depositing silicon dioxide for passivation and then opening the p-electrode 
area (step 4). Finally, the p-pad electrodes were deposited on the opening region, as shown in step 5 of Fig. 1. 
Optical microscope (OM) images of the blue LEDs with different size are also shown in Fig. 8. The LEDs could 
be successfully fabricated, even with sizes as small as 10 μm.

In order to form an Ohmic contact between the ITO layer and the p-GaN layer, it was necessary to anneal 
these samples at 525 °C for 10 min in the air before performing step 2. An E-gun evaporation system was used 
to deposit Ti/Al/Ti/Au on the ITO layer as a p-metal with thicknesses of 50 nm, 300 nm, 50 nm, and 60 nm 
respectively. In addition, Ti/Al/Ti/Au was deposited on the n-type GaN layer23, 24 with thicknesses of 50 nm, 
1.8 μm, 50 nm, and 60 nm, respectively.

After the whole process for LED fabrication was completed, they were packaged by flip chip form. The electri-
cal and optical characteristics of the device were measured using a multi-function power meter (Keithley 2400) 
and the integrating sphere detector (CAS 140B, Instrument Systems) in order to understand the influence of chip 
size on CPSS and SPSS blue LEDs. In this study, twenty devices were measured for each chip size.

Simulation
To further explain the experimental results, 2D Poisson, drift–diffusion, and the Schrodinger solver (called 
2D-DDCC) developed in NTU25, 26 were applied to model the performance of the μ-LEDs grown on CPSS and 
SPSS using different chip sizes. The solver could solve the Poisson, drift–diffusion, and localization landscape 
equations26 self-consistently. The parameters used were listed in Table 1. The simulation is majorly to tune for 
the same wavelength. So the c-plane and semipolar plane have different indium composition in the simulation. 

Figure 8.   Process flowchart of μ-LEDs and OM image of blue LEDs after the whole process.

Table 1.   Parameters used for simulation.

CPSS SPSS

MQWs 6 periods 3 periods

EBL Yes None

QW thickness 3 nm 3 nm

In composition in QW 15.5% 21.5%

Non-radiative lifetime in bulk active region (QW) 50 ns 10.0 ns

Non-radiative lifetime in sidewall 0.1 ns 0.1 ns

n-GaN layer µn (cm2/Vs) 100.0 50.0

p-GaN layer µp (cm2/Vs) 2.0 2.0
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The QW number is also different due to the experimental devices. The SPSS structure does not have EBL so that 
EBL was not put in SPSS simulation. The n-GaN layer mobility for SPSS is smaller due to the observed larger 
sheet resistance is SPSS. In addition, the nonradiative lifetime in SPSS is also shorter in the bulk active region 
(MQW). This is due to the much lower EQE observed in SPSS structure. However, the IQE of SPSS LED did not 
exactly 10 times smaller than that of CPSS LED. Because there might be other thermal or LEE effect which did 
not considered in the simulation. After converging on the solution, we will need to solve Schrodinger equations 
to get the confined eigen states for EL calculation. Since carriers are only confined in the growth direction and 
are free in the lateral direction, the 1D Schrodinger solver was performed along the vertical y-direction at each 
lateral x-position to estimate the variation of the effective bandgap. The PL spectrum was calculated based on 
the Schrodinger solver. Due to the influence of the surface state at the sidewall, a higher concentration of defects 
with a shorter nonradiative lifetime (0.1 ns) were put on the sidewall within a 40 nm region from the sidewall on 
both sides. The exact position for one of the sidewall can be found in Fig. 5b from x = 100 μm. In addition, due 
to the higher contact resistance in the semipolar structure, the forward voltage of the simulated data was much 
smaller, as this effect was not included.
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