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Biological sex does not predict 
glymphatic influx in healthy young, 
middle aged or old mice
Michael Giannetto1, Maosheng Xia3,4, Frederik Filip Stæger2, Tanner Metcalfe1, 
Hanna S. Vinitsky1, Juliana A. M. L. Dang2, Anna L. R. Xavier2, Benjamin T. Kress2, 
Maiken Nedergaard1,2* & Lauren M. Hablitz1

Sexual dimorphism is evident in brain structure, size, and function throughout multiple species. Here, 
we tested whether cerebrospinal fluid entry into the glymphatic system, a network of perivascular 
fluid transport that clears metabolic waste from the brain, was altered between male and female mice. 
We analyze glymphatic influx in 244 young reproductive age (2–4 months) C57BL/6 mice. We found no 
male/female differences in total influx under anesthesia, or across the anterior/posterior axis of the 
brain. Circadian-dependent changes in glymphatic influx under ketamine/xylazine anesthesia were 
not altered by sex. This was not true for diurnal rhythms under pentobarbital and avertin, but both still 
showed daily oscillations independent of biological sex. Finally, although glymphatic influx decreases 
with age there was no sex difference in total influx or subregion-dependent tracer distribution in 17 
middle aged (9–10 months) and 36 old (22–24 months) mice. Overall, in healthy adult C57BL/6 mice 
we could not detect male/female differences in glymphatic influx. This finding contrasts the gender 
differences in common neurodegenerative diseases. We propose that additional sex-dependent 
co-morbidities, such as chronic stress, protein misfolding, traumatic brain injury or other pathological 
mechanisms may explain the increased risk for developing proteinopathies rather than pre-existing 
suppression of glymphatic influx.

The brain parenchyma has no traditional lymphatic system. Instead, it has a glial-lymphatic system where astro-
cytes line perivascular spaces to enable cerebral spinal fluid (CSF) into and interstitial fluid out of the brain, 
clearing  waste1, 2. The glymphatic system is highly dependent on cardiovascular function, specifically arterial 
 pulsation3–5 and heart  rate6. Influx of CSF to the brain is increased during  sleep7, 8, during the day in nocturnal 
 animals9, and under certain anesthetic  conditions6. Although the understanding of the glymphatic system is 
rapidly expanding, it has garnered controversy due to lack of fundamental knowledge of how basic physiology 
influences brain fluid transport.

In humans, cardiovascular disease is the number one cause of death for  women10. Prevalence of Alzheimer’s 
disease is estimated to be twice as high in females, with a faster rate of cognitive decline after diagnosis of mild 
cognitive impairment compared to men, and higher rates of brain  atrophy11, persisting in some transgenic 
mouse  models12. These differences may be caused by underlying differences in genetic susceptibility, and lifestyle 
resilience between men and  women13. Additionally, there is some evidence in  humans14 and from rodent models 
that male and female animals recover differently after traumatic brain injury, with female mice having reduced 
 neuroinflammation15, 16 and male mice having increased angiogenesis a week after  injury17. How sex may affect 
the glymphatic system, which is impaired in  aging18, neurodegenerative disease  models19–22 and traumatic brain 
 injury21, 23, remains unknown.

Here, we tested the hypothesis that glymphatic influx is regulated by biological sex by reanalyzing glymphatic 
influx under six different  anesthetics6 and six time points across a 24 h  day9, together with an entirely new dataset 
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collected under the same conditions in middle (9–10 months) and advanced aged (22–24 months) mice. Out 
of a total of 291 mice, 133 females, we can detect no difference in CSF tracer distribution between male and 
female mice, independent of anesthetic, time-of-day, anterior to posterior brain slice, brain sub-region, or age.

Results
Sex does not predict CSF tracer distribution under anesthesia. First, we asked whether anesthesia 
may differentially alter anterior/posterior distribution of CSF tracer in the brain in male and female C57BL6 
mice. Fluorescent-tagged bovine serum albumin was injected into the CSF pool in the cisterna magna (CM) and 
allowed to circulate for 30 min before brain collection and tracer distribution analysis. Brains were sliced into 
100 µm coronal sections from 1.2 to − 1.8 mm from bregma, with one slice taken every 600 µm. As expected, 
anesthesia impacted influx (2-way ANOVA, main effect of anesthesia: F(5,134) = 29.474, p < 0.001; Fig. 1a). We 
found no male/female difference in tracer distribution (2-way ANOVA, main effect of sex: F(1,134) = 1.883, 
p = 0.172; sex-by-anesthesia interaction: F(5,134) = 0.383, p = 0.860). When organized by specific anesthetic, 
ketamine/xylazine (KX), α-chloralose, avertin, isoflurane, and pentobarbital (pento) showed no male/female 
difference across the anterior/posterior axis (Fig. 1b,c t-test with Bonferroni adjustment: p > 0.24 for all male/
female comparisons between slices). For animals anesthetized with isoflurane and dexmedetomidine (ISODEX), 
females had a trend towards higher influx, though this was non-significant (ISODEX male/female difference: 
p = 0.157), and had significantly increased tracer in the most anterior slice (t-test with Bonferroni adjustment: 
p = 0.015). These results could be due to a lower sample size of females compared to males and other anesthetic 
comparisons (n = 5 female and 9 male mice compared to an average n = 15 mice per group). The conclusion 
that no difference between CSF tracer influxes between sexes exists was supported by plotting the residuals, 
where there is clearly no change in influx across slices (Fig. 1b). Biological sex did not improve a linear model 
(F (6,139) = 25.44, p < 0.001,  R2 = 0.503, sex coefficient: p = 0.1674). We used forward and backwards stepwise 
model selections with Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) (see 
“Methods”and24). We observed no improvement in BIC when including biological sex, and only a slightly better 
(from 173.56 to 173.55) score with AIC. This is in contrast to including anesthesia which changes AIC from 269 
to 173.56. We conclude that glymphatic influx in anesthetized, 2–4 month-old mice has no detectible depend-
ence on biological sex. 

Anesthesia differentially affects male and female influx rhythms. In humans, females tend to 
have shorter circadian free-running periods than males by approximately 6 min/day25. Additionally, rodent cir-
cadian wheel-running behavior changes over the estrous  cycle26–29. Previous work has shown glymphatic influx 
has an endogenous, circadian rhythm that peaks during the rest phase of  mice9. Using data where rhythms in 
influx were defined via time courses taken every 4 h across the day under three different anesthetic paradigms 
(KX, pento, and avertin)9, we next tested whether there was a sex difference in glymphatic influx across the day.

Under KX, cosinor analysis for male (n = 42) and female (n = 29) mice revealed significant rhythms in both 
groups (Male: F(3,39) = 3.427, p = 0.043,  R2 = 0.149; Female: F(3,26) = 4.376, p = 0.023,  R2 = 0.252; Fig. 2a). We 
found no significant difference in mesor, amplitude, or phase of glymphatic influx rhythms when comparing 
95% confidence intervals (Fig. 2b). For both pento (males: n = 29 mice, females: n = 27 mice) and avertin (males: 
n = 28 mice, females: n = 25 mice), cosinor analysis resulted in differential effects based on sex (Fig. 2c,e). Males 
anesthetized with pento had no detectible rhythm in CSF influx (F(2,27) = 0.317, p = 0.731), whereas females had 
a rhythm (F(2,24) = 4.683, p = 0.019,  R2 = 0.281) peaking at Zeitgeber Time (ZT; ZT 0 lights on, ZT 12 lights off) 
8.25. Under avertin, females had no significant rhythm (F(3,22) = 2.139, p = 0.142), and males had a significant 
rhythm (F(2,25) = 3.464, p = 0.047, R2 = 0.217) peaking at ZT 6.13. Confidence interval estimates for peak timing 
overlapped in all rhythmic groups.

Because the cosinor analysis fits the data to a linearized sine function, it is a parametric test that assumes 
equal variance and similar sampling across the day. The male/female difference in cosinor analyses could be 
due to insufficient sample sizes across time under pentobarbital and avertin, which have smaller sample sizes 
overall. To address this concern, we pooled data points between the day (ZT 2–11) and night (ZT 12–22) and 
compared between male and female animals. For both pentobarbital and avertin, there was a main effect of time-
of-day (pentobarbital: 2-way ANOVA, F(1,50) = 11.49, p = 0.0014; avertin: F(1,49) = 5.767, p = 0.0202; Fig. 2d). 
There was a significant sex-by-time interaction in the pentobarbital group (2-way ANOVA, F(1,50) = 4.995, 
p = 0.0299; Fig. 2f), though it was driven by day/night differences in the females (Tukey’s posthoc, p = 0.0028, 
all other comparisons: p > 0.05). Overall, there was no significant main effect of sex on day/night differences in 
glymphatic influx.

Age does not reveal a male/female difference in CSF tracer distribution. We were unable to 
detect significant effects of sex on glymphatic influx on 2–4 month old animals. Next, we sought to test the 
hypothesis that as the glymphatic system is challenged, sex differences may be exacerbated. Glymphatic influx 
declines with  age18 when cardiovascular and neurodegenerative disease risk increases. Females are at greater risk 
for developing both cardiovascular disease and Alzheimer’s  disease10, 11, 13. We next asked whether changes in 
glymphatic influx in middle aged (9–10 months) and old (22–24 months) animals were dependent on biological 
sex. Then, we compared CSF tracer distribution in different sub-regions in anterior and posterior coronal sec-
tions. Old (n = 26 total mice) and middle-aged (n = 17 total mice) mice were anesthetized with KX and were only 
compared to the young mice anesthetized with KX (n = 36 total mice). Similar to previous findings, average CSF 
tracer influx was lower in older animals than younger animals (Kruskal–Wallis test, H(6) = 65.26, p < 0.0001; all 
comparisons of young to middle or old: Dunn’s multiple comparisons test, p < 0.005; all comparisons of mid-
dle to old: Dunn’s multiple comparisons test, p > 0.35; Fig. 3) with no effect of sex (female/male young, female/
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male middle, and female/male old: Dunn’s multiple comparisons test, p > 0.9999). Consistent with this finding 
younger animals had increased influx compared to middle aged and old animals in all measured sub-regions 
(Fig. 4). There were no detectable male/female differences in tracer distribution among any sub regions at any 
age (t-test with Bonferroni adjustment: p > 0.43 for all comparisons). There is a visual, though not statistically 
significant, trend for middle aged animals to have lower influx than the old cohort. We speculate this may be due 
to remodeling of perivascular spaces with age. Because these animals were rapidly decapitated, brains harvested 
within 2 min and the brains drop-fixed instead of perfusion-fixed, we are confident the decreased glymphatic 
influx observed with aging is independent of any perfusion  artifacts3 or effects of cardiac  arrest30 that may have 
skewed previous  results18, where this trend was not detected. 

Discussion
We used a dataset of over 230 C57BL/6 animals to determine if biological sex was a predictive component of CSF 
influx into the murine brain. We found no significant male/female difference in anterior to posterior CSF tracer 
distribution under six different anesthesia, though ISODEX co-treatment had a trend toward increased influx 
in female mice. Under KX anesthesia there is no difference in daily circadian rhythmicity of CSF influx between 
females and male, though pentobarbital and avertin may have sex-dependent influences on rhythmicity of influx. 
Finally, we show there is no male/female difference in total influx, or region specific influx in cohorts of aged ani-
mals. These results support the conclusion that in healthy animals, biological sex does not alter basal CSF influx 
into the brain. This observation is surprising taking the marked sex differences in age-dependent loss of cogni-
tive function, proteinopathies, cardiovascular diseases, inflammation and more into  consideration10–13, 16, 31–33.

Sexual dimorphism in brain size could partially explain the lack of significant differences in CSF tracer influx. 
In mice, males tend to have increased body weight compared to females. Yet, data from Jackson Labs on C57BL6 
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intensity per animal over time under pentobarbital anesthesia. Individual animals are colored dots, solid lines 
indicate significant cosinor fit, dotted lines indicate insignificant fit. For cd: n = 27 female (12 day, 15 night) and 
29 male (14 day, 15 night) mice; 4–6 animals per time point; (d) Min/max boxplot of average intensity during 
the day and night between male and female animals under pentobarbital anesthesia. Minima: minimum value, 
maxima: maximum value, center: median, quartiles: box and whisters. *p < 0.05. Individual mice represented 
by colored dots. (e) Mean average intensity per animal over time under avertin anesthesia. Individual animals 
are colored dots, solid lines indicate significant cosinor fit, dotted lines indicate insignificant fit. n = 25 female 
(13 day, 12 night) and 28 male (14 day, 14 night) mice, 2–6 per time point. (f) Min/max boxplot of average 
intensity during the day and night between male and female animals under avertin anesthesia. Minima: 
minimum value, maxima: maximum value, center: median, quartiles: box and whisters. *p < 0.05. Individual 
mice represented by colored dots.
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mice shows less than 1% difference in total brain weight from over 100 animals (phenome.jax.org). Using mag-
netic resonance imaging, a separate report showed brain volume changes of less than 2.5% difference between 
male and female  mice34. Another study used postmortem 3D reconstruction, and estimated no difference in brain 
volume or surface area between male and female  mice35. Finally, if there were subtle differences in vascular and 
perivascular structure they should be emphasized with aging when these systems have been taxed throughout the 
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life of the animal and therefore begin breaking down in different ways. Even with aging, we found no differences 
in glymphatic influx between middle aged (9–10 months) or extremely old (22–24 month) male and female mice. 
Taken together, we conclude that overall changes in brain size or vascular structure did not skew our results.

Female estrous can influence neuronal  function33 and circadian  behavior25–29, indicating it could contribute 
to variability in CSF influx along perivascular spaces into the brain. The experiments used for these analyses 
split data collection over many days to randomize estrous states. Although we found no increased variability 
of female data, which suggests that estrous does not significantly influence glymphatic influx in normal, adult 
females, more work must be done to explicitly control for estrous state. Future studies may also investigate how 
large-scale hormonal changes in female animals, such as during adolescence, pregnancy, post-pregnancy, or post 
sexual senescence influence the glymphatic system.

In healthy animals we find no effects of biological sex on glymphatic influx across anesthesia, the day, and 
in aging. This was unexpected because we know sex affects common disorders, such as cardiovascular disease 
 prevalence10, Alzheimer’s  disease11, 13, 36, and recovery from traumatic brain  injury15–17, which generally correlate 
to glymphatic dysfunction. The observations reported here suggest it is not underlying male/female differences 
in glymphatic function that drive disease, but rather differences in homeostatic responses to disease that lead to 
male/female differences in pathology, prevalence, and long-term recovery. If glymphatic function had intrinsic 
male/female differences, we expect sex ratios of diseases where glymphatic clearance has been implicated in the 
pathology, such as AD and Parkinson’s  disease19–22, to be the same. However this is not the case; females are 
at higher risk for Alzheimer’s  disease11, 12 and males are at higher risk for Parkinson’s  disease36. One intriguing 
possibility is that chronic stress, which in rodent models can alter neuronal morphology and cognition differ-
entially between  sexes31, 33, 37, 38, accumulates over time and these life-time stressors may alter glymphatic flow 
in a sex-dependent manner.

Methods
Animals. All experiments were approved and in accordance with relevant guidelines and regulations by the 
University of Rochester Medical Center Committee on Animal Resources, certified by Association for Assess-
ment and Accreditation of Laboratory Animal Care. C57BL/6 mice ages 2–4 months (25–30 g) were purchased 
from Charles River Laboratories (Wilmington, MA). Mice were group-housed in a 12:12 h light/dark cycle with 
ad libitum access to food and water. Experiments were done over several consecutive days, to randomize phase 
of the female estrous cycle. For anesthesia and aging experiments, all data was collected during the light phase. 
All efforts were made to keep animal usage to a minimum. Two cohorts of animals were taken  from6  and9 to 
analyze the effects of anesthesia and circadian-timing on glymphatic influx, respectively. Aged C57BL/6 mice 
were procured from the U.S. National Institute on Aging, and were 22–24 months old.

Anesthesia. All anesthesia was administered as in Hablitz et al.6 Anesthesia was administered as follows: a 
mixture of racemic ketamine (100 mg/kg) and xylazine (20 mg/kg) intraperitoneally (ip), pentobarbital (60 mg/
kg ip), 2,2,2-tribromoethanol (also known as Avertin; 120 mg/kg ip), α-chloralose (80 mg/kg ip), and ISO (ini-
tial induction at 4%, maintained at 1 to 2% for the duration of the experiment). For the α-chloralose regimen, 
surgery was initially done under 1 to 2% ISO and maintained at 0.5% ISO following CM injection because the 
drug is technically a hypnotic rather than a general anesthetic. In a separate cohort of mice, dexmedetomidine 
was given as a supplement to ISO induction at 0.015 mg/kg ip, with a second equal-sized bolus administered 
just before the 30-min tracer circulation period. ISO was always delivered with 100% oxygen. Directly before 
CM infusion, the animal received an additional one-tenth of the initial dosage, and the pedal reflex was tested 
every 5 to 10 min during the tracer circulation time to ensure adequate anesthetic depth throughout the study.

Intracisternal CSF tracer infusion. Cisterna magna (CM) injections were performed as described 
 previously3, 6, 9, 39. In brief: fluorescent CSF tracer (bovine serum albumin, Alexa Fluor 647 conjugate; 66 kDa; 
Invitrogen, Eugene, OR) was formulated in artificial CSF at a concentration of 0.5% w/v. Anesthetized mice were 
fixed in a stereotaxic frame, the CM surgically exposed, and a 30 gauge needle connected to PE10 tubing filled 
with the tracer was inserted into the CM. Ten microliters of CSF tracer was infused at a rate of 2 μl/min for 5 min 
with a syringe pump (Harvard Apparatus). To visualize tracer movement from the cisternal compartments into 
the brain parenchyma, the animals were killed by decapitation and the brain removed 30 min after the start of 
intracisternal infusion (note that the needle was left in place after the infusion to prevent backflow of CSF). The 
brain was fixed overnight by immersion in 4% paraformaldehyde in PBS. Coronal vibratome slices (100 μm) 
were cut and mounted. Tracer influx into the brain was imaged ex vivo by macroscopic whole-brain and whole-
slice conventional fluorescence microscopy with identical acquisition parameters across groups (Olympus; Ste-
reo Investigator Software).

Tracer influx was quantified by a blinded investigator using ImageJ 1.52i as described  previously6. The cerebral 
cortex in each slice was manually outlined, and the mean fluorescence intensity within the cortical ROIs was 
measured. An average of fluorescence intensity was calculated between six slices for a single animal, resulting in 
a single biological replicate. Equivalent slices were used for all biological replicates.

Statistical analysis. For testing effects of anesthesia and sex on glymphatic influx in both average slice-
fluorescence and across 6 anterior/posterior slices, we used a 2-way ANOVA, followed by Bonferroni P value 
correction for multiple comparisons. Next, we fit the data to a general linear model, and tested the fit of the 
model using Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) with and without 
the inclusion of sex as a covariate. For a discussion of residual comparison, compared to AIC, compared to BIC 
please see: Vrieze et al.24.These statistical analyses were performed in R version 3.5.2 (2018–12–20). When test-
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ing for sex differences in rhythmicity of influx across three anesthetics, Cosinor  analyses40, 41 were performed 
using PASW Statistics 18. For comparisons of means in samples with normal distributions and homogeneous 
variances (as indicated by a Levene’s test), ANOVA was used for comparisons between two or more means, 
followed by a Tukey multiple comparisons test. Age by sex interactions were tested using a Kruskal–Wallis test 
followed by Dunn’s multiple comparisons tests due to unequal sample size in the middle-aged group compared 
to young and old. These tests were performed in GraphPad Prism 7.0d. For comparisons of means in samples 
with normal distributions and homogeneous variances (as indicated by a Levene’s test), an ANOVA was used 
for comparisons between subregions, followed by Bonferroni p value correction for multiple comparisons in R 
version 3.5.2 (2018–12–20). For all experiments, significance was ascribed at p < 0.05.

 Data availability
All data needed to evaluate the conclusions in the paper are present in the paper. Additional data available from 
authors upon request.
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