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parity‑time phase transition 
in photonic crystals with C

6v
 

symmetry
Jeng‑Rung Jiang, Wei‑ting chen & Ruey‑Lin chern*

We investigate the parity‑time (pt) phase transition in photonic crystals with C
6v

 symmetry, with 
balanced gain and loss on dielectric rods in the triangular lattice. A two‑level non‑Hermitian model 
that incorporates the gain and loss in the tight‑binding approximation was employed to describe 
the dispersion of the pt symmetric system. in the unbroken pt phase, the double Dirac cone 
feature associated with the C

6v
 symmetry is preserved, with a frequency shift of second order due 

to the presence of gain and loss. the helical edge states with real eigenfrequencies can exist in the 
common band gap for two topologically distinct lattices. in the broken pt phase, the non‑Hermitian 
perturbation deforms the dispersion by merging the frequency bands into complex conjugate pairs 
and forming the exceptional contours that feature the pt phase transition. in this situation, the band 
gap closes and the edge states are mixed with the bulk states.

Topological insulators (TIs) are a new phase of matter that are insulating in the bulk but feature conducting 
states on the  surfaces1,2. The quantum Hall  state3, a two-dimensional electron gas in a static magnetic field, is a 
well known topological phase with broken time-reversal (TR) symmetry. The quantum spin Hall (QSH)  state4–6 
belongs to a different topological class that preserves the TR symmetry, in which no magnetic field is required 
and the spin-orbit interaction is responsible for the topological character. The theoretical concepts developed in 
the QSH states were then generalized to three-dimensional  TIs7 as a novel state of quantum matter.

Inspired by the discovery of TIs, there has been a surge of interest in the study of topological phases in 
photonic  systems8–16. The most intriguing property of a topological phase is the emergence of a pair of helical 
edge states that are protected by TR  symmetry17. The two states with opposite spin counterpropagate at a given 
edge without backscattering even in the presence of disorder. The existence of edge states is determined by the 
topological structure of the bulk states, characterized by the Z2 topological  invariant18 or spin Chern  number19. 
The edge states come in Kramers doublet, which are doubly degenerate and TR partners to each other. In the 
presence of spin-orbit interaction, the degeneracy of the Kramers pair is lifted and the phase becomes topologi-
cally nontrivial. The Kramers degeneracy theorem, however, is usually valid for a TR invariant system with spin 
1/217 and cannot readily apply to the photonic system with spin 1, unless additional symmetry has been imposed 
in the system.

In the bianisotropic metacrystals–supperlattices of  metamaterials12, the ’spin’-degenerate condition is intro-
duced to form two pseudospin states by the linear combinations of transverse magnetic (TM) and transverse 
electric (TE) waves. The magnetoelectric coupling engineered in the metamolecules emulates the spin-orbit 
interaction in the photonic system, which is manifest on the entanglement between the phase relationship in 
waves (spin state) and the polarization of dipole moment (orbital state). In the dielectric photonic crystals with 
C6v symmetry, the combinations of doubly degenerate E1 and E2  modes20 form two pairs of pseudospin states, 
which are referred to as the p and d orbitals. The two modes can be accidentally degenerate at the Brillouin zone 
center, where the band dispersion is described by the double Dirac cone with four-fold  degeneracy21. Once the 
band inversion occurs between the p and d orbitals, the photonic lattice exhibits a nontrivial topological  phase13. 
The topological feature associated with the double Dirac cone has been analyzed in various photonic crystals 
with C6v symmetry, composed of cylinder  arrays13,22,23, triangular  holes24,25, and core  shells26.

The photonic topological system can be described by the effective Hamiltonian consisting of two subsystems 
for the pseudospin states with opposite  helicity12,13,15,27,28. In the presence of loss, the effective Hamiltonian of 
the system is non-Hermitian and the eigenvalue spectrum is no longer  real29–31. The effect of loss is typically 
mitigated or compensated by gain. By judiciously incorporating gain and loss in the system, the non-Hermitian 
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Hamiltonian has a real spectrum as long as it is parity-time (PT) symmetric, that is, the Hamiltonian commutes 
with the combined parity-inversion and TR  operator32. The PT symmetry, however, is broken when the magnitude 
of balanced gain and loss is increased above a threshold, called the exceptional  point33. In the broken PT phase, 
the eigenvalues of the system cease to be real and appear as complex conjugate pairs. At the point of degeneracy, 
the PT symmetry is spontaneously broken in the presence of an infinitesimal amount of gain and  loss34. For 
the conical band structure of a Dirac cone resulting from accidental  degeneracy35 or lattice  symmetry36,37, the 
complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional 
 ring35 or exceptional  contour38,39.

The existence of topological edge states in PT symmetric non-Hermitian systems has been a topic of ongoing 
 discussion29,40,41, with regard to the complex eigenvalues of the states. The topological nature of the edge states 
was explored in a non-Hermitian system with the dimer  model42,43, where the topologically distinct phases cor-
respond to two inequivalent dimerization patterns. The topological edge states in PT symmetric systems was 
also demonstrated in one-dimensional waveguide  arrays44, where the spectrum exhibits entirely real eigenvalues. 
More recently, the PT phase transition of the valley edge states was studied in two-dimensional honeycomb 
 lattices45. The topological edge states are present even when their energies might be complex valued, as long as 
the bulk band gap is not closed.

In the present work, we investigate the PT phase transition in photonic crystals with C6v symmetry, with 
balanced gain and loss on dielectric rods in the triangular lattice. The photonic system is described by an effec-
tive Hamiltonian based on the tight binding model for the triangular lattice with C6v  symmetry21. By treating 
the gain and loss as a non-Hermitian perturbation to the  system40,41, the Hamiltonian can be separated into two 
 parts46. The Hermitian part is in a similar form as the Bernevig–Hughes–Zhang (BHZ) model, which exhibits 
the dispersion of a double Dirac cone when the system is in the unbroken phase of PT symmetry. The skew-
Hermitian part can deform the dispersion by merging the bands into complex conjugate pairs and forming the 
exceptional contours near the Dirac point. By exploiting the symmetry properties of the underlying triangular 
lattice, the exceptional point that features the PT symmetry breaking can be analyzed through the eigenfrequency 
of the non-Hermitian system.

In the unbroken PT phase, the edge states lie inside the common gap between the p and d bands for two 
topologically distinct lattices with PT symmetry, where the band inversion occurs in one of the lattices. The edge 
states can have a purely real eigenvalue spectrum and retain the helical nature as in the Hermitian case. The two 
states with opposite helicity counterpropagate at a given edge and are robust against scattering from disorder. 
In particular, the edge states become complex in frequency as the strength of balanced gain and loss increases, 
even when the bulk states are still real. In the broken PT phase, the bulk bands overlap at their quadratic mean 
frequency and the band gap closes. In this situation, the edge states are mixed with the bulk bands.

Results
two‑level non‑Hermitian model. Consider a two-dimensional photonic crystal consisting of equilateral 
triangular rods arranged as hexagonal clusters in the triangular lattice, as schematically shown in Fig. 1a. The 
wave equation in terms of the time-harmonic magnetic field H(r) (with the time convention e−iωt ) is given by

where ε(r) is the complex dielectric function. Assume that the lattice possesses the parity-time (PT) symmetry, 
that is, the Hamiltonian commutes with the combined PT operator: (P T )L = L (P T ) , where P and T 
are the parity-inversion and TR operators, respectively. A necessary condition for the PT symmetry to hold is 

(1)LH(r) ≡ ∇ ×
[

1

ε(r)
∇ ×H(r)

]

= ω2

c2
H(r),

Figure 1.  Schematic diagram of the PT symmetric photonic crystal with C6v symmetry. (a) triangular lattice, 
(b) unit cell, where a0 is the lattice constant, R is the distance from the unit cell center to the centroid of each 
triangular rod of side length s, and εd ( ε∗

d
 ) and εa are the dielectric constants of triangular rods with gain (loss) 

and background medium, respectively.
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that the dielectric function satisfies ε(r) = ε∗(−r) , where ε(r) ≡ εr(r)+ iεi(r) with both εr and εi being real. 
For a triangular lattice composed of dielectric rods, the PT symmetry is established by an antisymmetric arrange-
ment of gain and loss on the rods in the unit cell (cf. Fig 1b). Denote γ and g(r) the strength and distribution of 
gain and loss, respectively, that is, εi(r) ≡ γ g(r) , where γ ≡ max

r
|εi(r)| and −1 ≤ g(r) ≤ 1 . The gain and loss 

are applied such that g(r) = −g(−r) and the convention γ ≥ 0 is adopted. In the present problem, we propose 
that εi(r) changes sign by a rotation of 60◦ about the unit cell center. If γ is zero, L is a Hermitian operator and 
ω is always  real47.

Suppose that γ is small compared to the maximum of |εr(r)| , and iγ g(r) is treated as a small perturbation to 
the dielectric  function38. Using the binomial expansion for 1

ε(r)
 , the wave equation is approximated as

In a two-level non-Hermitian  model46, the operator L is separated into a Hermitian part Lh ≡ ∇ × 1
εr (r)

∇× 
and a skew-Hermitian part Ls ≡ −∇ × iγ g(r)

ε2r (r)
∇× . For a structure with C6v point group symmetry, there exist 

doubly degenerate E1 and E2 states, with the polynomial representations {x, y} and {2xy, x2 − y2} ,  respectively48. 
In a triangular lattice with C6v symmetry, the eigenmodes of the E1 and E2 symmetries are also identified at the 
Brilloin zone center (the Ŵ point)21, which are referred to as the p and d orbitals,  respectively13.

Effective Hamiltonian. Based on the tight-binding approximation for the triangular lattice, the eigenfield 
around the p and d bands at the wave vector k near the Ŵ point is expressed  as21

where H(1) and H(2) ( H(3) and H(4) ) are the normalized magnetic fields of the E1 ( E2 ) state for a single unit struc-
ture with C6v symmetry and αj ( j = 1, 2, 3, 4 ) is the weighting coefficient. Here, m = 0 denotes the center cell, 
m = 1, 2, . . . , 6 its nearest neighboring cells with the centers at rm , and eik·rm is included to satisfy the Bloch theo-
rem: Hk(r + R) = eik·RHk(r) on the lattice. The states H(1) , H(2) , H(3) , and H(4) form a basis for the four-band 
subsystem, which is denoted as 

{

px , py , d2xy , dx2−y2

}

 . Using Eq. (3) in the eigensystem at the frequency ωk with 
the wave vector k:

and taking the inner product with H(i) on both sides, the condition of a nontrivial solution of αj [cf. Eq. (3)] gives 
the following secular equation (see Methods A):

where H is the Hamiltonian of the four-band system and I is the 4× 4 identity matrix.
In the present two-level model, the effective Hamiltonian for the Hermitian operator Lh on the basis 

{

px , py , d2xy , dx2−y2

}

 in the linear order of k is given by (see Methods C.1)

where A is a real  quantity13. The Hermitian Hamiltonian Hh has the same form as in the photonic structure with 
C6v  symmetry26,49. The effective Hamiltonian for the skew-Hermitian operator Ls on the same basis is given by 
(see Methods C.2)

where N1 and N2 are real quantities. The effective Hamiltonian for the non-Hermitian operator L , given by 
H = Hh +Hs , has a block form of the PT symmetric matrix with a generic (2, 2) parity operator50. A similar 
form of the non-Hermitian Hamiltonian was also present for the photonic structures with C4v  symmetry38.

pt phase transition. Based on Eqs. (5), (6), and (7), the eigenfrequency of the four-band non-Hermitian 
system can be solved to give the following formula:

(2)∇ ×
[(

1

εr(r)
− iγ g(r)

ε2r (r)

)

∇ ×H(r)

]

= ω2

c2
H(r).

(3)Hk(r) =
6

∑

m=0

eik·rm
4

∑

j=1

αjH
(j)(r − rm),

(4)LHk(r) =
ω2
k

c2
Hk(r),

(5)

∣

∣

∣

∣

∣

H − ω2
k

c2
I
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∣

∣
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= 0,

(6)Hh =
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p
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d
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d
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,

(7)Hs =







0 0 iγN1 iγN2

0 0 −iγN2 iγN1

iγN1 −iγN2 0 0

iγN2 iγN1 0 0
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which are double roots for either + or − sign. For γ = 0 , the doubly degenerate p and d bands have real eigen-
values as a consequence of the Hermitian property of Hh . In particular, a four-fold degeneracy may occur when 
the p and d bands are accidentally degenerate ( ωp = ωd ) at the Ŵ point, near which the dispersion is characterized 
by a double Dirac  cone21. In general, ωp  = ωd and a gap between the p and d bands is opened. For γ > 0 , the 
eigenfrequencies of the four bands may not be real. Denote the discriminant of the square root in Eq. (8) as 
� ≡

(

ω2
p/c

2 − ω2
d/c

2
)2

+ 4A2
(

k2x + k2y

)

− 4γ 2
(

N2
1 + N2

2

)

 . If γ is small enough such that � > 0 , the eigenfre-
quencies are real and the PT symmetry is unbroken. On the other hand, if γ exceeds a threshold value such that 
� < 0 , the p and d bands are merged into complex conjugate pairs and the PT symmetry is broken. In this situ-

ation, the real parts of the p and d bands overlap at the their quadratic mean frequency: ω0 =
√

(

ω2
p + ω2

d

)

/2 

and the gap in between is closed.
The exceptional point that features the transition between an unbroken and a broken PT phase is determined 

by the quadratic equation: � = 0 . A collection of exceptional points that separate the regions of real eigenvalues 
and complex conjugate pairs form a contour in the wave vector space, the so-called exceptional  contour38 or 
exceptional  ring35. In the present problem, the PT phase transition is considered a balance between the strength 
of gain and loss ( γ ) and the deviation from the four-fold degeneracy either in frequency ( ω2

p − ω2
d ) or in wave 

number ( k2x + k2y ). In case the accidental degeneracy at the Ŵ point is attained, where ωp = ωd and kx = ky = 0 , 
we have � = −4γ 2

(

N2
1 + N2

2

)

< 0 for any nonzero γ and the eigenfrequencies of the p and d bands are always 
complex conjugate pairs. In this situation, the PT symmetry is spontaneously broken in the presence of an 
infinitesimal amount of gain and  loss34. The thresholdless PT symmetry breaking also occurs at the degenerate 
point with two-fold36–38 or three-fold35 degeneracy. It can be shown that the thresholdless PT symmetry break-
ing at the degenerate point is valid for a non-Hermitian system with finite decoupled bands (see Methods D).

If the non-Hermitian system is in the unbroken PT phase, that is, the eigenvalues are real, the perturbed 
frequency due to the presence of balanced gain and loss can be estimated by the perturbation method. For this 
purpose, a small number ǫ is defined as ǫ ≡ γ /εm , where εm ≡ max

r
|εr(r)| . The frequency shift of the perturbed 

system is given by (see Methods E)

where H0 is the magnetic field at the eigenfrequency ω0 for the unperturbed system (without gain and loss). Note 
that the first term on the right-hand side of Eq. (9) is purely imaginary provided that ω0 is real (which is true 
when the unperturbed system is Hermitian). In the unbroken PT phase, the eigenvalues are real, which dictates 
that the first-order correction to the eigenfrequency is zero and the frequency shift due to the presence of balanced 
gain and loss is of second order: �ω = O

(

ǫ2
)

 . A similar form of the frequency shift can be obtained when the 
perturbation method is applied on the electric field: �ω = −ω0

2

∫

V iγ g(r)|E0|2dr
∫

V εr (r)|E0|2dr
+ O

(

ǫ2
)

 , where E0 is the electric 
field with the eigenfrequency ω0

51.

Discussion
Broken pt phase. Figure 2 shows the band structure of TM modes along the high symmetry points of the 
first Brillouin zone for the PT symmetric photonic crystal with a0/R = 3 . Here, the TM modes are character-
ized by the in-plane magnetic field components ( Hx and Hy ) and the out-of-plane electric field component ( Ez ). 
If the gain and loss is not present ( γ = 0 ), the photonic crystal possesses C6v  symmetry21. In this situation, the 
photonic crystal has two equivalent lattice descriptions (as a triangular lattice or a honeycomb lattice), which 
corresponds to the transition point between a trivial and a nontrivial topological  phase13. For a small strength of 
gain and loss ( εd = 12+ 0.1i ), the eigenfrequencies deviate from the lossless case up to O

(

ǫ2
)

 [cf. Eq. (9)]. The 
real parts of the second to fifth bands (p and d bands) are nearly degenerate at the Ŵ point (Fig. 2a), where the 
band dispersion is mainly described by a double Dirac cone [cf. Eq. (8)]. In the presence of balanced gain and 
loss, however small, the non-Hermitian system is spontaneously broken at the degenerate  point34. The thresh-
oldless PT symmetry breaking is manifest on the emergence of tiny imaginary parts of the p and d bands around 
the Ŵ point (Fig. 2b).

The band structure of the PT symmetric photonic crystal at a0/R = 2.75 for a larger strength of gain and loss 
( εd = 12+ 1.8i ) is shown in Fig. 3. The p and d bands merge into complex conjugate pairs in the region near 
the Ŵ point, where the real parts of the eigenfrequencies overlap at their quadratic mean frequency (Fig. 3a). 
Meanwhile, the imaginary parts of the degenerate bands tend to split from the Ŵ point to give two loops in the 
overlapping region (Fig. 3b). In this situation, the Dirac dispersion of the non-Hermitian system is deformed into 
flat bands near the center (Fig. 3c). The exceptional points that separate the regions of real eigenvalues (inside) 
and complex conjugate pairs (outside) form two contours in the wave vector space (Fig. 3d), which are charac-
terized by the quadratic equation: � = 0 [cf. Eq. (8)]. Near the Ŵ point, the dispersion surface is approximately 
isotropic with respect to kx and ky , and the exceptional contours are roughly circles.

(8)ω2
k

c2
= 1

2

(

ω2
p

c2
+ ω2

d

c2

)

± 1

2

√

√

√

√

(

ω2
p

c2
− ω2

d

c2

)2

+ 4A2
(

k2x + k2y

)

− 4γ 2
(

N2
1 + N2

2
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,

(9)�ω = − c2

2ω0

∫

V
iγ g(r)

ε2r (r)
|∇ ×H0|2dr
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V |H0|2dr
+ O

(

ǫ2
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Unbroken pt phase. Figure  4 shows the band structures and eigenfields for the PT symmetric pho-
tonic crystal with εd = 12+ 0.6i , where the bulk states are in the unbroken PT phase with real eigenvalues. 
For a0/R > 3 , the p bands lie below the d bands ( ωp < ωd ) (Fig. 4a), that is, the dipole modes with odd par-
ity (Fig. 4d,e) have the eigenfrequency lower than the quadrupole modes with even parity (Fig. 4b,c), and the 
photonic crystal has a trivial topological phase as in the Hermitian case. For a0/R < 3 , on the other hand, the 
p bands lie above the d bands ( ωp > ωd ) (Fig. 4f), and the dipole modes (Fig. 4g,h) have the eigenfrequency 

Figure 2.  Thresholdless PT symmetry breaking at the four-fold degenerate point. (a,b) are the real and 
imaginary parts, respectively, of the band structure for the photonic crystal in Fig. 1 with a0/R = 3 , 
s/a0 = 0.317 , εa = 1 , and εd = 12+ 0.1i . EP denotes the exceptional point.

Figure 3.  Bulk states in the broken PT phase. (a,b) are the real and imaginary parts, respectively, of the band 
structure for the photonic crystal in Fig. 1 with a0/R = 2.75 , s/a0 = 0.317 , εa = 1 , and εd = 12+ 1.8i . (c,d) are 
the real and imaginary parts, respectively, of the dispersion surfaces for the p and d bands near the Ŵ point. ER 
denotes the exceptional ring.
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higher than the quadrupole modes (Fig. 4i,j). In this situation, the band inversion (or parity inversion) between 
the p and d bands occurs, and the photonic crystal has a nontrivial topological phase as in the Hermitian case.

edge states. Figure 5 shows the dispersions and wave propagations of the edge states at the interface between 
two PT symmetric photonic crystals, with a trivial topological phase ( a0/R = 3.35 ) above the interface and a 
nontrivial phase ( a0/R = 2.75 ) below. In Fig. 5a, both crystals are in the unbroken PT phase ( εd = 12+ 0.6i ). 
For a small strength of gain and loss, the edge states, which lie inside the common band gap for the two crystals, 
can exhibit an entirely real spectrum along the kx direction. Notice that the edge states do not cross each other at 
the Ŵ point and a small gap is opened in between, which means that the edge states may not be  gapless26. This fea-
ture is attributed to the breaking of C6v symmetry at the boundary between two photonic crystals with different 
a0/R , which is analogous to the effect of magnetic impurity that breaks the TR symmetry in a QSH system and 
opens a gap in the edge  state52. As there is no point degeneracy in the edge states, the thresholdless PT symmetry 
breaking as in the bulk states does not occur. In Fig. 5b, a circularly polarized magnetic dipole composed of two 
perpendicular in-plane dipoles with 90◦ phase difference is placed at the interface between a trivial phase (above 
the interface) and a nontrivial phase (below the interface) to excite the surface wave at a frequency inside the 
common gap (cf. blue dashed line in Fig. 5a), where the field is evanescent on either side of the interface. Excited 
by the dipole with H0e

−iωt
(

x̂ + iŷ
)

 , the right-handed wave propagates unidirectionally toward the right, which 
is consistent with the surface band dispersion with a positive kx (cf. blue dot in Fig. 5a). In particular, the surface 
wave is able to bend around sharp corners without backscattering.

As the strength of balanced gain and loss increases, the gap in the edge states is reduced. At a certain value of 
γ , the edge states can be gapless in the real part, with the emergence of imaginary part at the crossing point. For 
a larger value of γ in the nontrivial phase ( εd = 12+ 1.2i ), the edge states merge into a complex conjugate pair, 
while the bulk band gap is still open, as shown in Fig. 5c. The edge states exhibit flat bands in the region near the 
Ŵ point in a similar manner as the broken PT phase of the bulk states (cf. Fig. 3a). In Fig. 5(d), the left-handed 
wave is excited by H0e

−iωt
(

x̂ − iŷ
)

 at the same frequency (cf. blue dashed line in Fig. 5c) where the edge state 
has a real eigenfrequency (although the spectrum is not entirely real). The edge state propagates unidirectionally 

Figure 4.  Bulk states in the unbroken PT phase. (a,f) are the band structures for the photonic crystals in Fig. 1 
with s/a0 = 0.317 , εa = 1 , and εd = 12+ 0.6i , corresponding to the trivial ( a0/R = 3.35 ) and nontrivial 
( a0/R = 2.75 ) topological phases, respectively. (b–e) and (g–j) are the eigenfields ( Re[Ez] ) at the Ŵ point for the 
p bands (blue dot) and d bands (red dot) in (a,f), respectively.
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toward the left, which is consistent with the surface band dispersion with a negative kx (cf. blue dot in Fig. 5c). 
As in Fig. 5b, the surface wave is able to bend around sharp corners without backscattering. This feature holds 
if the larger value of γ is given instead in the trivial phase. In Fig. 5a–d, the bulk states of both crystals are in the 
unbroken PT phase. The spin-polarized edge states retain the helical nature as in the Hermitian case, where the 
two states with opposite helicity (handedness) counterpropagate at a given edge and are robust against disorder.

For an even larger value of γ in the nontrivial phase ( εd = 12+ 2i ), where the PT symmetry is broken, the 
merged bulk bands occupy the original band gap region and the edge states are no longer separated from the 
bulk states, as shown in Fig. 5e. In this situation, the dipole source at the same frequency (cf. blue dashed line 
in Fig. 5e) excites not only the surface state (still having a real eigenvalue at the exciting frequency) but also the 
bulk states. The surface waves are mixed with the bulk waves that are scattered over the whole region on the 
lower side, as shown in Fig. 5f. If, on the other hand, the PT symmetry is broken in the trivial phase, the surface 
waves are to be mixed with the bulk waves on the upper side.

In conclusion, we have investigated the PT phase transition in photonic crystals with C6v symmetry, with 
balanced gain and loss on dielectric rods in the triangular lattice. The dispersion of the PT symmetric system was 

Figure 5.  Edge states between two PT symmetric photonic crystals. (a,c,e) are the edge bands (in red color) at 
the interface between a trivial phase ( a0/R = 3.35 ) with εd = 12+ 0.6i and a nontrivial phase ( a0/R = 2.75 ) 
with εd = 12+ 0.6i , 12+ 1.2i , and 12+ 2i , respectively. Light grays lines are the bulk bands for two 
concatenated crystals. Right vertical bar is the truncated supercell consisting of 20 cells on each side (interface in 
blue color). (b,d,f) are the surface wave propagations at the frequency marked by the blue dashed line in (a,c,e), 
respectively. White dashed line indicates the boundary between two crystals. Green dot denotes the circularly 
polarized magnetic dipole for exciting the surface wave.
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described by a two-level non-Hermitian Hamiltonian based on the tight-binding approximation, where the PT 
phase transition is featured with the exceptional contours in the wave vector space. In the unbroken PT phase, the 
double Dirac cone feature associated with the C6v symmetry is preserved, with a frequency shift of second order 
due to the presence of gain and loss. The helical nature of the edge states is manifest on the counterpropagation 
at the boundary and the robustness against disorder. In the broken PT phase, the bulk bands are merged into 
complex conjugate pairs and the edge states are no longer separated from the bulk states.

Methods
A. tight‑binding model. Using the tight-binding approximation for the eigenfield [Eq. (3)]

in the eigensystem [Eq. (4)]

and taking the inner product with H(i)(r) ( i = 1, 2, 3, 4 ) on both sides, we have

where r0 = (0, 0) and rm =
(

a0 cos
(m−1)π

3
, a0 sin

(m−1)π
3

)

 ( m = 1, 2, . . . , 6 ) with a0 being the lattice constant 
(cf. Fig. 6a). Let the E1 and E2 states be normalized as

where V is the area of the single unit structure. From the orthonormal condition on the unit cell as well as on the 
neighboring cells, Eq. (12) is recast into a system equation

where

with

(10)Hk(r) =
6

∑

m=0

eik·rm
4

∑

j=1

αjH
(j)(r − rm),

(11)LHk(r) =
ω2
k

c2
Hk(r),

(12)

6
∑

m=0

eik·rm
4

∑

j=1

αj

∫

V
drH(i)∗(r) ·LH

(j)(r − rm)

= ω2
k

c2

6
∑

m=0

eik·rm
4

∑

j=1

αj

∫

V
drH(i)∗(r) ·H(j)(r − rm),

(13)
1

V

∫

V
H

(i)∗(r) ·H(j)(r)dr = δij ,

(14)
4

∑

j=1

Hijαj =
ω2
k

c2
αi ,

(15)Hij =
6

∑

m=0

eik·rmI
(ij)
m ,

(16)I
(ij)
m = 1

V

∫

V
H

(i)∗(r) ·LH
(j)(r − rm)dr

Figure 6.  (a) Cell indices for the tight-binding approximation and (b) rotation operations in the C6v symmetry 
group.
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being the electromagnetic transfer integrals21. A nontrivial solution of αj requires that

where H is a 4 × 4 matrix with the entries Hij ( i, j = 1, 2, 3, 4 ) and I is the identity matrix.

B. Matrix representations of the E
1
 and E

2
 modes in C

6v
 symmetry group. For the structure with 

C6v point group symmetry, there exist doubly degenerate E1 and E2 states with the polynomial representations 
{x, y} and {2xy, x2 − y2 },  respectively48. For the E1 state, the matrix representations of the elements (used in the 
present study) in C6v symmetry group (cf. Fig. 6b) are given  by53

For the E2 state, the corresponding matrix representations are given by

C. Effective Hamiltonian. Let the effective Hamiltonian H [cf. Eq. (17)] be divided into the Hermitian 
part Hh and the skew-Hermitian part Hs such that H = Hh +Hs.

C.1 Hermitian part. The matrix entries for the Hermitian part Hh are given by [cf. Eqs. (15) and (16)]

where

In the vicinity of the Ŵ point, the matrix entries can be approximated as

By performing the operations in C6v symmetry group (cf. Methods B) on L(ij)m  , H(h)
ij  can be greatly simplified as 

listed in Ref.21, and the Hermitian part Hh is given as

where A = 2
√
3a0L

(13)
2

21, which is a real  quantity13.

C.2 Skew‑Hermitian part. The matrix entries for the skew-Hermitian part Hs are given by [cf. Eqs. (15) 
and (16)]

where

(17)

∣

∣

∣

∣

∣

H − ω2
k

c2
I

∣

∣

∣

∣

∣

= 0,

(18)
E :

[

1 0

0 1

]

C6 :
[

1/2
√
3/2

−
√
3/2 1/2

]

C−1
6 :

[

1/2 −
√
3/2√

3/2 1/2

]

C2 :
[

−1 0

0 −1

]

C3 :
[

−1/2
√
3/2

−
√
3/2 −1/2

]

C−1
3 :

[

−1/2 −
√
3/2√

3/2 −1/2

]

.

(19)
E :

[

1 0

0 1

]

C6 :
[

−1/2 −
√
3/2√

3/2 −1/2

]

C−1
6 :

[

−1/2
√
3/2

−
√
3/2 −1/2

]

C2 :
[

1 0

0 1

]

C3 :
[

−1/2
√
3/2

−
√
3/2 −1/2

]

C−1
3 :

[

−1/2 −
√
3/2√

3/2 −1/2

]

.

(20)H
(h)
ij =

6
∑

m=0

eik·rmL
(ij)
m ,

(21)L
(ij)
m = 1

V

∫

V
H

(i)∗(r) ·LhH
(j)(r − rm)dr.

(22)H
(h)
ij ≈

6
∑

m=0

(1+ ik · rm)L(ij)m .

(23)Hh =















ω2
p

c2
0 iAky iAkx

0
ω2
p

c2
iAkx −iAky

−iAky −iAkx
ω2
d

c2
0

−iAkx iAky 0
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,

(24)H
(s)
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eik·rmG
(ij)
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(25)G
(ij)
m = 1

V

∫
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H
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As the magnetic fields of the basis states H(i) ( i = 1, 2, 3, 4 ) are highly localized in the single unit  structure24,54, 
the field couplings between the neighboring cells will be much weaker than those in the same cell. In the vicinity 
of the Ŵ point, Eq. (24) can therefore be approximated as H(s)

ij ≈ G
(ij)
0  . From Eq. (25), we have

For an operation R in the symmetric group (in terms of the matrix representation in Methods B), it can be 
shown  that20,21

where 
[

R H
(i)
]

(r) ≡ R H
(i)
(

R
−1

r
)

 . In the present PT symmetric configuration, the real part of the dielectric 
function satisfies 

[

R εr
]

(r) = εr(r) , while the imaginary part changes sign under the C6 operation (rotation by 
60◦):

Using the C2 operation for the E1 state [cf. Eq. (18)] on Eq. (27), we have

for i, j = 1, 2 . Likewise, using the C2 operation for the E2 state [cf. Eq. (19)] on Eq. (27), we have

for i, j = 3, 4.
Let P0 be the matrix representation of the parity operator P on the basis 

{

px , py , d2xy , dx2−y2

}

 . Based on the 
C2 operation for the E1 and E2 states [cf. Eqs. (18) and (19)], we have

which is a generic (2, 2) parity  operator50. Since Hs commutes with P0T (a consequence of the PT symmetry 
for both H and Hh ), it can be shown  that50

and Hs has the block form

where A2×2 , B2×2 , C2×2 , and D2×2 are real matrices. This means that G(ij)
0  and G(ji)

0  are purely imaginary for i = 1, 2 
and j = 3, 4 . Using the C6 operation in Eqs. (18), (19), and (28) on Eq. (27), we have

Using the C−1
6  operation in Eqs. (18), (19), and (28) on Eq. (27), we have

From Eqs. (34) and (35), we further have

and

Since Ls ≡ −∇ × iγ g(r)

ε2r (r)
∇× , we may factor out γ  from G(ij)

0  [cf. Eq.  (25)] such that G(13)
0 ≡ iγN1 and 

G
(14)
0 ≡ iγN2 . Based on Eqs. (26), (29), (30), (36), and (37), the skew-Hermitian Hamiltonian Hs is written as

where N1 and N2 are real quantities.

(26)G
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0 = −G

(ij)
0 .
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(ij)
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V
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[

R H
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(j)
]
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(28)[C6εi](r) = −εi(r).
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(ij)
0 = 0
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0 0 1 0
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0 0 −iγN2 iγN1

iγN1 −iγN2 0 0

iγN2 iγN1 0 0






,



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15726  | https://doi.org/10.1038/s41598-020-72716-x

www.nature.com/scientificreports/

D. thresholdless pt symmetry breaking. Suppose that n frequency bands for a PT symmetric non-
Hermitian system can be decoupled from the rest of the  system38 and their eigenstates form a basis in the sub-
system.

Proposition If the n bands in the decoupled subsystem are degenerate at a specific point, then the subsystem is 
Hermitian at that point.

Proof Let φi ( i = 1, . . . , n ) be the independent eigenstates of the Hamiltonian H for the subsystem with the same 
eigenvalue �0 , that is, Hφi = �0φi . Since any state in the subsystem can be written as a linear combination of 
the basis :  

∑

i ciφi  ,  we have H = �0I  ,  where I  i s  the n× n ident ity  matr ix .  From 
H = P TP TH = P THP T = P THTP = P H

∗
P = P �

∗
0I P =

�
∗
0I

 , we know that 

�0 = �
∗
0 and thus �0 is real and H is Hermitian.   �

By contraposition, if H is non-Hermitian then the eigenvalues of the PT symmetric subsystem cannot be 
all equal. At the n-fold degenerate point where all eigenvalues in the subsystem have the same real part, some 
eigenvalues should have nonzero imaginary parts (otherwise, they will be all equal). This means that the PT 
symmetry is broken at the degenerate point (without threshold) for the non-Hermitian system stated above.
e. perturbation method. Let the presence of gain and loss in the non-Hermitian system be regarded as a 
perturbation to the Hermitian  system40,41. By defining a small number ǫ ≡ γ /εm , where εm ≡ max

r
|εr(r)| , the 

eigensystem is written as

where L0 = Lh = ∇ × 1
εr (r)

∇× and L1 = 1
ǫ
Ls = −∇ × iεmg(r)

ε2r (r)
∇× . Let H0 be the eigenfield at the frequency 

ω0 for the unperturbed system, that is, L0H0 = ω2
0

c2
H0 . The eigenfield for the perturbed system is expanded in 

a series as H = H0 + ǫH1 + ǫ2H2 + · · · . Likewise, the eigenfrequency is expanded as ω = ω0 + ǫω1 + ǫ2ω2 + · · · . 
Using these expansions in Eq. (39), we have

The perturbed eigenfield H is normalized according to �H0|H� = �H0|H0� , so that the orthogonality condition 
�H0|Hn� = 0 holds for n > 0 . The first-order term of the eigenfrequency is given by

The first-order correction to the eigenfrequency is then obtained as
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