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the fatty‑acid amide hydrolase 
inhibitor URB597 inhibits MICA/B 
shedding
Kazuma Sekiba1,2, Motoyuki Otsuka1*, Takahiro Seimiya1,2, Eri Tanaka1, Kazuyoshi Funato1, 
Yu Miyakawa1 & Kazuhiko Koike1

MICA/B proteins are expressed on the surface of various types of stressed cells, including cancer cells. 
Cytotoxic lymphocytes expressing natural killer group 2D (NKG2D) receptor recognize MICA/B and 
eliminate the cells. However, cancer cells evade such immune recognition by inducing proteolytic 
shedding of MICA/B proteins. Therefore, preventing the shedding of MICA/B proteins could enhance 
antitumor immunity. Here, by screening a protease inhibitor library, we found that the fatty-acid 
amide hydrolase (FAAH) inhibitor, URB597, suppresses the shedding of MICA/B. URB597 significantly 
reduced the soluble MICA level in culture medium and increased the MICA level on the surface of 
cancer cells. The effect was indirect, being mediated by increased expression of tissue inhibitor of 
metalloproteinases 3 (TIMP3). Knockdown of TIMP3 expression reversed the effect of URB597, 
confirming that TIMP3 is required for the MICA shedding inhibition by URB597. In contrast, FAAH 
overexpression reduced TIMP3 expression and the cell-surface MICA level and increased the soluble 
MICA level. These results suggest that inhibition of FAAH could prevent human cancer cell evasion of 
immune-mediated clearance.

Abbreviations
NKG2D  Natural killer group 2D
FAAH  Fatty-acid amide hydrolase
TIMP3  Tissue inhibitor of metalloproteinases 3
MICA  Major histocompatibility complex class I polypeptide-related sequence A
NK  Natural killer
HCC  Hepatocellular carcinoma
DMSO  Dimethyl sulfoxide
MMP  Matrix metalloproteinase
ADAM  A disintegrin and metalloproteinase
PCR  Polymerase chain reaction
PBS  Phosphate-buffered saline
qRT-PCR  Quantitative reverse-transcription PCR
SD  Standard deviation

Major histocompatibility complex class I polypeptide-related sequence A (MICA) and MICB are highly expressed 
in many infected or transformed human cells. They also tag cells for elimination by natural killer (NK) cells 
and T cells by activating NK group 2D (NKG2D)  receptor1–3. We previously identified a single-nucleotide poly-
morphism in the 5′-flanking region of the MICA gene on 6p21.33 (rs2596452) that leads to the development of 
hepatocellular carcinoma (HCC) in patients with chronic hepatitis by regulating MICA/B  expression4. Because 
MICA/B polymorphisms and expression are critical in human  cancers4–11, the immune mechanisms mediated by 
MICA/B ligands and the NKG2D receptor are crucial for antitumor immunity and prevention of carcinogenesis.

The immune-recognition pathway comprising MICA/B and NKG2D is regulated by the proteolytic shed-
ding of MICA/B12,13. Although cell-surface MICA/B facilitate the antitumor effects of NK and CD8 T cells via 
NKG2D receptor  activation14, pathogenic cells escape by inducing proteolytic shedding of surface MICA/B. In 
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this case, NK and CD8 cells cannot recognize tumor cells due to the low surface expression of MICA/B and the 
increased serum level of decoy MICA/B  fragments15. Therefore, inhibition of MICA/B shedding may enhance 
antitumor immunity and prevent oncogenesis. Although several methods of inhibiting MICA/B shedding have 
been  reported3,16–18, none are suitable for clinical use.

While we have reported several methods of increasing MICA protein levels using microRNAs, antisense 
nucleotides, and the clustered regularly interspaced short palindromic repeats-Cas9  system19–21, methods of 
regulating MICA/B shedding are needed to enhance immunity and develop oncogenesis-prevention strategies. 
Because drug repositioning enables translation of laboratory discoveries to the  clinic22, we screened a library 
of protease inhibitors, most of which are under development for clinical use, to identify inhibitors of MICA/B 
shedding. The results may enhance NKG2D-related immune-mediated elimination of stressed human cells, 
such as virus-infected cells, premalignant cells, and cancer cells, by maintaining immune-mediated clearance.

Results
Identification of inhibitors of MICA/B shedding. We screened a compound library consisting of 53 
protease inhibitors to identify inhibitors of MICA/B shedding. MICA/B expression on the cell surface was deter-
mined by flow cytometry in comparison with dimethyl sulfoxide (DMSO) as the control. Using a threshold of 
a > 30% increase in the cell-surface MICA/B level compared with DMSO in the first screening, we identified 
eight candidate drugs: actinonin, bestatin, E64-d, epigallocatechin gallate, GM6001, PMSF, URB597, and Z-Leu-
Leu-CHO (Fig. 1a,b). Among those compounds, the FAAH inhibitor URB597 had the most reproducible and 
strongest inhibitory effect on HepG2 and Hep3B cells (Fig. 1c–e). To confirm the inhibition of MICA/B shedding 
by URB597, we performed a luciferase-based MICA shedding  assay23. URB597 significantly reduced the soluble 
MICA level in the culture medium (Fig. 1f). Therefore, URB597 is a candidate inhibitor of MICA/B shedding.

URB597 inhibits MICA/B shedding via an indirect mechanism. To exclude the possibility that 
URB597 affects the expression of MICA/B, we next assayed the effect of URB597on MICA/B mRNA levels. The 
MICA/B mRNA levels were not significantly changed by URB597 (Fig. 2a), suggesting that the increase in the 
cell-surface MICA/B levels caused by URB597 is not due to transcriptional effects.

Next, we performed an in vitro MICA cleavage assay to determine whether URB597 inhibits MICA/B 
shedding directly or indirectly. Although application of cell lysates with recombinant MICA protein led to the 

Figure 1.  Identification of URB597 as an inhibitor of MICA/B shedding. (a) Fold changes in the mean 
fluorescence intensity (MFI) of surface MICA/B by flow cytometry in HepG2 cells after treatment for 24 h 
with protease inhibitors. Red, > 1.3-fold change in a biological study. (b) Chemical structures of the candidate 
compounds. (c) Fold changes in the MFI of surface MICA/B by flow cytometry in Hep3B cells after treatment 
for 24 h with the eight candidate protease inhibitors. Red, > 1.3-fold change in a biological study. (d) Flow 
cytometry of surface MICA protein levels in HepG2 cells treated with URB597 (blue line) or DMSO (control, 
red line). Gray-shaded histograms represent background staining with the isotype IgG. Representative results 
from three independent experiments are shown. Relative MFI data (n = 3) are shown in the right panel. Data 
are means ± SD. *P = 0.0035 (two-sided Welch’s t-test). (e) Flow cytometry of surface MICA protein levels in 
Hep3B cells treated with URB597 (blue line) or DMSO (control, red line). Gray-shaded histograms represent 
background staining with the isotype IgG. Representative results from three independent experiments are 
shown. Relative MFI data (n = 3) are shown in the right panel. Data are means ± SD. *P = 0.0038 (two-sided 
Welch’s t-test). (f) Soluble MICA/B quantification by NanoLuc assay in the culture medium of HepG2 cells 
treated with URB597 or DMSO. Data are means ± SD from three independent experiments. *P = 0.0025 (two-
sided Welch’s t-test).

◂

Figure 2.  Inhibition of MICA/B shedding by URB597 is an indirect effect. (a) qRT-PCR analysis of the 
MICA/B mRNA levels in HepG2 cells treated with URB597 or DMSO (control). Data are means ± SD from three 
independent experiments. P-values of 0.31 and 0.18 (two-sided Welch’s t-test) were not considered to indicate 
statistical significance. (b) In vitro assay of MICA shedding by Western blotting. *Smaller sized recombinant 
MICA protein, probably reflecting a cleaved form. Representative images of three independent experiments are 
shown.
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production of smaller sized MICA proteins, suggesting cleavage by proteases (Fig. 2b), addition of URB597 did 
not affect the size (Fig. 2b). Therefore, the effect of URB597 on MICA/B shedding is indirect and likely mediated 
by changes in gene expression.

Tissue inhibitor of metalloproteinases 3 (TIMP3) expression is associated with the effect of 
URB597 on MICA/B shedding. Because URB597 did not appear to regulate MICA/B shedding directly, 
its effect on gene expression was determined using a genome-wide cDNA array. Among the genes upregulated 
by URB597, we selected SERPINA3, SERPINA7, SERPIND1, and TIMP3 as candidate genes (Fig. 3a), because 
they are related to proteolytic pathways. Among them, TIMP3 expression was increased by URB597 in a dose-
dependent manner (Fig. 3b).

To confirm the involvement of TIMP3 in MICA/B shedding, we established stably TIMP3-specific short-
hairpin (sh) RNA-expressing cells (Fig. 3c). Although the MICA/B mRNA levels were not changed in these 
cells (Fig. 3d), surface MICA/B expression was significantly decreased (Fig. 3e). Moreover, the soluble MICA/B 
levels were significantly increased by knockdown of TIMP3 (Fig. 3f). Importantly, in TIMP3-knockdown cells, 
URB597 had no effect on MICA shedding (Fig. 3e,f). Therefore, the increased TIMP3 expression induced by 
URB597 inhibits MICA/B shedding.

URB597-induced inhibition of MICA/B shedding is dependent on FAAH. Although URB597 is a 
known FAAH inhibitor and it efficiently suppressed FAAH activity in our experimental setting (Supplementary 
Figure S1), whether its inhibition of MICA/B shedding is dependent on FAAH is unclear. To examine this, we 
first established stably FAAH-specific shRNA-expressing HepG2 cells (Fig.  4a). In the same manner as with 
URB597, FAAH knockdown led to the upregulation of TIMP3 mRNA levels and surface MICA/B protein lev-
els and the downregulation of soluble MICA/B levels without influencing MICA/B transcriptional activities 
(Fig. 4b–e). The same results were obtained in Hep3B cells (Supplementary Figure S2). Consistent with these 
results, blocking of FAAH by another inhibitor, PF-3845, yielded similar results (Supplementary Figure S3). We 
then established stably FLAG-tagged FAAH-expressing cells (Fig. 5a). Interestingly, the TIMP3 mRNA level was 
significantly decreased in these cells (Fig. 5b). Moreover, although the MICA/B mRNA levels were unchanged 
(Fig. 5c), the surface MICA/B protein levels were significantly decreased in FLAG-tagged FAAH-overexpressing 
cells (Fig. 5d), and the soluble MICA/B levels were significantly increased (Fig. 5e). Therefore, FAAH promotes 
MICA/B shedding at least in part by modulating TIMP3 expression.

TIMP3 expression and MICA/B shedding are regulated by the endocannabinoid sys‑
tem. Because FAAH is the primary enzyme responsible for hydrolyzing bioactive amides including anan-
damide, an agonist of cannabinoid receptor types I and II, TIMP3 activation by URB597 may be involved in 
activation of the endocannabinoid system. Supporting this hypothesis, anandamide elevated TIMP3 expres-
sion levels and cell surface MICA/B levels without influencing the transcriptional activity of MICA/B (Fig. 6). 
Although URB597 was reported not to increase 2-arachidonoyl glycerol (2-AG)  levels24, 2-AG is a well-known 
endocannabinoid and administration of 2-AG resulted in enhanced TIMP3 expression and cell surface MICA/B 
levels (Supplementary Figure S4). Moreover, a CB1 receptor agonist, AM1241, activated TIMP3 expression and 
inhibited MICA/B shedding (Supplementary Figure S5). As expected, another CB1 receptor antagonist, rimona-
bant, partially but significantly attenuated the effect of URB597 on TIMP3 expression and MICA/B shedding 
(Fig. 7). These results suggest that the increased endocannabinoid is responsible for overexpressing TIMP3 and 
inhibiting MICA/B shedding.

Figure 3.  Upregulation of TIMP3 expression by URB597 is responsible for the inhibition of MICA/B shedding. 
(a) A plot of the distribution of data from a cDNA microarray. The X- and Y-axes represent the average values 
of the log2-converted expression levels and the differences of log2-converted expression levels, respectively. 
SERPINA3, SERPINA7, SERPIND1, and TIMP3 (red) were identified as candidate inhibitors of MICA/B 
shedding. (b) qRT-PCR analysis of the TIMP3 mRNA level in HepG2 cells after treatment with URB597 or 
DMSO (control). Data are means ± SD from three independent experiments. A P-value of 0.44 (two-sided 
Welch’s t-test) was not considered to indicate significance *P = 7.4 × 10−5; *P = 2.0 × 10−4; ***P = 3.3 × 10−5 (two-
sided Welch’s t-test). (c) Western blots of lysates from HepG2 cells without or with stable TIMP3-specific 
shRNA expression  (HepG2shTIMP3). Representative images of three independent experiments are shown. (d) 
qRT-PCR analysis of the MICA/B mRNA levels in HepG2 and  HepG2shTIMP3 cells. Data are means ± SD from 
three independent experiments. A P-value of 0.22 (two-sided Welch’s t-test) was not considered to indicate 
significance. (e) Flow cytometry of surface MICA protein levels in HepG2 cells treated with DMSO (black line) 
and  HepG2shTIMP3 cells treated with DMSO (blue line) or URB597 (blue line). Gray-shaded histograms represent 
background staining with the isotype IgG. Representative results from three independent experiments are 
shown. Relative MFI data (n = 3) are shown in the right panel. Data are means ± SD. A P-value of 0.44 (two-
sided Welch’s t-test) was not considered to indicate significance. *P = 0.027 (two-sided Welch’s t-test). (f) Soluble 
MICA/B quantification by NanoLuc assay in the culture medium of HepG2 or  HepG2shTIMP3 cells treated with 
DMSO or URB597. Data are means ± SD from three independent experiments. A P-value of 0.40 (two-sided 
Welch’s t-test) was not considered to indicate significance. *P = 0.0020 (two-sided Welch’s t-test).

◂
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Discussion
We found that URB597, an inhibitor of FAAH, suppresses MICA/B shedding by increasing TIMP3 expression. 
As shown in our genome-wide association study, MICA gene polymorphisms and MICA protein levels are sig-
nificantly correlated with the incidence of HCC in patients with chronic  hepatitis4, an effect possibly mediated 
by modulating the elimination of pre-malignant cells by cytotoxic  lymphocytes1,2. Therefore, MICA/B-mediated 
oncoimmunity is crucial in HCC oncogenesis. Tumors, including HCC, evade immune recognition by proteolytic 
shedding of MICA/B. Although a disulfide isomerase (ERp5), a matrix metalloproteinase (MMP), and a disin-
tegrin and metalloproteinase (ADAM) family member have already been identified as promoters of MICA/B 
 shedding25–28, we identified a novel candidate inhibitor of MICA/B shedding. This may be advantageous because 
a high serum MICA concentration is associated with the progression of several human  cancers29.

URB597, [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate, is a selective inhibitor of FAAH. FAAH 
is the primary enzyme that degrades anandamide, an agonist of cannabinoid receptor types I and II. Therefore, 
inhibition of FAAH results in activation of cannabinoid receptor-mediated intracellular signaling  pathways30. 

Figure 4.  Knockdown of FAAH results in activation of TIMP3 transcription and inhibition of MICA/B 
shedding. (a) Western blot of lysates from HepG2 cells without or with stable expression of FAAH-specific 
shRNAs  (HepG2shFAAH). Representative images of three independent experiments are shown. (b) qRT-PCR 
analysis of TIMP3 mRNA levels in HepG2 and  HepG2shFAAH cells. Data are means ± SD from three independent 
experiments. *P = 0.010 (two-sided Welch’s t-test). (c) qRT-PCR analysis of MICA/B mRNA levels in HepG2 
and  HepG2shFAAH cells. Data are means ± SD from three independent experiments. A P-value of 0.30 (two-sided 
Welch’s t-test) was not considered to indicate significance. (d) Flow cytometry of surface MICA/B protein levels 
in HepG2 (red line) and  HepG2shFAAH (blue line) cells. Gray-shaded histograms represent background staining 
with the isotype IgG. Representative results from three independent experiments are shown. Relative MFI 
data (n = 3) are shown in the right panel. Data are means ± SD. *P = 0.018 (two-sided Welch’s t-test). (e) Soluble 
MICA/B quantification by NanoLuc assay in the culture medium of HepG2 and  HepG2shFAAH cells. Data are 
means ± SD from three independent experiments. *P = 7.7 × 10−4 (two-sided Welch’s t-test).
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Indeed, URB597 elevates anandamide levels in vitro and in vivo30,31 and exerts antinociceptive and anxiolytic 
effects in vivo32. In addition, cannabinoid-mediated signaling exerts an antitumor effect in several  cancers33–36. 
However, the underlying mechanisms are  unclear37. The inhibition of MICA/B shedding by URB597 may enhance 
the immune surveillance of cancer cells, which may explain the antitumor effect of cannabinoid-mediated signal-
ing. If so, this would facilitate the development of novel immunotherapeutics for cancer.

The inhibition of MICA/B shedding by URB597 was dependent on TIMP3. Because knockdown of TIMP3 
led to increased MICA/B shedding, and URB597 significantly increased TIMP3 expression, URB597 inhibition 
of MICA/B shedding was likely mediated by increased TIMP3 expression. Because TIMPs (TIMP1, TIMP2, 
TIMP3, and TIMP4) are inhibitors of MMPs, which induce MICA/B  shedding26,27, the suppression of MICA/B 
shedding caused by increased TIMP3 expression may be mediated by MMP  inhibition38. Indeed, in acute myeloid 
leukemia cells, the shedding of MICA/B was significantly inhibited by increased expression of  TIMP338. Moreo-
ver, in patients with acute myeloid leukemia, low TIMP3 expression is significantly associated with an adverse 
cytogenetic prognosis, possibly due to decreased NK-cell-mediated immune recognition caused by increased 

Figure 5.  FAAH downregulates TIMP3 expression and promotes MICA/B shedding. (a) Western blot of lysates 
from HepG2 cells without or with stable FLAG-tagged FAAH expression  (HepG2Flag-FAAH). Representative 
images of three independent experiments are shown. (b) qRT-PCR analysis of the TIMP3 mRNA levels in 
HepG2 and  HepG2Flag-FAAH cells. Data are means ± SD from three independent experiments. *P = 9.1 × 10−3 
(two-sided Welch’s t-test). (c) qRT-PCR analysis of the MICA/B mRNA levels in HepG2 and  HepG2Flag-FAAH 
cells. Data are means ± SD from three independent experiments. P-value of 0.50 (two-sided Welch’s t-test) was 
not considered as significant. (d) Flow cytometry of surface MICA/B protein levels in HepG2 (red line) and 
 HepG2Flag-FAAH (blue line) cells. Gray-shaded histograms represent background staining with the isotype IgG. 
Representative results from three independent experiments are shown. Relative MFI data (n = 3) are shown in 
the right panel. Data are means ± SD. *P = 0.0043 (two-sided Welch’s t-test). (e) Soluble MICA/B quantification 
by NanoLuc assay in the culture medium of HepG2 and  HepG2Flag-FAAH cells. Data are means ± SD from three 
independent experiments. *P = 0.0032 (two-sided Welch’s t-test).
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shedding of NKG2D  ligands38. Members of the ADAM family may also mediate shedding of MICA/B28. Because 
it suppresses the function of ADAM10 and ADAM17 in addition to  MMPs39–41, TIMP3 may regulate MICA/B 
shedding by regulating MMPs and ADAMs.

The TIMP3 mRNA level was significantly upregulated by URB597. Gene expression is regulated by various 
mechanisms, such as promoter activity modulation, epigenetic modifications, chromatin regulation, and post-
transcriptional mechanisms involving microRNAs. Because FAAH is involved in diverse intracellular  signaling42, 
and URB597 may have effects other than FAAH inhibition, the mechanism by which URB597 increases TIMP3 
mRNA expression is unclear. Nonetheless, the finding is intriguing, because regulation of MMP function is 
implicated in a variety of physiological and pathological  conditions43.

In summary, URB597, an FAAH inhibitor, suppresses MICA/B shedding by increasing TIMP3 expression. 
Because MICA/B is a regulator of antitumor  immunity1–3 and the FAAH-mediated pathway is under evaluation 

Figure 6.  Anandamide downregulates TIMP3 expression and promotes MICA/B shedding. (a) The chemical 
structure of anandamide. (b) qRT-PCR analysis of TIMP3 mRNA levels in HepG2 cells with control DMSO 
or anandamide treatment. Data are means ± SD from three independent experiments. *P = 0.0021 (two-sided 
Welch’s t-test). (c) qRT-PCR analysis of the MICA/B mRNA levels in HepG2 cells with control DMSO or 
anandamide treatment. Data are means ± SD from three independent experiments. P-value of 0.20 (two-sided 
Welch’s t-test) was not considered to indicate significance. (d) Flow cytometry of surface MICA/B protein levels 
in HepG2 cells with control DMSO (red line) and anandamide (blue line) treatment. Gray-shaded histograms 
represent background staining with the isotype IgG. Representative results from three independent experiments 
are shown. Relative MFI data (n = 3) are shown in the right panel. Data are means ± SD. *P = 0.0012 (two-sided 
Welch’s t-test). (e) Soluble MICA/B quantification by NanoLuc assay in the culture medium of HepG2 cells with 
control DMSO or anandamide treatment. Data are means ± SD from three independent experiments. *P = 0.010 
(two-sided Welch’s t-test).
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as a target for neurological conditions, for example, post-traumatic stress  disorder44,45, application of FAAH 
inhibitors in the cancer therapeutic field as a drug repositioning strategy may be a practical method to enhance 
anti-tumor immunotherapy.

Methods
Cells. HEK293T human embryonic kidney cells and HepG2 and Hep3B human hepatocellular carcinoma 
 cells46 were purchased from the American Type Culture Collection (Manassas, VA) and cultured in Dulbecco’s 
modified Eagle’s medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells were 
incubated at 37 °C in 20%  O2 and 5%  CO2.

Plasmids. The Halo-tagged FAAH-expressing plasmid (#FHC20293) was purchased from Kazusa DNA 
Research Institute (Chiba, Japan).

The Flag-tagged FAAH-expressing plasmid was constructed by subcloning the Flag-tagged FAAH sequence 
using the In-fusion method (Clontech, Mountain View, CA). Briefly, after amplifying cDNA using the FAAH-
expressing plasmid as the template along with primers containing Flag sequences, the PCR products were cloned 
into the pCDH-CMV-puro lentivirus vector (System Biosciences, Palo Alto, CA). The primers were 5′-accatg-
gactacaaggatgacgatgacaagatggtgcagtacgagctgtgg-3′ (sense) and 5′-tcaggatgactgcttttcagg-3′ (antisense).

The NanoLuc-conjugated MICA-expressing plasmid was constructed using a two-step cloning method 
described  previously23. First, NanoLuc cDNA, amplified by polymerase chain reaction (PCR) using the pNL1.1 
NanoLuc vector (Promega, Madison, WI) as the template, was cloned into the XbaI site of the pCDH vector 
(System Biosciences) using the In-fusion method (Clontech). Next, MICA cDNA, PCR amplified from a Halo-
tagged MICA expression vector (Promega), was inserted immediately downstream of the NanoLuc cDNA at the 
EcoRI site of the pCDH NanoLuc vector. The following primers were used: 5′-CAT AGA AGA TTC TAG GCC ACC 
ATG GTC TTC ACA CTC -3′ and 5′-ATT CGC TAG CTC TAG CGC CAG AAT GCG TTC GCA CAG -3′ for NanoLuc 
cloning, and 5′-TAG AGC TAG CGA ATT CCA TGG GGC TGG GCC CGGT-3′ and 5′-ATT TAA ATT CGA ATT CTT 
AAA CGG CGC CCT CAG TGG A-3′ for MICA cloning.

Compounds. Screen-well Protease Inhibitor Library BML-2833C version 2.1 was purchased from Enzo Life 
Sciences (Farmingdale, NY, USA). URB597 was purchased from Cayman Chemical (Ann Arbor, MI, USA); 
PF-3845, AM1241, and rimonabant were obtained from Selleck Chemicals (Houston, TX, USA); anandamide 
was obtained from Merck Millipore (Burlington, MA, USA); and 2-AG was obtained from Tocris Bioscience 
(Bristol, UK). The library includes 53 protease inhibitors, including angiotensin-converting enzyme, amin-
opeptidase B, calpains, caspases, cathepsins, dipeptidyl peptidase-4, furin, granzyme B, γ-secretase, kallikrein, 
neutrophil elastase, proteasome, and tripeptidyl peptidase II. Structures of the candidate compounds (Fig. 1b) 
were drawn using MarvinSketch version 20.11.0 (ChemAxon, Budapest, Hungary). A full list is available on the 
vendor’s webpage.

Transfection and lentiviral transduction. Transient transfections were performed using Effectene 
Transfection Reagent (Qiagen, Hilden, Germany). To generate polyclonal cells with stable Flag-FAAH expres-
sion, the Lentivirus Packaging System (System Biosciences) was used according to the manufacturer’s instruc-
tions as described  previously47. Briefly, 1.0 µg Flag-FAAH overexpression vector and 5.0 µg pPACKH1 packaging 
plasmid mix were transfected into HEK293T cells. After 24 h, the collected culture medium was mixed with 
one-fifth of its volume of PEG-it Reagent (System Biosciences) and incubated overnight at 4 °C to concentrate 
the virus. After centrifugation, the pellet was resuspended in 1 × phosphate-buffered saline (PBS). The viruses 
were transduced into HepG2 cells using polybrene (Santa Cruz Biotechnology, Dallas, TX), followed by selection 
with 6 mg/mL puromycin to obtain polyclonal cells stably expressing Flag-FAAH.

Lentiviruses encoding TIMP3- and FAAH-specific shRNAs were purchased from Santa Cruz Biotechnology 
(#sc-37022-V and #sc-106807-V). After transduction into HepG2 or Hep3B cells, stable cell lines expressing 
TIMP3-specific shRNAs  (HepG2shTIMP3) and FAAH-specific shRNAs  (HepG2shFAAH and  Hep3BshFAAH) were iso-
lated by puromycin selection as described above.

Flow cytometry. Flow cytometry was performed as described  previously21. Briefly, cells were hybridized 
with anti-MICA (1:500; R&D Systems, Minneapolis, MN) or an isotype control IgG (1:500; R&D Systems) for 
40 min at 4 °C. After washing, the cells were incubated with a goat anti-mouse antibody conjugated to Alexa 
Fluor 488 (1:1,000; Molecular Probes, Eugene, OR) for 20 min. Flow cytometry was performed, and the data 
were analyzed using Guava Easy Cyte Plus (GE Healthcare, Little Chalfont, UK). Mean fluorescence intensity 
(MFI) was used to estimate the statistical significance.

Western blot analysis. Western blotting was performed as described  previously48. Briefly, cells were lysed 
in triple detergent lysis buffer (50 mM Tris–HCl [pH 7.4], 150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl 
sulfate [SDS]), and cellular debris was cleared by centrifugation at 15,000 rpm for 10 min. The lysates were sepa-
rated on a 10–20% polyacrylamide gel (Fujifilm Wako Pure Chemical, Osaka, Japan) by SDS–polyacrylamide 
gel electrophoresis, followed by electrical transfer to polyvinylidene difluoride membranes (Merck Millipore). 
Precision Plus Protein All Blue Protein Standards (Bio-Rad, Hercules, CA) were used to estimate the molecu-
lar weight. After blocking in 5% dry milk, the membranes were probed overnight at 4 °C with the appropriate 
primary antibodies diluted in Immunoshot Reagent 1 (Cosmo Bio Co., Ltd., Tokyo, Japan). Subsequently, the 
corresponding horseradish peroxidase-conjugated secondary antibodies (GE Healthcare, Little Chalfont, UK) 
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were applied. Bound antibodies were detected using the Immunostar LD reagents (Fujifilm Wako Pure Chemi-
cal), and images were acquired by WSE-6100 LuminoGraph I (ATTO, Tokyo, Japan). Antibodies against the fol-
lowing factors were used: MICA (#K0218-3, 1:1,000, Medical & Biological Laboratories, Nagoya, Japan), FAAH 
(#ab54615, 1:1,000, Abcam, Cambridge, UK), TIMP3 (#5673, 1:1,000, Cell Signaling Technology, Danvers, MA), 
β-actin (#5125, 1:10,000, Cell Signaling Technology), and FLAG (DYKDDDDK) (#018–22381, 1:1,000, Wako 
Pure Chemical Industries).

Quantitative reverse-transcription PCR (qRT-PCR). Total RNA was extracted from cells using RNe-
asy with DNase (Qiagen). The extracted RNA was reverse transcribed using SuperScript III First-Strand Synthe-
sis SuperMix (Thermo Fisher Scientific, Waltham, MA). To quantify MICA/B mRNA, qRT-PCR was performed 
using TaqMan Gene Expression Master Mix (Applied Biosystems, Foster City, CA) and the StepOnePlus Real-
Time PCR System (Life Technologies, Carlsbad, CA). The MICA/B mRNA levels were normalized to that of 
β-actin using the TaqMan Gene Expression Assays Hs00741286_m1 (MICA/B) and Hs99999903_m1 (β-actin). 
To determine TIMP3 expression, qRT-PCR was performed using SYBR qPCR Mix (Toyobo Co, Osaka, Japan) 
using the StepOnePlus System. The TIMP3 mRNA level was normalized to that of β-actin. The primers used 
were as follows: TIMP3, 5′-AGT TAC CCA GCC CTA TGA -3′ (sense) and 5′-GCA AAG GCT TAA ACA TCT -3′ 
(antisense); β-actin, 5′-CTG TGC TAC GTC GCC CTG G-3′ (sense) and 5′-GCC ACA GGA CTC CAT GCC C-3′ 
(antisense).

NanoLuc MICA shedding assay. A NanoLuc MICA shedding assay was performed as reported previ-
ously with slight  modifications23. Briefly, cells seeded onto 10 cm dishes were transfected with 2.0 µg N-terminal 
NanoLuc-tagged MICA-expressing plasmid, incubated for 12 h, reseeded onto a 96-well plate, and incubated 
for another 12 h. After application of URB597 or DMSO as the control, the culture medium was collected and 
mixed with the luminescent substrate (Nano-Glo Luciferase Assay System; Promega), and luminescence values 
 (Lucsup) were measured using the GloMax Detection System (Promega). The cells were washed with PBS, and the 
luminescent substrate (Promega) was added to determine the luminescence values  (Luccell) using the GloMax 
Detection System. Soluble MICA/B levels were determined as  Lucsup/(Lucsup + Luccell) to adjust for transfection 
efficiency.

In vitro assay of MICA shedding. Recombinant MICA protein purchased from Abnova (Taipei, Taiwan) 
was mixed with HepG2 cell lysate in radioimmunoprecipitation assay buffer (50 mM Tris [pH 7.4], 150 mM 
ethylenediaminetetraacetic acid, 1% Triton X-100, 1% sodium deoxycholate, and 0.1% SDS). DMSO (control) or 
URB597 was added and incubated at 37 °C for 1 h. MICA protein was analyzed by Western blotting as described 
above.

Genome-wide cDNA array. HepG2 cells were treated with URB597 (10 µM) or DMSO (control) for 24 h. 
Next, total RNA was extracted, and reverse transcription was performed as described above. The resulting cDNA 
(3 µg) was subjected to a highly sensitive 3D-Gene microarray (Toray, Tokyo, Japan). The data and the detailed 
protocols were deposited in a public database (GEO accession #GSE143194).

Anandamide enzyme-linked immunosorbent assay (ELISA). Intracellular anandamide concentra-
tions were determined using a Human Anandamide ELISA Kit (#MBS770230, MyBioSource, San Diego, CA) 
according to the manufacturer’s instructions. Briefly, cells diluted in PBS were subjected to repeated freeze–thaw 
cycles to release the internal components, followed by centrifuging at 3000 rpm for 20 min. Then, the collected 
supernatants were added into wells pre-coated with anti-anandamide antibody and mixed with HRP-conjugated 
streptavidin to form an immune complex. After adding the color developing substrates, the optical density (OD) 
of each well was measured by a microplate reader (Multiskan FC, Thermo Fisher Scientific) set to 450 nm. The 
concentration of anandamide was calculated according to the concentration of the standard and the correspond-
ing OD values.

Figure 7.  Rimonabant reverses the effect of URB597 on TIMP3 expression and MICA/B shedding. (a) The 
chemical structure of rimonabant, a cannabinoid CB1 receptor antagonist. (b) Time course of the experiment. 
Three groups (control DMSO treatment followed by the addition of control DMSO; URB597 treatment followed 
by the addition of control DMSO; and URB597 treatment followed by the addition of rimonabant) were 
analyzed. (c) qRT-PCR analysis of TIMP3 mRNA levels in the three experimental groups. Data are means ± SD 
from three independent experiments. *P = 9.0 × 10−4; **P = 0.016 (two-sided Welch’s t-test). (d) qRT-PCR analysis 
of the MICA/B mRNA levels in the three experimental groups. Data are means ± SD from three independent 
experiments. P-values of 0.22 and 0.15 (two-sided Welch’s t-test) were not considered to indicate significance. 
(e) Flow cytometry of surface MICA/B protein levels in the three experimental groups. Gray-shaded histograms 
represent background staining with the isotype IgG. Representative results from three independent experiments 
are shown. Relative MFI data (n = 3) are shown in the right panel. Data are means ± SD. *P = 0.0089; **P = 0.031 
(two-sided Welch’s t-test). (f) Soluble MICA/B quantification by NanoLuc assay in the culture medium of the 
three experimental groups. Data are means ± SD from three independent experiments. *P = 0.0054; **P = 0.029 
(two-sided Welch’s t-test).
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Statistical analysis. No statistical method was applied to determine the required sample size. Statistical 
analysis was conducted using R version 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria). Con-
tinuous variables are reported as means ± standard deviation (SD) unless indicated otherwise. Welch’s t-test was 
used for comparisons of continuous variables. P-values < 0.05 were considered indicative of statistical signifi-
cance. The experiments were not randomized, and the investigators were not blinded to the group allocation 
during the experiments or the assessment of outcomes.

Data availability
The authors state that all data supporting the findings of this study are provided within the article and its sup-
plementary files or are available from the authors upon reasonable request.
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