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camera‑based optical palpation
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Optical elastography is undergoing extensive development as an imaging tool to map mechanical 
contrast in tissue. Here, we present a new platform for optical elastography by generating sub-
millimetre-scale mechanical contrast from a simple digital camera. This cost-effective, compact 
and easy-to-implement approach opens the possibility to greatly expand applications of optical 
elastography both within and beyond the field of medical imaging. Camera-based optical palpation 
(CBOP) utilises a digital camera to acquire photographs that quantify the light intensity transmitted 
through a silicone layer comprising a dense distribution of micro-pores (diameter, 30–100 µm). As the 
transmission of light through the micro-pores increases with compression, we deduce strain in the 
layer directly from intensity in the digital photograph. By pre-characterising the relationship between 
stress and strain of the layer, the measured strain map can be converted to an optical palpogram, a 
map of stress that visualises mechanical contrast in the sample. We demonstrate a spatial resolution 
as high as 290 µm in CBOP, comparable to that achieved using an optical coherence tomography-
based implementation of optical palpation. In this paper, we describe the fabrication of the micro-
porous layer and present experimental results from structured phantoms containing stiff inclusions 
as small as 0.5 × 0.5 × 1 mm. In each case, we demonstrate high contrast between the inclusion 
and the base material and validate both the contrast and spatial resolution achieved using finite 
element modelling. By performing CBOP on freshly excised human breast tissue, we demonstrate the 
capability to delineate tumour from surrounding benign tissue.

Optical elastography describes a range of techniques used to image the mechanical properties of biological tissue 
on the micro- to millimetre  scale1–5. The main application of these techniques is in medical imaging as it is well-
established that there is often a correlation between disease and tissue mechanical properties on these  scales1,6–10. 
The use of optics invariably provides higher spatial resolution than alternative approaches, namely, ultrasound 
 elastography11 and magnetic resonance  elastography12, and affords the opportunity to implement small form 
factor probes which are amenable to in vivo  imaging13–15. A range of approaches have been developed that each 
utilise an optical imaging modality to measure deformation induced by a mechanical load. A mechanical model 
of the tissue deformation is then used to estimate a mechanical property or parameter that is mapped into an 
image. The most widely developed approach is optical coherence elastography (OCE)2,3,16–19 which combines 
optical coherence tomography (OCT) and a loading mechanism, typically either a quasi-static compression or an 
acoustic excitation, to measure the local mechanical response of tissue from which a map of elasticity is derived. 
OCE has an attractive combination of features, including rapid acquisition, micrometre-scale resolution and 
millimetre to centimetre field-of-view20,21, and has been proposed for a number of applications including tumour 
margin assessment and keratoconus  detection22–26. Brillouin microscopy is another prominent technique which 
utilises confocal microscopy to measure the Brillouin frequency shift induced by vibrations of phonons in the 
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tissue. The local longitudinal (bulk) modulus of the sample is derived from this frequency shift and is related to 
elasticity under simplifying  assumptions27–29. Brillouin microscopy has been demonstrated in cell  mechanics29,30 
and  ophthalmology31,32, where particular advantages include its non-contact configuration and the fact that no 
external loading mechanism is required.

Whilst these existing high resolution variants of optical elastography offer capabilities to image at, or close 
to, the cellular scale, to imaging depths of hundreds of micrometres to several millimetres, they typically rely on 
expensive imaging systems that restrict application of optical elastography to niche areas, such as tumour margin 
 assessment22. Furthermore, existing techniques may not be practical in low-resource and remote  settings33–35. 
Another challenge is that techniques such as OCE and Brillouin microscopy are not easily used by non-optics 
experts as they contain complex optical components that require careful alignment, thus precluding a broader 
application of the technology. Also, in some applications, it would be advantageous to have a device with a small 
footprint and without the burden of optical patch cords obstructing the practical use of the device. For example, 
there is great promise for optical elastography in the food industry where the elasticity of meats and fruits is an 
important indicator of food  quality36 and in the robotics industry where tactile feedback is of vital  importance37. 
However, these applications remain largely out of reach of existing optical elastography techniques.

In this paper, we begin to address this gap in optical elastography capabilities by proposing camera-based 
optical palpation (CBOP), a novel approach which provides stress maps, termed optical palpograms, at the 
tissue surface using a relatively low-cost (< $1,000 USD), 12.2 megapixel (MP), complementary metal-oxide 
semiconductor (CMOS) camera and a micro-porous compliant silicone layer. Analogously to the sense of touch, 
the stress measured in optical palpograms is dependent on the stiffness of the underlying tissue. In CBOP, the 
light intensity transmitted through the micro-porous layer placed on top of the tissue of interest is detected. 
The refractive index difference between the silicone and the air inside the micro-pores causes light scattering, 
such that minimal light is transmitted through the layer in its uncompressed state. However, when compression 
is applied to the layer, the micro-pore volume decreases leading to an increased transmission of light. In this 
way, the camera intensity encodes the strain of the layer. Pre-characterisation of the relationship between stress 
and strain in the layer using standard compression testing allows for optical palpograms to be derived from the 
measured strain, endowing CBOP with the capability to generate mechanical contrast from a simple digital 
camera. Another advantage of CBOP is that the images generated are independent of the optical properties of 
the underlying tissue, as only the light transmitted through the layer is required to generate mechanical contrast. 
This may provide a benefit over techniques such as OCE and Brillouin microscopy where the optical scattering 
from the tissue is often inconsistent and can be obscured, for example, by the presence of blood.

CBOP is inspired by OCT-based optical  palpation38, where OCT intensity is used to measure the thickness of 
a pre-characterised non-porous, transparent silicone layer compressed against the tissue. The strain in the layer 
is determined by the thickness change measured from the OCT data and the known stress–strain relationship is 
then used to generate optical palpograms. OCT-based optical palpation has been demonstrated to provide high 
imaging contrast for skin and human breast  tissue39,40. For example, in one study of excised human breast tissue 
from 34 patients, strong correlation was observed between optical palpograms and corresponding gold standard 
 histology40. However, a main drawback of OCT-based optical palpation is the requirement to use an expensive 
optical imaging system. In addition, a 3-D OCT data set is required, typically restricting the acquisition time 
needed to generate an optical palpogram to the range of  seconds41, and furthermore, placing a substantial burden 
on signal processing, limiting its application in scenarios where rapid visualisation of palpograms is essential.

In this paper, we first describe the fabrication and characterisation of the micro-porous silicone layer. We then 
compare the performance of our technique to OCT-based optical palpation on four structured silicone phantoms, 
containing stiff inclusions ranging from 0.5–5 mm in size, by analysing the contrast-to-noise ratio (CNR) and 
spatial resolution in each case. This analysis is accompanied by validation of the mechanical contrast using finite 
element modelling (FEM). Finally, we demonstrate our technique on human breast specimens freshly excised 
from mastectomy surgeries. These tissue results are co-registered with and validated against post-operative 
histology, verifying that CBOP can distinguish tumour from surrounding benign tissue.

Materials and methods
Fabrication of the micro-porous layer. The micro-porous layers used in CBOP consist of a polydi-
methylsiloxane (PDMS) matrix and an open cell network of ~ 30–100 µm diameter pores. While there are several 
methods for porous layer fabrication, such as the embedding of hollow micro-spheres into the pre-cured base 
 material42 and gas  foaming43, in CBOP a direct templating  technique44,45 is employed, which involves mixing a 
sacrificial substrate (sucrose) into the PDMS prior to curing. The sugar is dissolved out after curing, resulting in 
an open cell network. The layers are cut into 25 mm diameter discs, ~ 900 µm thick, and exhibit an elasticity of 
7.3 kPa at 10% strain. The steps in this process are illustrated in Fig. 1, and are described in detail below:

Step 1: PDMS resin (Elastosil P7676 Part A, Wacker Chemie, Munich, Germany) and PDMS oil (Wacker 
AK 50, Wacker Chemie, Munich, Germany) are first mixed at a ratio of 2:1. Adding oil to the resin reduces the 
overall elasticity of the cured PDMS  matrix46. Then, fine grain sugar (grain size ~ 30–100 µm) is added to the 
compound in a concentration of 1 g/ml. Grain size uniformity is ensured by passing the sugar grains through 
both a 106 µm sieve (Product: 003SAW.106, Endecotts, London, United Kingdom) and a 32 µm sieve (Product: 
003SAW.032, Endecotts, London, United Kingdom) and collecting the sugar that did not pass through the smaller 
sieve. Using fine grain sugar allows for uniform dispersion of the grains throughout the matrix, as the suspension 
is less likely to sediment in the  PDMS47. This compound is stirred for 5 min using a propeller stirrer, to allow 
even distribution of the sugar particles.

Step 2: PDMS crosslinker (Elastosil P7676 Part B, Wacker Chemie, Munich, Germany) is mixed with the 
same type of PDMS oil used in Step 1 at a mixing ratio of 2:1. Then, sugar with the same grain size as in Step 1 
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is added to the compound at a concentration of 1 g/ml, followed by thorough stirring for 5 min to allow even 
distribution of the sugar particles in the compound. Steps 1 and 2 are performed separately due to the high 
viscosity of the mixture making it difficult to combine the sugar and PDMS uniformly in the timeframe before 
the PDMS begins to cure.

Step 3: The resin and crosslinker compounds are combined with additional PDMS oil at a ratio of 1:1:1 
and stirred for 5 min to provide complete mixing. Then, a portion of the mixture is pipetted into a petri dish, 
such that the total thickness is 900 µm. The mixture is then placed in an oven at 70 °C for 30 min, to provide 
temperature-accelerated curing.

Step 4: After curing, the mixture is cut into cylinders (diameter, 25 mm) using a blade and a circular punch. 
The cut surfaces of the cylindrical layer provide exposure of the sugar particles to air, which is important for the 
dissolution process in the next step.

Step 5: The cylindrical layer is placed in a water bath at room temperature, to allow dissolution of the sugar 
particles. It takes up to 72 h to fully dissolve the sugar particles, due to the small diameter of the inter-connected 
channels between sugar particles. To accelerate the dissolution process, the water bath can be kept at 70 °C in 
the oven, increasing the thermal energy used to break intermolecular bonds between sucrose molecules. Using 
this method, the total period of dissolution can be reduced to 48 h.

Step 6: The layer with the sugar particles fully dissolved is removed from the water bath, followed by a pro-
cess of dehydration to remove any residual water inside the layer. This involves placing the layer in the oven at 
70 °C for 48 h to remove any residual moisture. After this, the micro-porous layer is ready to be used in imaging.

Experimental design. CBOP uses a 12.2  MP CMOS camera (Basler ace acA4024-29uc, Basler  AG, 
Ahrensburg, Germany) and a 25  mm fixed focal length lens with a working distance of 100  mm, costing 
$550 USD and $250 USD, respectively. The camera and lens are positioned above a rigid glass window, dimen-
sions: 50.8 × 50.8 × 3 mm, that acts as a compression plate (high efficiency window, Edmund Optics, New Jersey, 
USA). During acquisition, the sample, a 900 µm-thick micro-porous layer and a ~ 300 µm-thick green layer are 
placed on a rigid plate which is affixed to a translation stage (MTS25-Z8, Thorlabs, New Jersey, USA). The green 
layer, made from mixing one part of green silicone-based pigment (SP-Green, Barnes Products, Moorebank, 
Australia) with four parts silicone elastomer (Elastosil P7676, Wacker Chemie, Munich, Germany) serves as a 

Figure 1.  Fabrication process of micro-porous silicone layers by sacrificial templating of sugar grains.
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homogeneous colour mask for the underlying sample and ensures that variability in light backscattered from the 
sample does not affect the estimation of stress. The layer is dyed green as the CMOS camera exhibits a higher 
spectral sensitivity to this colour channel. 200 µL of PDMS oil (Wacker AK 50, Wacker Chemie, Munich, Ger-
many) is applied between each mechanical interface to reduce the effect of friction which restricts the lateral 
expansion of the sample, the green layer and the micro-porous layer under compression. The translation stage 
is operated in the z-direction such that the stage compresses the sample and layers against the glass window.

During the experiment, the translation stage is used to bring the sample into contact with the glass window, 
at which point the total thickness of the sample together with the green layer and micro-porous layer is recorded. 
The initial thicknesses of the green layer and micro-porous layer are also measured prior to the experiment. 
Then, the translation stage is used to increase the preloaded strain applied to the overall thickness (sample + green 
layer + micro-porous layer) in 10% increments until 50% preloaded strain is reached. At each of the strain levels, 
ten digital photographs are acquired at a rate of 10 fps and are later averaged in post-processing to reduce the 
effect of shot noise on optical palpograms. Averaging multiple photos at a preloaded strain improves the SNR by 
as much as 30%, at the expense of longer acquisition times. After imaging, the green and micro-porous layers are 
removed, and the sample is loaded to the same approximate strain to acquire a digital photograph of the tissue 
surface to assist with co-registration of features in the optical palpogram.

Figure 2 shows a schematic of the experimental setup. In Fig. 2a, at a low level of strain, the light emitted by 
an array of 6,000–6,500 K SMD 5050 white-light LEDs situated above the imaging window, reaches the micro-
porous layer and the air-filled pores scatter light and prevent transmission to the green layer below, resulting in 
the camera detecting white light as shown by the inset in Fig. 2a. The LEDs in the array each emit ~ 20 lm and 
draw 60 mA at 3 V. Additionally, they are housed in a 3D printed plastic case which blocks out the ambient light, 
preventing any light in the surrounding environment from affecting the acquired image. As the compression 
is increased (Fig. 2b), the pores become smaller and partially close, allowing a portion of the light to transmit 
through to the green layer, resulting in the detection of green light on the CMOS sensor. When the compres-
sion is increased further, as shown in Fig. 2c, the level of green light detected by the CMOS sensor increases. 
Characterisation of the relationship between the light transmission and the stress of the micro-porous layer is 
presented in the next section.

Optical transmission through the micro-porous layer. Light travelling through the micro-porous 
layer undergoes refraction, due to the difference in refractive indices, n, between the silicone matrix (n = 1.4) 
and the pores (n = 1.0)46. This refraction causes light to scatter multiple times in the layer, reducing optical trans-
mission. Optical transmission of light T, in the micro-porous layer is proportional to the distance a photon will 
travel before its direction is randomised after scattering by a pore, termed the transport mean free path lmfp, and 
the reciprocal of the total thickness of the material, L, assuming negligible  absorption48. Mie scattering theory 
describes scattering interactions where the pore size is comparable to or greater than the wavelength of light. 
It suggests that the transport mean free path is inversely proportional to both the number of pores in a given 
volume, termed, the pore concentration, φ, and the pore scattering cross-section49,50, defined as the effective 
area proportional to the probability of an incoming photon interacting with the pore. Provided the pore is 
non-absorbing and much larger than the wavelength of the incident light, the scattering cross-section is linearly 
proportional to the pore cross-sectional area, A51,52. The micro-porous layers used in CBOP satisfy the mate-
rial thickness and pore size conditions of Mie scattering theory, and therefore, the optical transmission can be 
approximated as inversely proportional to the thickness, pore concentration and pore cross-sectional area.

(1)T ∝
1

LϕA

Figure 2.  Working principle of CBOP. A CMOS camera is used to measure the transmission of light emitted by 
LEDs through the micro-porous layer and reflected back from the green layer under (a) low preloaded strain, 
(b) moderate preloaded strain and (c) high preloaded strain; C camera, L LEDs, W glass window, PL micro-
porous layer, GL green layer, S sample. The insets from the camera show the change in green intensity with 
different preloaded strains. The micro-porous layer inset illustrates the reduction in pore size under increasing 
compression.
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The above relationship describes the transmission of light through the micro-porous layer under static condi-
tions. However, in CBOP, the optical transmission is dependent on the applied strain. Increasing compressive 
loading on the micro-porous layer not only reduces the thickness of the  material53, but also causes the internal 
pores to collapse as the silicone matrix expands into the  voids54, reducing the total pore concentration of the 
layer, in addition to reducing the geometrical cross-section of the pores. This is a result of the near incompress-
ibility of silicone, which has a Poisson’s Ratio close to 0.555,56. These changes to the pore structure, coupled with 
the reduction in material thickness, increase the transport mean free path, allowing more light to pass through 
the micro-porous layer. While compression also reduces the intrinsic backscattering of light from the pores, it 
affects all colour channels evenly and therefore has negligible impact on colour saturation. As a result, optical 
transmission can be directly related to the compression applied to the micro-porous layer, as shown in Fig. 3a.

Post-processing. Post-processing of the acquired camera images is performed using MATLAB 2016B 
(MathWorks, Massachusetts, USA). Averaging of the ten acquired images at each preloaded strain is performed 
first, generating a 2-D pixel matrix with the average RGB values recorded at each pixel location as shown in 
Fig. 3d. Colour saturation is then used as a measure of optical transmission, as the micro-porous layer appears 
white (low saturation) at low preloaded strain and green (high saturation), at high preloaded strain. A 2-D satu-
ration image is generated by measuring the saturation, S, from the RGB values at each pixel location using the 
following equation:

where S is the saturation value at each pixel.Cmax , Cmin1 and Cmin2 are the highest, lowest and second lowest of 
the RGB values at each pixel location, normalised between 0 and 1, and α is a user-defined coefficient used to 
optimise the contrast in the saturation image. This formula is a variation of the conventional colour saturation 
 formula57 and was used to extend the stress dynamic range by considering RGB values from all three colour 
channels. In our experimental setup, optimised contrast is achieved with α = 1.5, as it provides a sufficiently large 
stress dynamic range (0–94 kPa), whilst providing minimal trade-off in sensitivity. Figure 3 shows the procedure 
for converting the averaged digital photograph (Fig. 3d) to the saturation image (Fig. 3e), then transforming the 
saturation image into an optical palpogram (Fig. 3f) for a silicone phantom with an embedded inclusion. First 
the colour saturation-strain curve of the micro-porous layer is characterised using the CMOS camera (Fig. 3a). 
Then, the stress–strain curve of the micro-porous layer is characterised using a uniaxial compression testing 

(2)S =
α
(

Cmax − Cmin1

)

+
(

Cmax − Cmin2

)

αCmax + Cmax

,

Figure 3.  Layer characterisation and generation of optical palpograms. (a) The saturation-strain 
characterisation curve, (b) the stress–strain characterisation curve of the micro-porous silicone layer and (c) 
the resulting stress-saturation curve. (d) Digital photograph of micro-porous layer of phantom containing a 
2.5 × 2.5 mm inclusion phantom at 50% preloaded strain, and (e) the corresponding colour saturation image 
where the red and blue circles represent the relative colour saturation through a region of the inclusion and 
base, respectively. (f) The optical palpogram is produced by equating each pixel in (e) to a stress value using the 
stress–strain curve in (c).
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system (Fig. 3b). This system uses a motorized translation stage to increment the strain applied to a sample at a 
rate of 0.001/s. The strain is determined by measuring the initial thickness of the sample and the displacement 
of the stage. A load cell measures the applied force at a particular strain, which, along with prior knowledge of 
the geometric cross-section of the sample allows stress to be estimated. By dividing stress by strain, the elasticity 
can be estimated. By combining these two curves, we can generate a characteristic stress-saturation curve of the 
micro-porous layer, as shown in Fig. 3c.

Layer characterisation and repeatability. The micro-porous layers are mechanically and optically 
characterised by connecting a load cell (LSB200, Futek Inc., California, USA) to the translation stage of the 
CBOP set-up. While compression is applied, the camera captures images of colour saturation as light is transmit-
ted through the micro-porous layer and is reflected by the green layer, while the load cell records the resulting 
force, which along with prior knowledge of the layer surface area, is used to compute stress. To determine the 
repeatability of this procedure, characterisation is performed on five separate micro-porous layers. The resulting 
mechanical stress–strain curves demonstrate a mean standard deviation of 0.38 kPa across each of the meas-
ured preloaded strains. For the optical properties, the mean standard deviation in saturation values S is 0.03 
across any given preloaded strain. This shows that there is a high level of repeatability in the fabrication process 
between individual layers.

Finite element modelling. In order to validate the stress values measured from CBOP and to simulate 
the mechanical response of the micro-porous layer, 2-D FEM is performed on each inclusion phantom using 
Abaqus (Dassault Systèmes, Vélizy-Villacoublay, France). The FEM simulation is designed to match the experi-
mental conditions in CBOP, where a stiff inclusion is embedded 500 µm below the surface of a soft silicone 
phantom. Two additional layers are positioned above the phantom, representing the green layer (300 µm thick) 
and the micro-porous layer (900 µm thick). The boundary conditions are fixed at the bottom of the phantom 
and 50% compression is applied axially via the imaging window, which acts as a rigid plate. The friction coeffi-
cient between all interfaces is set to 0.2 to account for the PDMS oil applied to the sample in the experiment and 
the 50% preloaded strain. This value was determined previously by Wijesinghe et al.58 by relating experimental 
results of OCT-based optical palpation to FEM simulations. 2-D plane stress elements (CPS3) are assigned to all 
the models, which generate a maximum mesh size of 0.1 mm. Each element of the soft base, and both the green 
and micro-porous layers are modelled using the Mooney-Rivlin material model for uniaxial compression which 
relates stress to strain through the coefficients C10 and C01

59,60:

where σ is the stress and � = 1+ ε and is defined as the stretch ratio. This model assumes that the materials are 
homogeneous, isotropic and non-linear. The Mooney-Rivlin coefficients for the soft silicone and green layer are 
given as  C10 = 2.23 kPa and  C01 = 0.70 kPa,  respectively58. Similarly, the coefficients for the micro-porous layer are 
 C10 = 0.04 kPa and  C01 = 1.10 kPa. All coefficients are obtained by fitting Eq. 3 to the experimental stress–strain 
curves of each material which were generated through uniaxial compression testing. The relatively stiff inclusion, 
however, is modelled as an elastic material to increase the stability of the simulation. This is a valid assumption 
as the inclusion did not strain to more than 15% in each experiment and the stress–strain curve of the material 
is approximately linear in this range (elasticity of 160 kPa at 10% strain and Poisson’s ratio of 0.45). Stress is 
computed from the simulated strain using the same steps as in the CBOP experiments. The 2-D FEM is then 
expanded to 3-D for comparative analysis to the en face optical palpograms obtained using CBOP, as shown in 
“Results”. En face FEM images are imported into MATLAB for analysis and  editing61.

oct‑based optical palpation. OCT-based optical palpation is performed to provide a comparison to 
CBOP. This is achieved using a spectral-domain OCT system with central wavelength of 1,300 nm and spectral 
bandwidth of 170 nm (TEL320C1, Thorlabs, New Jersey, USA), in a common-path  configuration40. An objective 
lens with a 0.055 numerical aperture (LSM03, Thorlabs, New Jersey, USA) is attached to the scan head which 
provides a measured full width at half maximum axial resolution of 5.5 µm (in air) and lateral resolution of 
7.2 µm. A-scans are acquired at a rate of 71 kHz. The optical power on the sample was measured to be 2 mW. 
Prior to scanning, a 500  µm-thick homogeneous silicone compliant layer is placed on the sample (Elastosil 
P7676, Wacker Chemie, Munich, Germany), which ensures that the deforming edge of the layer is within the 
focus of the OCT system. The sample is then placed on a motorised lab jack to provide axial compression against 
a fixed glass window, situated between the sample and the OCT scanner. Whilst under compression, the OCT 
system scans the sample and the axial displacement in the layer is detected at each spatial location, where the 
smallest detectable displacement in the layer is determined by the axial resolution of the OCT system (5.5 µm)38. 
Stress can then be inferred from the measured OCT data and the pre-characterised stress–strain curve of the 
compliant layer.

Silicone phantom fabrication. Four tissue-mimicking silicone inclusion phantoms are used as test tar-
gets for both CBOP and OCT-based optical palpation. The phantoms are cylindrical with a diameter of 15 mm 
and a height of 2 mm. The soft base of the phantoms are fabricated from a two-part silicone elastomer (Elas-
tosil P7676, Wacker Chemie, Munich, Germany) which has an elasticity of 20 kPa at 10% strain, using pro-
cedures described  previously46. Four inclusions with sizes of 5 × 5 × 1 mm, 2.5 × 2.5 × 1 mm, 1 × 1 × 1 mm and 
0.5 × 0.5 × 1 mm were fabricated from a silicone elastomer with an elasticity of 160 kPa at 10% strain (Elastosil 

(3)σ = 2

(

C10 +
C01

�

)

(

�− �
−2

)

,



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15951  | https://doi.org/10.1038/s41598-020-72603-5

www.nature.com/scientificreports/

RT601, Wacker Chemie, Munich, Germany) and embedded 500 µm below the surface of the phantom. The base 
and inclusions of each phantom contain 0.25 mg/ml and 2 mg/ml of  TiO2 powder, respectively, to provide optical 
contrast for OCT imaging.

clinical protocol. Freshly excised human breast samples from two mastectomy surgeries were imaged in 
this study. After surgery, these samples were immediately transferred from the operating theatre to the pathol-
ogy department at Fiona Stanley Hospital, Western Australia. A pathologist dissected the sample to extract 
a ~ 3 × 2 × 1 cm sample which was then imaged using CBOP. During imaging, the specimen was kept hydrated 
in saline.

Following imaging, the sample was bisected and placed into two cassettes and a pathologist applied ink to the 
edges of the specimen to mark the orientation. The sample was then fixed in 10% neutral-buffered formalin and 
embedded in paraffin following standard histopathological protocols. The paraffin block was sectioned in the 
same reference plane as optical palpograms and stained with haematoxylin and eosin. This study was approved 
by the Sir Charles Gairdner and Osborne Park Health Care Group Human Research Ethics Committee (HREC 
No: 2007-152) and the Fiona Stanley Hospital Research Governance Office (FSH-2015-032), and informed 
consent was obtained from the patients prior to surgery. All methods were performed in accordance with the 
relevant guidelines and regulations, including following good clinical practices described at the International 
Conference on Harmonisation.

Results
Inclusion phantoms. To validate our technique, we first tested it on the four structured silicone phantoms 
described in the last section. During imaging, compression was increased in steps of 10%, causing incremental 
strain on the micro-porous layers, thus increasing the optical transmission and changing the colour saturation 
detected by the camera. As the inclusion is much stiffer than the surrounding base material, the strain in the 
micro-porous layer above the inclusion is larger than that above the base, creating contrast in colour saturation 
and, subsequently, in optical palpograms. Figure 4 shows the photographs and optical palpograms obtained using 
CBOP for each of the four inclusion phantoms, at 50% preloaded strain. The optical palpograms were obtained 
using the method described in the last section, while the photographs were acquired without the micro-porous 
layer and the green layer. In the optical palpograms, the inclusions are clearly distinguished from the base mate-
rial due to the higher stress in these regions, and the inclusion sizes are comparable to the true values delineated 
in the photographs. The average stress measured above the four inclusions was 46.5 ± 1.9  kPa, compared to 
12.9 ± 0.8 kPa for the soft base, demonstrating a high mechanical contrast between the two materials. Note that 
in Fig. 4 the corners of the inclusions in the optical palpograms are not as sharp as in the photographs, due to the 
non-uniaxial stress distribution in the micro-porous layer at the regions above the inclusion corners.

To characterise the optical palpograms generated from CBOP, we compared the phantom results acquired 
using CBOP with those acquired using OCT-based optical palpation. In particular, we measured the contrast-
to-noise ratio (CNR) and lateral resolution in the phantoms using both techniques. Similar to the definition 
described in previous  work59, we define CNR as:

where µinc and µbase are the mean stress values taken from the inclusion and base respectively, and σinc and σbase 
are the corresponding standard deviations. These metrics were computed from 200 × 200 µm regions taken at 
the centre of the inclusions and at the edge of the base material in the field-of-view. This measurement of CNR 
takes into account the noise over both the inclusion and base, which is essential when measuring materials with 
non-linear mechanical properties as the noise increases at higher strains. Optimal CNR for CBOP was measured 
at 50% preloaded strain, where it yielded comparable CNR to OCT-based optical palpation. An average CNR of 
35.2 ± 6.5 was measured across the four inclusion phantoms for CBOP, compared to 33.0 ± 9.3 for OCT-based 
optical palpation. Importantly, this result demonstrates that using the much simpler optical imaging system in 
CBOP did not substantially degrade image contrast.

Figure 5 shows the optical palpograms taken at 50% preloaded strain for the 2.5 × 2.5 × 1 mm inclusion 
phantom using CBOP (Fig. 5a), FEM (Fig. 5b) and OCT-based optical palpation (Fig. 5c). The lateral resolution 
of each technique was determined by measuring the step-response in stress measurements across the boundary 
between the inclusion and base, represented in Figs. 5d–f by the red (CBOP), blue (FEM) and yellow (OCT-based 
optical palpation) dots. An error function, represented by the black lines in Figs. 5d–f, was fitted to the stress 
measurements and the lateral resolution was defined as the 10–90% rise-distance of the error function. This pro-
cedure has previously been used to measure lateral resolution in both  OCT62 and  OCE63. The lateral resolution 
was measured at five different locations in each inclusion phantom and averaged to a mean value, as shown in 
Fig. 5g, where each error bar represents one standard deviation of the five measurements. CBOP demonstrated 
a lateral resolution of 290 µm for the smallest inclusion phantom, which increases with increasing inclusion size 
as shown in Fig. 5g. This trend of increasing lateral resolution along with increasing inclusion size is consistent 
with previous work in  OCE63. The lateral resolution measured from FEM follows the same trend as the experi-
mentally obtained results, albeit generally exhibiting a higher resolution. The lateral resolution calculated from 

(4)CNR =
|µinc − µbase|
√

σinc
2 + σbase

2
,
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FEM of the four inclusion phantoms is 430 µm, 390 µm, 340 µm and 240 µm in order of descending feature size 
with an average  R2 value of 0.994. In Fig. 5a,b, the stress values of the base and inclusion measured from the 
experiment of CBOP correspond to 82.8% and 77.9%, respectively, of that measured in FEM. The differences 
between the lateral resolution measured in experiment and simulation are likely caused by the different friction 
conditions. In the experiment, the lubricant PDMS oil was likely squeezed out due to the compression, increasing 
the friction coefficient, while in the simulation, the friction coefficient was set as a constant, resulting in more 
lateral expansion and higher strain in the FEM which corresponds to higher stress values. To more accurately 
estimate the friction coefficient in the FEM, a more thorough measurement is required to characterise the change 
of friction coefficient in the experiment.

The OCT-based optical palpation measurements provide a baseline for CBOP results to be compared against. 
As illustrated in Fig. 5g, the measured lateral resolution from OCT-based optical palpation is 280 µm for the 
smallest inclusion, similar to that measured using CBOP. In both methods, the lateral resolution degrades as the 
inclusion size increases, until reaching a limit. This trend has been reported  previously63 and is attributed to the 
restriction on lateral deformation of the base, imposed by the friction between the imaging window and stress 
layer. As inclusion size increases, the lateral deformation of the base situated between the inclusion and imaging 
window becomes increasingly restricted, resulting in a flattened strain gradient across the boundary between 
the inclusion and base thus degrading the lateral resolution. Above a certain inclusion size, the effect of the fric-
tion on the strain gradient across the boundary is unchanged, resulting in a limit on the lateral resolution. From 
Fig. 5g, it is observed that the lateral resolution in OCT-based optical palpation reaches this limit before that of 
CBOP as friction is more pronounced in thinner  layers64 (the layers used in OCT-based palpation were 500 µm 
thick compared to 1.2 mm thick layers used in CBOP). In addition, CBOP generally has a lower resolution than 
OCT-based optical palpation, as the combined thickness of the green layer and the micro-porous layer effectively 
increase the depth of the inclusion. This effect of degraded resolution while imaging features at a greater depth has 
previously been reported for OCT-based optical palpation techniques, where optical palpation in general is able 
to detect mechanical contrast at a depth of 4–5 mm, provided sufficient compression has been applied to deform 
the sample above these  features38. Beyond this depth, the assumption of uniaxial stress begins to fail and the stress 
distribution is no longer localised, making it challenging to generate optical palpograms of the sample features.

Note that the inclusion size in Fig. 5c appears larger than that in Figs. 5a,b, due to more lateral expansion of 
the inclusion in Fig. 5c. In the experiment, CBOP used a softer micro-porous layer, where much of the applied 
strain occurred in the layer, while OCT-based optical palpation used a thinner and stiffer stress layer, made from 
the same material as the base, resulting in the sample experiencing a higher strain for the same applied preloaded 
strain. The difference between the sample strains in the two methods is indicated by the higher stress values in 
Fig. 5c than those in Fig. 5a,b.

Ex vivo human mastectomy samples. To validate the performance of CBOP on human tissue, we 
imaged freshly excised sections of human breast tissue comprising of tumour and adipose, from mastectomy 
specimens obtained from patients at Fiona Stanley Hospital, Western Australia. In Fig. 6, we compare the photo-
graph, the histology image and the optical palpogram acquired from CBOP. With the aid of expert advice from 
the pathologists involved in the study, labelling of features in the histology images provided a means to validate 
contrast obtained in the co-registered optical palpograms.

The first scan was acquired on a specimen from a 59-year-old patient. As shown in Fig. 6a, a photograph of the 
tissue specimen was acquired after performing CBOP on the same tissue location. The corresponding histology 

Figure 4.  Photographs and optical palpograms acquired at 50% preloaded strain for four different-sized 
inclusion phantoms. Photographs are provided for validation purposes only to show the relative positions of the 
inclusions and were taken without the micro-porous layer. Scale bars: 1 mm.
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image is presented in Fig. 6b which was acquired at a depth of ~ 100 µm below the tissue surface and is marked 
with a black circle to denote the CBOP scanning area. Pathologists identified the presence of invasive ductal 
carcinoma (IDC), fibrous tissue (F) and adipose tissue (A) in the histology image, and these regions have been 
annotated accordingly on Fig. 6a–c. The optical palpogram, shown in Fig. 6c, was acquired at 30% preloaded 
strain and exhibits a region of elevated stress at the centre of the image, corresponding to invasive ductal carci-
noma (IDC) from the histology image. This suggests that IDC is stiffer than surrounding benign tissues, which 
is consistent with previous results acquired using  QME21,22,41. Similarly, regions of moderate and low stress match 
up well with fibrous tissue and adipose tissue detected in the histology image. It is worth highlighting here that 
while the regions in the histology image correspond with those in the optical palpograms, the imaged area is 
slightly increased due to the lateral expansion of the tissue under compression during CBOP, when compared to 
the histology image. Note that there is a region of lower stress in Fig. 6c, marked by a black arrow, which appears 
to be either fibrous tissue or adipose tissue, however, this is likely to be an artefact caused by variation in the 
sample thickness, leading to an underestimation of stress. The same region is highlighted by a black arrow in 
histology Fig. 6b where IDC was not annotated due to the variation in sample thickness.

The second specimen, taken from a 69-year-old patient, is presented in Figs. 6d–f. Figure 6d shows a photo-
graph acquired after performing CBOP and Fig. 6e is the histology image of the specimen acquired at ~ 100 µm 
below the tissue surface, with a black circle highlighting the same region of the field-of-view of CBOP and 
photograph. Figure 6f is the optical palpogram of the specimen acquired using CBOP. Due to different tissue 
geometries and mechanical properties, the optimal preloaded strain can vary between samples. For this specimen, 
CBOP was performed at 60% preloaded strain, which ensures high contrast between the different tissue types 
present. Postoperative histology of the specimen (Fig. 6e) revealed the presence of invasive lobular carcinoma 
(ILC), fibrous tissue (F) and adipose tissue (A). Once again, annotation was performed by a pathologist and the 
regions of ILC in the histology image correspond well with the regions of elevated stress in the optical palpo-
gram (Fig. 6f), which is consistent with previous studies of the mechanical properties of  ILC22,65. In Fig. 6f, an 
arrow denotes an imaging artefact at the top of the optical palpogram that appears as a region of high stress. This 
artefact was produced when a portion of the green layer was imaged without the micro-porous layer covering 
it, giving the appearance of high stress.

Figure 5.  Analysis of the lateral resolutions of CBOP and OCT-based optical palpation. Optical palpograms 
acquired using (a) CBOP at 50% bulk preloaded strain, (b) FEM of CBOP and (c) OCT-based optical palpation 
at 50% bulk preloaded strain on a 2.5 × 2.5 × 1 mm inclusion embedded within a soft phantom. The normalised 
step response (coloured points) and error function (black line) of (d) CBOP, (e) FEM and (f) OCT-based optical 
palpation are taken across the boundary of the same inclusion phantom. (g) The lateral resolution measured 
using CBOP, OCT-based optical palpation and FEA, across five locations on each inclusion phantom with error 
bars representing one standard deviation.
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Discussion
In this paper, we demonstrate CBOP, a new optical elastography platform, capable of generating 2-D maps of 
surface stress by using a digital camera and a micro-porous silicone layer. A previous digital-camera-based 
technique has been proposed in optical elastography by directly imaging the tissue as it is subjected to a tensile 
 loading66. Whilst this approach can generate mechanical contrast in tissue, it has the limitation that it relies on 
visualising tissue features to map deformation. As such, in tissue regions where the contrast is low in the opti-
cal image, elastography measurements are not possible. In addition, in many cases, tensile loading is either not 
easily implemented or undesirable. Our approach with CBOP overcomes these issues by generating contrast 
from light transmitted through the micro-porous layer and this method is independent of the visual contrast of 
the tissue. CBOP represents a simple and easy-to-use approach to optical elastography, making it more acces-
sible to a broader range of applications. Furthermore, as the data is acquired from several digital photographs, 
it greatly simplifies the data processing, readily providing high-speed imaging, which is vital in time-sensitive 
clinical applications.

In CBOP, we often compress the sample and layers to ~ 50% preloaded strain to optimise CNR. The issue with 
this is that the compressive force required to achieve such a high strain results in the lubricant PDMS oil being 
forced out, leading to an increase in  friction67 and a degradation in lateral resolution, as described in “Results”. 
This issue can be resolved by using a softer material for the substrate of the micro-porous layer, which allows 
optical palpograms to be acquired at lower preloaded strains. With this approach, we can minimise the effect of 
friction, thus improving the lateral resolution.

An advantage of CBOP, in common with optical palpation in general, is that the layer complies to the tissue 
surface to provide a relatively uniform stress distribution at the tissue surface. However, when tissue samples 
exhibit large variation in surface topography, the layer is not able to fully comply with the  sample68. While this 
issue is present in all optical palpation techniques, it is more evident in CBOP than in the OCT-based technique 
as the micro-porous layer is compressible, meaning it exhibits a lower Poisson’s ratio, and is therefore, less likely to 
conform to the tissue surface. This may lead to non-uniform contact and can lower the contrast between tumour 
and benign tissue, as seen in Fig. 6c. To achieve more even contact with the tissue sample, the micro-porous layer 
needs to be thick enough to conform to the surface of the tissue, with some compromise in lateral resolution. 
Alternatively, uniform contact could be achieved by reducing the elasticity of the homogeneous green layer, 
allowing it to better conform to the topography of the tissue. In future studies, this improvement may increase 
the accuracy of CBOP in identifying malignant and benign tissues.

Here we have used CBOP to image breast tissue, a heterogeneous tissue which displays nonlinear mechanical 
properties. Due to this nonlinearity, the different local strain experienced by the sample during CBOP will have 

Figure 6.  CBOP performed on two freshly excised mastectomy specimens containing (a–c) IDC and (d–f) ILC. 
(a) Photograph, (b) histology and (c) optical palpogram at 30% preloaded strain. (d) Photograph (e) histology 
image and (f) optical palpogram at 60% preloaded strain. The images have been annotated to show regions of 
invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), fibrous tissue (F) and adipose tissue (A) and 
black circles on the histology images mark the approximate region where CBOP was taken relative to the whole 
specimen. The arrows in (b,c,f) indicate regions of imaging artefacts. Optical palpograms have been displayed 
on a logarithmic scale to enhance mechanical contrast between tissue types.
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a strong effect on the apparent stiffness of the individual tissue constituents, potentially reducing the contrast 
between soft adipose tissue and stiff tumour. One solution proposed for use in OCE synthesizes a map of stiffness 
by reassembling A-scans taken from a series of OCE images under increasing load, such that the stress in the 
layer is uniform over the entire B-scan68. Implementation of this type of standardisation in CBOP, however, may 
prove challenging as CBOP is only able to visualise the strain in the layer rather than the strain in the sample. 
As CBOP is a qualitative technique, the absolute value of elasticity is less relevant, provided that regions of high 
stress reliably identifies tumour. Whilst there is scope to explore this further, a previous study using OCT-based 
optical palpation on 34 freshly excised human breast tissue samples indicates that the effect of nonlinearity is 
not large enough to obscure the ability to localise  tumour40.

The drawback of CBOP is that it can only generate 2-D optical palpograms, which are qualitative measure-
ments of tissue mechanical properties. In clinical applications, such as tumour margin assessment, detailed 
knowledge of not only the stress, but also elasticity, which is a quantitative measurement of the mechanical prop-
erties of tissue, will likely be required to remove subjectivity and variability between measurements. In addition, 
the information of the depth of certain features is critical in guiding clinicians to suspicious regions of tissue. 
To provide 3-D quantitative measurements of mechanical properties, inverse methods can be used, as has been 
proposed in tactile imaging  applications69–71, to generate 3-D elastography with higher resolution and accuracy.

To date, optical palpation has been developed primarily for clinical applications, typically suited to advanced 
healthcare systems, owing to the high cost of OCT. A benefit of CBOP is that it offers a cost-effective imple-
mentation of optical palpation, which can broaden the applications of optical palpation, particularly in remote 
and low-resource settings. For example, CBOP may aid in assessment of the cavity wall following a wide local 
excision in breast cancer surgery, where other intraoperative techniques would prove too costly for low-resource 
 healthcare72,73. In addition, CBOP may be suitable for remote applications beyond medicine, such as agriculture, 
where the bulk stiffness of plant leaves is an indicator of plant  health74.

In this proof-of-principle study, CBOP was performed using a benchtop design, with a high-resolution 
CMOS camera to ensure high quality optical palpograms. In future work, this technique can be implemented 
using more cost-effective CCD/CMOS cameras. As CBOP consists of only a digital camera and the accompany-
ing layers, it can be readily incorporated in a smartphone, with a broad range of potential applications, e.g. the 
detection of malignant skin  lesions75,76. While there is already a great deal of research into the use of smartphones 
in diagnostic applications, augmenting these techniques with elastography holds potential for increasing diag-
nostic accuracy. In addition, the benchtop scanning system is restricted to ex vivo studies, whilst development 
of a small form-factor probe would permit scanning of in vivo tissue intraoperatively, e.g. the assessment and 
localisation of hepatic tumours, which present as stiff lesions, during liver  surgery65. Furthermore, the use of a 
digital camera allows for the design of a wireless probe, which is preferable in a robust clinical setting due to the 
dexterity and freedom of motion it offers.

Conclusion
In this paper, we have presented CBOP, a cost-effective optical elastography platform capable of mapping stress at 
the tissue surface. CBOP has demonstrated a resolution of 290 µm and a CNR of 35.2, similar to values obtained 
with OCT-based optical palpation. In addition, we have demonstrated that CBOP can detect the mechanical 
contrast between invasive tumour and benign tissue in excised human breast specimens. This technique can be 
readily developed into a small form factor handheld probe due to the use of a simple digital camera, enhancing 
the potential for clinical translation.

Data availability
The data in this work is available upon request.
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