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collective dynamics of repeated 
inference in variational 
autoencoder rapidly find cluster 
structure
Yoshihiro nagano1,2, Ryo Karakida3 & Masato Okada1,3*

Deep neural networks are good at extracting low-dimensional subspaces (latent spaces) that 
represent the essential features inside a high-dimensional dataset. Deep generative models 
represented by variational autoencoders (VAEs) can generate and infer high-quality datasets, 
such as images. In particular, VAEs can eliminate the noise contained in an image by repeating the 
mapping between latent and data space. To clarify the mechanism of such denoising, we numerically 
analyzed how the activity pattern of trained networks changes in the latent space during inference. 
We considered the time development of the activity pattern for specific data as one trajectory in the 
latent space and investigated the collective behavior of these inference trajectories for many data. Our 
study revealed that when a cluster structure exists in the dataset, the trajectory rapidly approaches 
the center of the cluster. This behavior was qualitatively consistent with the concept retrieval reported 
in associative memory models. Additionally, the larger the noise contained in the data, the closer the 
trajectory was to a more global cluster. It was demonstrated that by increasing the number of the 
latent variables, the trend of the approach a cluster center can be enhanced, and the generalization 
ability of the VAE can be improved.

Research on deep generative models, which extract essential features from an unlabeled dataset, is currently an 
active research area. Deep generative models have been reported to be useful in a broad range of applications, 
including generating  images1–4,  movies5–7, and  text8–10. In particular, the conventional bidirectional network 
structure for the recognition and generation of images has made it possible to eliminate noise from cluttered 
images and smoothly interpolate between different images. Recognition is the process of mapping a data point 
to a latent variable, and generation is the inverse of this process.

Several studies have qualitatively highlighted the importance of repeating inferences between data space and 
latent space multiple  times1,2,11. In the present study, repeated inferences are defined as a process by which a deep 
generative model repeats the recognition and generation of images. It was shown that by using noise-containing 
images as initial values, deep generative models can eliminate noise by repeating recognition and generation 
several  times2. Moreover, compared to generating an output image from latent space to smoothly morph one 
image into another, repeating inferences several times improves the quality of the output  image11. However, 
most of these studies only qualitatively evaluate output data through a one-shot inference from the latent space 
to output data. To fill this gap in the literature, we quantified the dynamics of repeated inferences to investigate 
why repeating inferences are effective for a wide range of applications.

In many cases covered by deep generative models, the data distribution is concentrated in the low-dimensional 
sparse subspace of the high-dimensional observation space. For example, in the case of natural image datasets, 
most of the space formed by the entire image corresponds to an image in which each pixel value is randomly 
chosen, but it is not plausible for natural images. The deep generative models extract a low-dimensional subspace 
in such a high-dimensional space by nonlinear mapping using neural networks. Because various factors, such 
as noise in real environments, cause original data points to deviate from this low-dimensional subspace, we are 
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interested in how the dynamics of the activity pattern during the inference phase is drawn into the subspace formed 
by the original training data. In this study, we clarify how the activity pattern during inference in deep generative 
models approach the subspace where data are concentrated. In particular, we focused on the dataset that has a 
cluster structure, which is typically seen in image generation tasks and exists widely in nature.

We numerically analyzed the collective behavior of repeated inferences in a variational autoencoder (VAE)1,2, 
which is a typical type of deep generative model. We used the Modified National Institute of Standards and Tech-
nology (MNIST) dataset and Fashion-MNIST dataset, which are considered to have cluster structures consisting 
of 10 types of labels. We input noise-containing images to the trained VAE as initial values, and we numerically 
analyzed the transition of the activity patterns in the data space and the latent space. In particular, we calculated 
the time evolution of the distance to the vector in the latent space corresponding to quantify how the activity 
patterns approach the subspace of training data points, and we calculated the time development of the distance 
between the activity patterns in the latent space and the center of the clusters.

There are three major findings in our study. First, we numerically demonstrated that the dynamics of repeated 
inferences rapidly approach a center of the cluster in the latent space. Such transient behavior cooccurred with 
the perceptual refinement of the generated images in the data space. Second, by averaging all of these centers in 
the latent space, we considered the center of the cluster centers; by definition, training patterns, cluster centers, 
and the center of the cluster centers are hierarchically related in ascending order. We found that the inference 
dynamics approach the center of the cluster centers to the extent that the uncertainty of the input data increases 
due to noise. This result suggests that the model selects appropriate inference strategies in accordance with the 
fraction of the noise added to the input data. Third, we examined the effect of the latent variable dimension 
on inference behavior. As the number of latent variables increases, the internal representations of the clusters 
tend to become orthogonal, and the dynamics of repeated inferences approach each corresponding center. The 
generalization performance of the model was improved to the extent that the center of the cluster attracts the 
dynamics of repeated inferences. We also discuss the practical insight into the optimal number of inference steps 
from our experimental findings.

Results
In the following, we numerically analyzed the dynamics of repeated infernce of VAE. A VAE is a generative model 
consisting of two neural networks: an encoder and a  decoder1,2. An encoder gives a mapping of data, such as 
natural images to a latent variable space, and the decoder gives an inverse mapping. We evaluated the denoising 
behavior of a VAE trained with MNIST dataset for noisy inputs. The number of units of latent variable was set to 
100 unless otherwise noted. Please see the Method section for the detail of VAE, network architecture, training 
and inference procedure, and noise injection.

Dynamics of inference trajectory: an approach to cluster centers. First, we show that the dynam-
ics of the latent space activities in VAEs are rapidly drawn into a low-dimensional subspace. In this study, we 
define the following operations as repeated inferences:

where qφ(z | x) is the encoder network that maps x to the latent space activity z , and pθ (x | z) is the decoder 
network that gives the inverse mapping. First, we add the noise with noise fraction p to an image of the training 
dataset, and we set the image as x(0) = x0 . By repeating the above two equations T times, we obtain the trajec-
tory of the repeated inference on data space x(t) and latent space z(t) . In this study, we call the processes that 
gradually infer the plausible image by the above update rule as repeated inferences. We numerically analyze 
the dynamics of the activity patterns in data space x(t) and latent space z(t) from the qualitative/quantitative 
point of view. Please see the Method section for the detailed procedure about the network definition, inference 
procedure, and noise injection.

Figure 1 expresses the consecutive samples of the repeated inference in the data space. We used the MNIST 
database as the training dataset. The time development of the activity pattern in data space x(t) is aligned from 
left to right, one row after the other. The upper-left image corresponds to the initial value, x0 . The image of ‘6’ 
with p = 0.2 noise applied was used as the initial value. From the figure, the VAE removes the noise contained in 
the image in the first few steps and then gradually shifts to the specific image of ‘6’. We also show the consecutive 
samples for another image in Supplementary Information A.

(1)x(t + 1) = Epθ (x|z(t))[x],

(2)z(t) = Eqφ (z|x(t))[z],

Figure 1.  Consecutive samples in the data space (from left to right, one row after the other). The image of ‘6’ 
with p = 0.2 noise applied was used as the initial value. The image Epθ (x|ξ̄6)

[x] generated by the concept vector 
ξ̄ 6 is shown on the right
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Then, we visualize the time development of the latent space activities during the repeated inferences. The 
temporal evolution z(t) of the latent activity pattern for one initial image can be regarded as a trajectory in the 
latent space. Figure 2 shows the collective behavior of these trajectories in the latent space for multiple images. We 
used a different image of ‘1’ with a different noise realization as the initial value for each trial. We embedded the 
activity patterns in latent space into two dimensions using the principal component analysis (PCA). Because PCA 
has the degree of freedom of rotating eigenvectors, we performed PCA for the latent activity patterns included 

Figure 2.  (a–e) PCA visualization of the VAE’s latent activity patterns. The x- and the y-axes represent the first 
and second principal components. Each figure corresponds to the snapshot of the activity patterns at time t. We 
used a different image of ‘1’ with a different noise realization as the initial value for each trial. The noise faction 
was set to p = 0.2.
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within [t, t +�t] for every t to stabilize the eigenvectors. Let Z(t) be the matrix that collects the activity patterns 
of the latent space within [t, t +�t]:

We derived the matrix of eigenvectors Q(t) = [q1(t), · · · , qNz
(t)] for each time step:

and embedded the activity patterns in the two largest eigenspace as [q1(t), q2(t)]⊤z(i)(t) . Each point in the figure 
corresponds to the latent activity pattern for the specific initial image. The x- and the y-axes represent the first 
and second principal components. At the beginning of the inference t = 0 (Fig. 2a), the latent activities were 
widely distributed as one large cluster. These activity patterns branched into two clusters at t = 10 (Fig. 2c). The 
first cluster was widely distributed in the upper part of the figure, and the second cluster formed a string-like 
distribution concentrated in the lower part of the figure. After that, the activity patterns converged to individual 
points or string-like regions. Especially at t = 10 , the images generated for each of the two clusters were qualita-
tively different. The generated images of the lower cluster were ‘1’, while the images of the upper cluster tended 
to be the other numbers (see Supplementary Information B for the details). We also show the movies for these 
collective behaviors as Supplementary Materials.

From the aforementioned results, we numerically clarified that the latent activity patterns gradually branch 
into several clusters during repeated inference. Specifically, the collective behavior rapidly approached the low-
dimensional subspace near t = 10 . We numerically quantify this type of approaching behavior. In the following, 
we assume that the dataset is composed of one cluster for each label for the clarity of numerical analysis. We now 
evaluate the distance between latent activity patterns and the center of the clusters.

where ξ (i)num indicates the activity pattern of the latent variable for the i-th training data with label num:

This definition is known as the mathematical quantity called “concept”, in studies on associative memory 
 models12,13. The attraction of the activity patterns of neural networks into subspaces has been mainly studied 
with associative memory  models12,13. In the problem setting of Matsumoto et al.13, they first randomly gener-
ated a small number of concept patterns, and then they made memory patterns with a precise correlation with 
these concept patterns. In other words, the concept pattern vector corresponds to the center of each cluster. We 
call ξ̄num a concept vector and ξ (i)num a memory vector for the i-th training data in the following sections. The 
relationship between the time development of inference and the concept vector of each label (‘0’–‘9’) represented 
in the MNIST data was numerically analyzed.

We show the image Epθ (x|ξ̄6)
[x] generated by the concept vector of ‘6’, ξ̄ 6 on the right side of Fig. 1. By quali-

tatively comparing this image and the consecutive samples, it is suggested that the result of the VAE inference 
approaches the image generated by ξ̄ 6 once. Here, we define a trajectory “approaching to a concept vector” as 
follows: the trajectory whose distance to the concept vector takes a minimum at a unique halfway point and is 
closer than its synthetic linear interpolation. We quantitatively evaluated the gradual changes of the Euclidean 
distance; namely,

between the neural activity patterns and the cluster center for every label of MNIST data in the latent space 
(Fig. 3a). The distance between the cluster center and 300 different initial images was calculated. Each figure 
corresponds to each label, which was used as initial input for the VAE. The x-axis expresses the time step t of 
repeated inference, and the y-axis expresses the Euclidean distance (Eq. (7)). It was clarified that the trajectory 
of the VAE’s inference rapidly find the cluster structure. This result is qualitatively consistent with all labels of the 
MNIST data. A previous study using associative memory  models13 reported that activity patterns approached 
the concept vector once in the middle of inference when the inference was started from data with noise applied 
to each memory pattern. Figure 3b shows the same figure for the distance between the activity patterns and the 
memory vector. As same for the concept vector, the activity patterns were closest to the memory vector early in 
the inference. If the concept vector is a stable fixed point, the activity patterns should monotonically approach 
the concept vector. In other words, these results suggest that the latent space of the trained VAE has a saddle 
point structure that attracts in the direction to which noise is applied and diverges in the orthogonal direction. 
The results obtained in this study were qualitatively consistent with these previous findings. Note that, the Euclid 
distance does not necessarily reflect the closeness of the measurement to the group if the clusters are not spherical. 
We examined this possibility in Supplementary Information C. We also performed the same numerical experi-
ment on the Fashion-MNIST  dataset14, which is a dataset of Zalando’s article images consisting of various fashion 
images. The numerical results for the Fashion-MNIST dataset were also qualitatively consistent with those for 
the MNIST dataset. Please see Supplementary Information D for more details.

(3)Z(t) =





| | | |

z(1)(t) · · · z(N)(t) · · · z(1)(t +�t) · · · z(N)(t +�t)
| | | |





⊤

∈ R
N�t×Nz .

(4)Z(t)⊤Z(t) = Q(t)�(t)Q(t)⊤,

(5)ξ̄num =
1

Nnum

Nnum
∑

i

ξ (i)num,

(6)ξ (i)num = E
qφ (z|x

(i)
num)

[z].

(7)�z(t)− ξ̄num�2,



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16001  | https://doi.org/10.1038/s41598-020-72593-4

www.nature.com/scientificreports/

Relationship between data hierarchy and inference. We arbitrarily determined the amount of noise 
added to the initial input images in the previous section. To examine the effect of noise on the dynamics of 
repeated interferences, we then modulated the amount of noise. Because noise in input images causes the data 
to deviate from the original distribution, we created another class, the “abstract concept vector” for convenience, 
which averages all the labels’ concept vectors, as well as the concept and memory vectors. By measuring the dis-
tance between the trajectory of each neural activity pattern and its corresponding classes in the latent space, we 
identified the class that most attracts the neural activity patterns.

We define the “abstract concept vector” as

The three classes (memory vectors, concept vectors, and the abstract concept vector) are in a hierarchical rela-
tionship from detailed to coarse information in the order ξ (i)num , ξ̄num , and ξ̄ all . Note that the abstract concept 
vector is not a useful representation from the practical viewpoint. We chose this metric as an anchor to unveil 
the dynamics of repeated inferences. We calculated the minimum distances between neural activity patterns 
z(t) and corresponding classes,

Figure 4a shows the minimum distances according to the noise fraction. In Fig. 4a, the x-axis represents noise 
fraction p, which is the probability that the image intensities of the pixels are swapped. For every noise frac-
tion, the minimum distances between the firing pattern z(t) and hierarchical concept vectors were calculated 
by changing the initial image 500 times. The dots in the figure express the mean of the minimum distance, and 
the bars are the ±2 standard error of the mean (500 trials). We divided the parameter regions into three stages, 
I, II, and III, corresponding to the minimum distance between the firing pattern z(t) and hierarchical concept 
vectors, ξ (i)6  , ξ̄ 6 , and ξ̄ all , respectively. In stage I, the firing activity was closest to the original pattern ξ (i)6  with a 

(8)ξ̄ all =
1

10

9
∑

num=0

ξ̄num.

(9)min
t

�z(t)− ξ�2.

b

a

Figure 3.  Time development of the Euclid distance for all labels of the MNIST data. The distances from ξ̄num 
are shown in (a) and the distances from ξ (i)num are shown in (b). The shades represent the ±1 standard error of 
the mean (300 trials). We used a different image of each label with a different noise realization as the initial value 
for each trial. All figures were generated with the noise fraction p = 0.2.
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small amount of noise. Interestingly, the closest class was ξ̄ 6 with moderate noise in stage II. The activity was 
close to the abstract concept vector ξ̄ all in stage III. In stages I and II, the memory was successfully retrieved 
because the inference path was close to the cluster in which the input data belonged; however, in stage III, the 
model could not determine the original cluster, so recall failed. Accordingly, the model achieves the inference 
dynamics depending on the input uncertainty. Figure 4b shows the time step of which the distance takes its mini-
mum according to the noise fraction. The activity pattern approached the memory vector earliest in all stages. 
In addition, the time step of which the activity patterns are closest to the memory vector was dependent on the 
amount of noise. The dependence on the noise fraction of the minimum time step for the concept or the abstract 
concept vector was less significant than the one of the memory vector. These results suggest that the number of 
inference steps should be increased according to the amount of noise included in the input when performing 
noiseless reconstruction. On the other hand, the inference step should be around 20–30 independent from the 
noise fraction when performing label detection.

To confirm the abovementioned suggestion about the label prediction, we estimated the class label of the 
generated images at each step of inference. Figure 5 represents the label with the highest number of predictions 
in 200 trials. We used another convolutional neural network as a classification network in each trial. The clas-
sification network has the following structure: Input-Convolution-Convolution-Pooling-Dropout1-FullyCon-
nected-Dropout2-SoftMax. The kernel size of the convolution is three, the pooling size is two, and the dropout 
probability is 0.25 and 0.5 in order from the input side. We used a rectified linear unit (ReLU) as the activation 
function. The classification network was trained on the original MNIST dataset before classifying the generated 
images of VAE. Based on the Fig. 5a, the generated images started from ‘6’ were classified correctly in every time 
step in stages I and II ( p < 0.4 ). In stage III, the generated images were classified as ‘3’ or ‘4’ at the beginning of 
inference and were classified as ‘0’ at the end of inference. There was a particular region of inference steps that 
the generated images were ‘6’ for p < 0.7 , and the region was close to 20–30. The result for the generated images 

I II III
a b

Figure 4.  (a) Minimum distances from concepts according to noise fraction p. The bars represent the ±2 
standard error of the mean (500 trials). We used a different image of ‘6’ with a different noise realization as the 
initial value for each trial. (b) Time step of which the distance takes a minimum.

a b

Figure 5.  Estimated label of generated images. The class labels of the generated images at each step of inference 
were predicted using the classification network. The heatmap represents the label with the highest number of 
predictions in 200 trials. We used a different image of ‘6’ for (a) and ‘1’ for (b) with a different noise realization 
as the initial value for each trial.
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started from ‘1’ (Fig. 5b) was qualitatively consistent for the result of ‘6’, while the optimal range of inference steps 
was small or vanished against the middle amount of noise ( 0.4 < p < 0.7 ). These results were also consistent 
with the above mentioned suggestion.

As shown previously, the VAE extracts the cluster structures inherent in the MNIST data and infers images 
through the center of each cluster. These experimental results indicate that the dynamics of this inference are as 
shown in Fig. 6. As shown in Fig. 7a, when the dimensionality of the latent variable is large, only a few neurons 
contribute to representing the MNIST dataset. They would span a space that expresses each number (depicted 
as the numeric space in Fig. 6). According to the manifold  hypothesis15, adding noises to images will cause the 
initial value to deviate from the numeric space, which is believed to be low-dimensional. The results of our first 
analysis suggest that when the inference begins with a position far from the space expressing the MNIST data, 
the activity patterns first approach the memory vector and then quickly go to the corresponding concept vectors.

Effect of latent variable dimensionality. Because the VAEs are the generative models that learn the 
mapping between the high-dimensional data space and the low-dimensional latent space, the dimensionality of 
the latent space is the essential hyperparameter for acquiring internal representation. The setting of the latent 
space dimensionality is predicted to drastically affect not only the quality of generated images and generalization 
ability but also the dynamics of repeated inferences. In this section, we numerically analyze the effect of the latent 
space dimensionality on the dynamics of repeated inferences.

We first show the relationships between the cluster centers of each label for the aforementioned setting (Fig. 7). 
We set the dimension of the latent space to 100 in these experiments. The activity patterns in the latent variable 

Figure 6.  Schematic diagram of firing patterns in the latent state space.

a b

Figure 7.  (a) Activity pattern in the latent variable space of each cluster center. The x-axis represents the neuron 
index of the latent variable, the y-axis represents the label, and the heat map shows the activity pattern of each 
neuron. (b) Cumulative contribution ratio of principal components.
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space of each numerical concept are shown in Fig. 7a. The heat map expresses the activity pattern of each neuron, 
which corresponds to the latent variable, where the x-axis represents the hidden neuron’s index, and the y-axis 
represents the label. Only a few neurons out of 100 contribute to information representation, and many neurons 
are pruned and inactive. According to our observations, 14 out of 100 neurons were active. The dimensions of the 
latent space were examined using the cumulative contribution ratio determined by principal component analysis. 
The cumulative contribution ratios of each principal component when the training images were given to the VAE 
were shown in Fig. 7b. The variance in the latent space was explained entirely by 14 dimensions, and 70% of this 
was explained by nine dimensions. Then, we quantified how much the concept vectors on latent space, which 
correspond to the row vector of Fig. 7a, correlate with each other. We define the cosine similarity matrix C, where 
the element of the i-th row and j-th column is the cosine similarity between the concept vectors of labels i and j:

We quantified the orthogonality between the concept vectors as �C − I�2F , where ‖A‖2F is the Frobenius norm of 
A: �A�2F =

√

∑

ij A
2
ij  . By definition, the cosine similarity between concepts of the same label is one. However, 

the cosine similarity between concepts of different labels in nondiagonal terms is minimal, namely, near zero. 
In other words, as the vectors between the labels are orthogonal, the above quantity approaches zero. The left 
side of Fig. 8 shows the aforementioned orthogonality according to the dimension of the latent space Nz . We 
trained VAEs from scratch for each Nz and calculated the orthogonality for learned representations. From the 
figure, the orthogonality of the internal representation increased with Nz , and the orthogonality converged to a 
value close to zero when Nz was approximately 10–20. We also visualized the typical dynamics of repeated infer-
ences for Nz = 2, 20, 100 on the right side of the figure as (A), (B), and (C). We used the same setting as that of 
Fig. 3 except for Nz , and the trained VAEs started repeated inferences from the images of ‘6’ with input noise. 
The approach to the cluster center mentioned above appeared remarkably with the increase in the orthogonality 
of the internal representation. Because previous studies on the associative memory  models12,13,16 also identified 
an approach to the concept vector during inferences under the assumption that the concept vectors were orthogo-
nal, our findings were qualitatively consistent with these studies. We also show the detailed values of the similarity 
matrix C for each Nz in Supplementary Information E.

These results and the previous findings imply that orthogonality is necessary between cluster centers for the 
trajectory of inference to be drawn into the cluster center. Because the number of latent variables decreases, it 
is necessary to express data in fewer dimensions, and the orthogonality is lost. The reduction in the number of 
latent variables is considered to cause unstable memory patterns corresponding to the training data, and only 
the center of clusters is stabilized. As a result, the trajectory of inference goes straight to a stable point. We also 

(10)Cij =
ξ̄ i · ξ̄ j

�ξ̄ i�2�ξ̄ j�2
.

Figure 8.  The orthogonality between the concept vectors in latent space. The error bars represent the ±1 
standard deviation.
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numerically assessed whether other labels confuse repeated inferences in the VAE (e.g., although an inference 
starts from label ‘6’, it is incorrectly attracted to the concept associated with label ‘0’). The result of this assess-
ment is shown in Supplementary Information F.

We also numerically analyzed the generalization performance according to Nz (Fig. 9). The performance of the 
model was evaluated using the variational lower bound (Eq. (11)) of the log-likelihood for the test MNIST data. 
In each Nz , parameters that minimize the generalization error at epoch 100 with a total of nine conditions were 
selected from learning rates 0.01, 0.001, and 0.0001 and minibatch sizes of 50, 100, and 200. The generalization 
error was the minimum value in the vicinity of Nz = 14 , and it did not change significantly afterward. In total, 
14 of 100 latent variable neurons express training data under condition Nz = 100 (Fig. 7a), and the number of 
neurons that minimize the generalization error is consistent with this result. These results suggest that approxi-
mately 14 latent neurons are required to express the MNIST data in the network structure used in this study. 
Moreover, in the vicinity of Nz = 14 , the cluster structure appears in the representation of the latent variable 
space, and the trajectory of inference is drawn into the concept. These results suggest that it is possible to judge 
the generalization performance of the model without computing the generalization error or orthogonality of 
internal representations by simply observing the dynamics of repeated inference.

Discussion
In this study, we numerically analyzed the dynamics of repeated inferences in VAEs for the datasets with a cluster 
structure. Based on the numerical analysis of the collective behaviors, the activity patterns in latent space rapidly 
approached a specific subspace. We also found that VAEs extract the cluster structures inherent in the MNIST 
and infer images via the center of each cluster. The results of the first analysis suggest that when the inference 
starts from a point far away from the original data distribution, the repeated inferences approach the concept 
vector at high speed. The approach of activity patterns to the area where the training dataset is concentrated is 
considered to be the cause of the improvement in the quality of the generated image by repeated inference, which 
was perceptually noted in the previous research.

The learning and inference of multiple memory patterns have been widely studied using associative memory 
 models16–18. In an associative memory model with multiple embedded, correlated patterns, the centroid of the 
correlated patterns spontaneously evolves to a fixed  point12, and the time evolution of the activity patterns 
approaches the  concept13. The results of our first and second analyses are qualitatively consistent with these 
findings, suggesting that the mechanism underlying the dynamics of repeated inferences in the VAE is related 
to the traditional associative memory model.

Previously, several studies demonstrated that repeated inferences successfully  denoise2 and improve the 
quality of inferred  images11. Our study suggests that the dynamics of repeated inferences approaching the center 
of the cluster inherent in the data lead to denoising and improving the quality of output images, which were 
quantitatively observed in the data space. It is critical to use a sufficient number of latent variables to precisely 
represent the concept inherent in the data; if the number of the latent variables is insufficient, the cluster struc-
tures will not be realized in the latent space, so the concept will be hardly identified. Our results suggest that 
stage II in Fig. 4a appears only when the number of latent variables is sufficiently large, and the number of latent 
variables qualitatively changes the dynamics of repeated inferences.

We also studied the time profile of repeated inference. Our numerical experiments revealed that the latent 
activity pattern, which started from noisy input, approached the noiseless embedding (memory vector) earliest. 
In addition, the time step of this approaching was dependent on the amount of noise. These results gave us the 
practical implication about the optimal number of steps of VAE’s repeated inference. The VAE can be used for 
several purposes, including noiseless reconstruction and embedding unknown data points for label detection. 
Our numerical experiments suggest that the number of inference steps should be increased according to the 
amount of noise when performing noiseless reconstruction. In addition, when performing label detection, the 
inference step should be larger than noiseless reconstruction.

Figure 9.  Generalization error for the number of elements of latent variables Nz . The y-axis represents the 
variational lower bound of the log-likelihood of the test data.
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In this study, we numerically analyzed the repeated inferences of VAEs for specific datasets. We mainly 
focused on the MNIST and the Fashion-MNIST, which have clear cluster structures. Hierarchical structures are 
one of the primary concerns of previous studies on the relationship between the structure of datasets and the 
behavior of deep neural networks. For example, deep neural networks are claimed to express abstract informa-
tion in deep  layers19,20. In particular, Bengio et al. stated that deep layers speed up the mixing of Markov chains 
using their ability to manifest abstract information. Moreover, Saxe et al. analytically showed that deep neural 
networks learn data in order from large to small modes, and the internal representations branch  accordingly21. 
To clarify the universal behavior regarding the inference dynamics of deep generative models, we need to address 
the structure of various datasets that are not limited to the cluster structure, including the hierarchical structure.

Recently, researchers have been actively working on models that can capture features inherent in data as 
forms of internal  representations22–28. The VAE used in this study embeds the data points in a simple isomorphic 
Gaussian distribution. As a next step to expand on these works using other deep generative models, we aim to 
further investigate what factors influence the behavior of repeated inferences approaching the concept. In addi-
tion, we will analyze the dynamics of repeated inferences in another model using training datasets with more 
and varied hierarchies.

Method
Here, we first describe the summary of the VAE. Then, we describe the network architecture which we used in 
numerical experiments and how to train the VAE. Last, we describe about an inference procedure.

Variational autoencoder. A VAE is a generative model consisting of two neural networks: an encoder 
and a  decoder1,2. An encoder gives a mapping of data, such as natural images to a latent variable space, and 
the decoder gives an inverse mapping. The objective function of the VAE is obtained by finding the variational 
lower bound of log-likelihood 

∑

i log p(x
(i)) for N training data X =

{

x(i)
}N

i=1
 . In the following, we consider 

a parameter θ that maximizes the log-likelihood log pθ (x(i)) at each data point. Using the latent variable z and 
its conditional probability distribution qφ(z | x(i)) and taking the variational lower bound of the log-likelihood 
gives the following objective function:

In the above equation, p(z) is the prior distribution of latent variable z , and DKL(q‖p) is the Kullback–Leibler 
 divergence29 of probability distributions q and p. The first term of the objective function corresponds to the 
regularization, and the second term corresponds to the reconstruction error. The VAE models conditional distri-
butions pθ (x(i) | z) and qφ(z | x(i)) using neural networks. To optimize parameters θ and φ by backpropagation, 
samples were generated using a method called reparameterization trick with encoder qφ(z | x(i)) . The latent 
variable is modeled as follows:

to decompose z into random variable ǫ and deterministic variables µ and σ , where ⊙ indicates Hadamard–Schur 
product. Giving ǫ as a sample from the standard Gaussian distribution eliminates the need for a compli-
cated integral during training. If the above conditions are assumed and the expected reconstruction error 
Eqφ (z|x)[ log pθ (x

(i) | z)] is approximated by a sample average, Eq. (11) can be rewritten as follows:

φ parameterizes the outputs of the encoder µ and σ . Both parameters θ and φ were trained by the gradient ascent 
method to maximize Eq. (13). The output of the decoder was set as the probability of the Bernoulli distribu-
tion, and the expectation of the conditional probability, namely, the second term of the objective function, was 
approximated by averaging L samples.

Network architecture and optimization procedure. Since our research focuses on the behavior of 
VAE inference, we need to reduce dependence on network structure as much as possible. Based on this motiva-
tion, we used a separate three-layer, fully connected neural network for the encoder qφ(z | x(i)) and decoder 
pθ (x

(i) | z) mentioned above. The fully connected neural network is consists of a fully connected layer:

hli expresses the i-th unit (neuron) of the l-th layer, and Wij and bj are the parameters of each layer. The input to 
the first layer of the encoder h0 = [ · · · , h0j , · · · ]

⊤ corresponds to a data point x , and the output of the encoder h2 
corresponds to µ and log σ 2 in Eqs. (11)and (13). Likewise, the input and the output of the decoder correspond 
to z and x , respectively. The number of units in the middle layer was set to 1,024, and the activation function 
was set as tanh:

(11)log pθ (x
(i)) ≥ −DKL(qφ(z | x(i))�p(z))+ Eqφ (z|x)[ log pθ (x

(i) | z)] = L(θ ,φ; x(i)).

(12)z = gφ(ǫ, x) = µ+ σ ⊙ ǫ,

(13)L(θ ,φ; x(i)) ≃
1

2

Nz
∑

j=1

(1+ log ((σ
(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2)+

1

L

L
∑

l=1

log pθ (x
(i) | z(i,l)).

(14)hli = activation





#units
�

j=1

Wijh
l−1
j + bj



.
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We used the sigmoid function

for the activation function of the decoder’s last layer to normalize the output of the model to [0, 1]. The num-
ber of units of latent variable Nz was set to 100 unless otherwise noted. We show the schematic diagram of the 
network architecture in Fig. 10.

We used  Adam30 as the parameter optimization algorithm. Adam updates the model parameter θ according 
to the objective function f with the following equations:

The lower script t in the above equations expresses the time step of the optimization. We note that this time step 
is for the training phase and is not for the inference phase. g ,m, v, m̂ , and v̂ are the intermediate variables to 
compute the parameter θ of the next time step. α , β1 , β2 , and ǫ in the above equations are the hyperparameters for 
the optimization. α is the learning rate or step size of the optimization. β1 and β2 ∈ [0, 1) control the exponential 
decay rates of moving averages. We set β1 , β2 , and ǫ to the default values 0.9, 0.999, and 10−8 . The learning rate 
α was reduced in descending order as follows: 0.0005, 0.0001, and 0.00005. In our setup, we used the variational 
lower bound of the log-likelihood (Eq. (13)) as the objective function, and the parameters of the encoder φ and 
the decoder θ are the target to optimize. We set the number of samples for calculating the reconstruction error to 
L = 2 . We trained the VAE against the MNIST dataset for 1,500 epochs. The MNIST dataset consists of 28× 28
-pixels ‘0’–‘9’ handwritten images with 60,000 training data and 10,000 test data. These data are considered to 
have cluster structures consisting of 10 types of labels, namely, ‘0’–‘9’.

Inference procedure and noise injection. Here, we describe how to perform repeated inference. In this 
study, noisy MNIST data were inferred using the trained network according to the following procedure, and the 
time evolution of latent variable z(t) was obtained. First, noise was added to an image of the training dataset. 
Pixels with probability p were selected from 784 pixels, the image intensities of the selected pixels were swapped, 
and the image was set as x0 . Next, the data variable in step t = 0 was taken as x(0) = x0 . Finally, generation and 
recognition were repeated T times according to the following two equations:

(15)tanh(x) =
e2x − 1

e2x + 1
.

(16)sigmoid(x) =
1

1+ e−x

(17)gt ←∇θ ft(θt−1),

(18)mt ←β1 ·mt−1 + (1− β1) · gt ,

(19)vt ←β2 · vt−1 + (1− β2) · g
2
t ,

(20)m̂t ←mt/(1− βt
1),

(21)v̂t ←vt/(1− βt
2),

(22)θt ←θt−1 − α · m̂t/

(

√

v̂t + ǫ

)

.

(23)x(t + 1) = Epθ (x|z(t))[x],
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Figure 10.  Network architecture.
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to obtain the time evolutions of data variable x(t) and latent variable z(t) . We modeled the observation process 
by an independent Bernoulli distribution, so the output of the decoder corresponds to the expected value of x:

Also, since we used the Gaussian encoder as we mentioned above, the first half of the output of the encoder ( µ ) 
is the expected value of z . Therefore,

We expressed the first half of the encoder’s output as µφ(·) . We note that we do not need any approximation to 
compute the expected values thanks to the model definition. The dynamics of x(t) and z(t) were numerically 
analyzed. The randomness of these dynamics x(t) and z(t) only comes from the randomness of the input x(0).

The deep learning framework  Keras31 version 2.0.2 on  Theano32 backend version 0.9.0, running on CUDA 
8.0 with CuDNN v5.1 on NVIDIA Tesla K80, was used for all numerical simulations.
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