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improvements and inter‑laboratory 
implementation and optimization 
of blood‑based single‑locus age 
prediction models using DnA 
methylation of the ELOVL2 
promoter
imene Garali1,2,6, Mourad Sahbatou3,6, Antoine Daunay4, Laura G. Baudrin2,4, Victor Renault1, 
Yosra Bouyacoub2,4, Jean‑François Deleuze1,2,3,4,5 & Alexandre How‑Kit4*

Several blood‑based age prediction models have been developed using less than a dozen to more 
than a hundred DNA methylation biomarkers. Only one model (Z‑P1) based on pyrosequencing has 
been developed using DnA methylation of a single locus located in the ELOVL2 promoter, which 
is considered as one of the best age‑prediction biomarker. Although multi‑locus models generally 
present better performances compared to the single‑locus model, they require more DNA and present 
more inter‑laboratory variations impacting the predictions. Here we developed 17,018 single‑locus 
age prediction models based on DnA methylation of the ELOVL2 promoter from pooled data of 
four different studies (training set of 1,028 individuals aged from 0 and 91 years) using six different 
statistical approaches and testing every combination of the 7 CpGs, aiming to improve the prediction 
performances and reduce the effects of inter‑laboratory variations. Compared to Z‑P1 model, three 
statistical models with the optimal combinations of CpGs presented improved performances (MAD of 
4.41–4.77 in the testing set of 385 individuals) and no age‑dependent bias. In an independent testing 
set of 100 individuals (19–65 years), we showed that the prediction accuracy could be further improved 
by using different CpG combinations and increasing the number of technical replicates (MAD of 4.17).

Aging is a complex biological process influenced by both genetic and environmental factors and characterized by 
the progressive decline of several physiological, cellular and molecular  functions1,2. Several studies have aimed 
to identify potential biological and/or molecular biomarkers of aging correlating with chronological age and to 
use them to develop age prediction  models3,4. Four types of DNA-based biomarkers of aging have been identified 
among the molecular biomarkers: telomere  length3,5,6, mitochondria  mutations6,7, signal joint T-cell receptor 
rearrangement excision circles and DNA  methylation8–11.

To date, DNA methylation is considered as the most promising molecular biomarker for age prediction and 
several DNA methylation-based biomarkers of aging correlating with chronological age have therefore been 
used for the construction of prediction models to estimate the chronological age of individuals, which could 
be particularly useful in forensic science and for public health  concerns12. In forensics, the ability to precisely 
determine the chronological age of samples from DNA methylation-based age prediction models could greatly 
help investigators to identify and find unknown  individuals13. In other bio-medical applications, the estimated 
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age from DNA methylation could give an estimation of the biological  age4 and could also be an indicator of dif-
ferent diseases, risks and health conditions when compared to the chronological age of  individuals14–17.

There are numerous DNA methylation biomarkers, i.e. CpG sites, whose methylation status correlates to 
chronological age similarly in each individual, defined as the ‘epigenetic clock’12,18. These biomarkers have been 
used to develop several DNA methylation-based age-prediction models that are based either on a high number 
of CpGs requiring the use of genome-wide epigenotyping array  technologies19,20 or a lower number of CpGs 
using locus-specific technologies such as  pyrosequencing21–23. ELOVL fatty acid elongase 2 (ELOVL2) has shown 
to be one of the best DNA methylation biomarkers correlating with the chronological age of individuals among 
the age-prediction biomarkers and has therefore been included in several age prediction  models21,24. The models 
based upon DNA methylation analysis by pyrosequencing mainly use blood as a source of DNA and present 
the advantage of requiring only a small number of analyzed CpGs (down to 2 CpGs) and a minimal amount of 
DNA, which is particularly useful for forensic  applications21.

To our knowledge only one blood-based age prediction model has been developed from a single locus located 
in the ELOVL2 promoter and used multiple linear  regression25, while all the other models were developed as 
multi-locus models from at least two different  loci21. In a recent study, we evaluated and inter-compared six-age 
prediction models on a cohort of 100 individuals aged from 19 to 65 years26, including a single-locus model 
(Zbiec-Piekarska  125) and five multi-locus models  (Bekaert27,  Park28,  Thong29,  Weidner30, and Zbiec-Piekarska 
 231). The models presenting the best age prediction accuracy were the multi-locus models of Bekaert and Thong 
(MAD of 4.5–5.2 years and SEE of 6.8–7.2 years) followed by the single-locus model of Zbiec-Piekarska 1 
(MAD of 6.8 year and SEE of 8.6 years) while the models presenting the worst age prediction performances 
(MAD of 7.2–8.7 years and SEE of 9.2–10.3 years) were the three other multi-locus models of Weidner, Park 
and Zbiec-Piekarska  226. The latter MAD were much higher than the ones described in their original studies, 
and we suggested that these differences could be principally attributed to inter-laboratory variations during the 
implementation of the different pyrosequencing  assays26. Thus, the use of several loci and pyrosequencing assays 
might increase the variability in the predicted age estimates of the models when run in different laboratories.

In the present study, we aimed to develop improved blood-based single-locus age prediction models using 
ELOVL2 promoter methylation evaluating every combination of CpGs and different statistical models. We also 
aimed to propose a simple approach for the implementation and optimization of the age-prediction models across 
laboratories that could limit the effect of inter-laboratory variations on age predictions. To set up our models, 
we used freely available DNA methylation data from 1,413 individuals aged between 0 and 91 years taken from 
four independent previously published  studies27,28,31,32, which were divided into a training set (1,028 individuals) 
and a testing set (385 individuals). Seven CpG sites were considered inside the ELOVL2 promoter and we used 
multiple quadratic regression and three machine learning approaches, namely support vector machine, gradient 
boosting regressor and missMDA, to identify the CpG combinations with the best age prediction accuracy. The 
performances of our models were also compared to those of the already published single-locus  model25 on the 
same data set and we further evaluated the different approaches on a second independent set of 100 individu-
als. To further improve the age prediction accuracy, we also evaluated the possibility to estimate the age of the 
samples using the age averages of the different models and/or of different types of technical replicate experiments 
that would be easy to setup in other laboratories.

Material and methods
Description of the publicly available data sets and comparison of ELOVL2 promoter methyla‑
tion data from four independent studies. As increasing the number of individuals included in training 
sets improved the age prediction  accuracy33,34, we searched for different previously published pyrosequencing 
datasets of ELOVL2 promoter DNA methylation. Four datasets comprising  20627,  42031,  76528 and  10032 blood 
samples from individuals aged between 0 and 91 years (Supplementary Table 1) were identified. Park et al.28 
and Zbiec-Piekarska et al.31 used the same pyrosequencing assays and Bekaert et al.27 and Cho et al.32 used two 
other slightly different pyrosequencing assays (Supplementary Table 2). The data of the 1,491 samples presented 
similar DNA methylation values according to the age of individuals with the exception of CpG7 in the Park et al. 
 study28, where 73 samples presented lower DNA methylation values that could be considered as outliers (Sup-
plementary Fig. 1). Thus, the 73 samples from this study as well as five samples from Cho et al. study presenting 
missing values were excluded from our subsequent analyses. The seven CpG sites all presented strong positive 
correlation (r > 0.70) indicating that they could all be good estimators of the chronological age (Table 1). The 
1,413 samples were randomly divided in a training and testing sets including 1,028 and 385 individuals, respec-
tively.

Description of the independent testing set. We used an independent testing set of 100 blood samples 
from individuals aged between 19 and 65 years, which were used in our previously published  study26. We used 
ELOVL2 PCR and pyrosequencing assays published from the Zbiec-Pierkarska  study25, which presented a slight 
PCR bias in favor of unmethylated DNA with a polynomial fit curve on DNA methylation standards (Supple-
mentary Fig. 2). For each sample, 1 µg of DNA was used for bisulfite treatment followed by three PCR reactions 
and two subsequent pyrosequencing experiments (PSQ) per PCR (Supplementary Fig. 3A). Correlation analysis 
of DNA methylation showed that two pyrosequencing replicates from the same PCR reaction showed a bet-
ter correlation (A1:A2, B1:B2 and C1:C2) than from two different PCR reactions (A1/2:B1/2, A1/2:C1/2 and 
B1/2:C1/2, Supplementary Fig. 3B), which might influence the age prediction accuracy. Thus, we considered 
DNA methylation obtained from five types of replicate experiments: one replicate (1 PCR and 1 PSQ per PCR), 
two replicates (1 PCR and 2 PSQ per PCR or 2 PCR and 1 PSQ per PCR), three replicates (3 PCR and 1 PSQ per 
PCR) and six replicates (3 PCR and 2 PSQ per PCR).
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Human blood DNA samples. The study was conducted in accordance with current ethical and legal 
frameworks. All methods were performed in accordance to the recommendations of the French National Com-
mittee of Ethics (Comité Consultatif National d’Ethique pour les Sciences de la Vie et de la Santé). Anonymized 
blood samples were obtained after informed consent from healthy donors through the French blood bank, EFS 
(Etablissement Français du Sang, Paris, France-research agreement 15/EFS/012). Peripheral blood samples were 
derived from 100 healthy French donors aged between 19 and 65 years (Supplementary Table 1). Buffy coats 
were obtained from blood after 10 min of centrifugation at 1,600g and frozen at − 80 °C before DNA extraction. 
DNA extraction was performed on buffy coats using the QIAmp DNA blood mini Kit (Qiagen) on a QIAcube 
robotic workstation (Qiagen) according to the manufacturer’s instructions. DNA quantification was performed 
using the Qubit dsDNA HS assay Kit on a Qubit 3 Fluorometer (Thermo Fischer Scientific) according to the 
manufacturer’s instructions. These DNA samples were already analysed in our previous  study26 and were used to 
perform a new sodium bisulfite treatment in the present study.

Bisulfite conversion and bisulfite treated DNA quantification. Bisulfite conversion of DNA was 
performed on 1 µg of genomic DNA, using the EpiTect Bisulfite Kit 48 (Qiagen) on a QIAcube robotic work-
station (Qiagen) according to the manufacturer’s instructions. Bisulfite-treated DNA was quantified using the 
quantitative real-time PCR QC1 methylight  assay35 and diluted to a final concentration of 20 ng/µl for DNA 
methylation analysis by pyrosequencing.

PCR amplification. ELOVL2 promoter region was amplified as described  in26. 20 µL PCR reactions was 
performed in a Mastercyler Pro S (Eppendorf) with 20 ng of bisulfite-treated DNA as a template. The PCR mix 
included 1 × HotStar Taq DNA polymerase buffer, 1.8 mM of additional  MgCl2, 200 µM of each dNTP, 200 nM 
of each primer (ELOVL2_F: Biotin-AGG GGA GTA GGG TAA GTG AGG and ELOVL2_R: AAC AAA ACC ATT 
TCC CCC TAA TAT ) and 2 U of HotStar Taq DNA polymerase. Cycling conditions included an initial denatura-
tion step performed for 10 min at 95 °C, followed by 50 cycles of 30 s denaturation at 95 °C, 30 s annealing at 
60 °C and 30 s elongation at 72 °C. The final step included 5 min elongation at 72 °C.

DNA methylation analysis by pyrosequencing. 10 µL of PCR product was purified and prepared for 
pyrosequencing (sequencing oligo ELOVL2_Seq: ACA ACC AAT AAA TAT TCC TAA AAC T and pyrosequencing 
analysis sequence: CCR 1TGA AAC R2TTG AAG ACCR 3CCR 4CR5CR6AAA CCR 7AC) according to a previously 
described  protocol36,37. DNA methylation analysis was performed using the PyroMark Gold SQA Q96 Kit (Qia-
gen) on a PyroMark Q96 MD (Qiagen) and analyzed with PyroMark CpG software (Qiagen).

Statistical analysis and graphical representation. All statistical analysis and graphical representa-
tions were performed using R (https ://www.r-proje ct.org/) or MS Excel (Microsoft). We developed the age pre-
diction models using multiple quadratic regression (MQR), support vector machine (SVM), gradient boosting 
regressor (GBR) and MissMDA (mMDA) by testing every combination of the 7 CpG sites to improve the estima-
tions of predicted ages. MQR was performed for each of the 7 CpG sites by considering the methylation value for 
each sample and their squares so that in total 14 variables were used. For the MQR, SVM and GBR approaches, 
we split our data into a training set and testing set. We fit our model on the training set and made predictions on 
the testing set. For mMDA, the value to predict (the age of individuals) was considered as a missing value and the 
data were not split into training and testing data. mMDA used a single dataset with non-missing and missing val-
ues corresponding to training set data with non-missing ages and testing set data with missing ages, respectively. 
mMDA imputed the missing ages with PCA taking into account the similarities between the observations and 
the relationships between variables. For convenience, data with known age and those with missing values were 
named “testing set” and “training set” in the rest of our manuscript, respectively. For the support vector machine, 
we tested Linear  (SVMl), Polynomial  (SVMp) and Radial kernel  (SVMr). For the GBR we used decision trees with 
a different number of iterations. For each age prediction model, the accuracy of age prediction was evaluated by 
the mean absolute deviation (MAD) and the root mean square error (RMSE) and the correlation analyses were 
assessed using the Pearson R correlation coefficient.

Table 1.  Correlation between chronological age and DNA methylation for the seven CpGs analyzed located in 
the ELOVL2 promoter.

CpG
Chromosome location 
(GRCh38) Bekaert27 (n = 206)

Zbiec-Piekarska31 
(n = 420) Park28 (n = 692) Cho32 (n = 95) All (n = 1414)

1 Chr6: 11,044,661 0.898 0.837 0.940 0.860 0.904

2 Chr6: 11,044,655 0.915 0.799 0.920 0.834 0.884

3 Chr6: 11,044,647 0.866 0.803 0.897 0.818 0.852

4 Chr6: 11,044,644 0.912 0.841 0.902 0.872 0.851

5 Chr6: 11,044,642 0.924 0.881 0.906 0.871 0.893

6 Chr6: 11,044,640 0.939 0.877 0.935 0.821 0.911

7 Chr6: 11,044,634 0.876 0.910 0.907 0.887 0.878

https://www.r-project.org/
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Results
Development and evaluation of the performances of ELOVL2 single‑locus age prediction 
models. The previously developed ELOVL2 Zbiec-Piekarska model was based on multiple linear regression 
using CpGs 5 and  725. We tested six different statistical approaches for the development of ELOVL2 single-locus 
age prediction models. We evaluated multiple quadratic regression (MQR), as some CpGs from ELOVL2 were 
shown to present a better correlation with the chronological age using a quadratic rather than a linear regression 
 model27, support-vector machines with radial  (SVMr), linear  (SVMl) and polynomial  (SVMp) functions, the 
latter function presenting the best age prediction accuracy in a study using DNA methylation of 12 multi-locus 
CpG sites obtained by NGS that evaluated 17 statistical  models38, gradient boosting regressor (GBR) that pre-
sented the best age prediction accuracy in a 6 loci age-prediction model using epigenotyping microarray DNA 
methylation  data39 and missMDA (mMDA)40,41, which has never been used to date in an age prediction model. 
A previous study showed that age-related DNA methylation changes were  logarithmic42, however, we did not 
include this function in our regression models, as the relationship between chronological age and DNA methyla-
tion of ELOVL2 was better fitted in our data by a linear or quadratic regression for most CpGs (Supplementary 
Table 3). We also evaluated the correlation between DNA methylation of the seven CpGs. Our analysis showed 
that the CpGs were highly correlated with each other (Supplementary Fig. 4), suggesting that multicollinearity 
could be present in our models. However, we decided not to take this parameter into account and not to cor-
rect for it in the development of our models, as we only focused on predictions that should not be affected by 
 multicollinearity43. Thus, we used every combination of 1–7 CpGs sites corresponding to 127 possible combina-
tions for each statistical model to evaluate the age prediction performances, except for the multiple quadratic 
regression approach where we considered 14 variables corresponding to DNA methylation values and their 
squared counterparts for the 7 CpG sites, resulting in 16,383 possible combinations. Thus, 17,018 age prediction 
models were developed in our study.

We calculated the Pearson R coefficient, MAD and RMSE for the 17,018 age prediction models based on 
the six different statistical approaches, which have been summarized in Supplementary Fig. 5. The results first 
showed that for each tested model, the combination of CpGs giving the best age prediction accuracy slightly 
differed according to the data set taken as reference (training or testing set), where fewer CpGs were required 
to obtain the best age prediction accuracies when using the testing set as the reference set (Table 2). We could 
also note that the highest difference observed for the age prediction accuracy between the training and valida-
tion set was for GBR (MAD of 1.99–2.38 for the training set and MAD of 4.43–5.55 for the testing set) and that 
mMDA presented the least number of CpGs (three) for the best age prediction accuracy (Fig. 1 and Table 2). 
Our results also showed that five out of the six tested models (MQR,  SVMr,  SVMl, BGR and mMDA) presented 
better age prediction performances compared to those obtained with the multiple linear regression model of 
Zbiec-Pierkarska (Z-P1) in both the training and validation sets (Fig. 1, Table 2 and Supplementary Fig. 6) or 
the validation set of the original study (MAD of 5.75)25. This suggests that these different statistical models were 
more accurate for age prediction from ELOVL2 than multiple linear regression, notably for the samples from the 
youngest and oldest individuals whose predicted age were under-evaluated in the models of Zbiec-Pierkarska 
(Fig. 1 and Supplementary Fig. 6). In each model tested, we observed one sample of the testing set with a chrono-
logical age of 11 years that systematically presented an over-estimation of its predicted age (> 40 years). In its 
original study, this sample also presented an age of 50 years predicted from a multiple linear regression model 
based on 3 CpGs located in ELOVL2, ZNF423 and CCDC102B28. These results suggest that this sample could 
come from an older individual.

Table 2.  Age prediction performances of the different statistical models on the training and testing sets. 
a For each statistical model, both CpG combinations giving the best age prediction accuracy according to the 
training (T) and testing (V) sets were included in the table.

Model
Best performance from Training (T)/Testing 
(V)  setsa Number of CpGs CpG combination

Training set Testing set

R MAD RMSE R MAD RMSE

Zbiec-Pierkarska 1 – 2 CpG5,7 0.918 6.885 9.127 0.932 6.397 8.803

MQR
T 9 CpG1–2 & 4–6 &  CpG2

2
,4

2
,6

2
–7

2 0.945 5.133 6.975 0.950 4.773 6.730

V 8 CpG4–6 &  CpG2
2

–4
2

,6
2

–7
2 0.941 5.229 7.184 0.953 4.574 6.559

SVMr
T 6 CpG1–3,5–7 0.956 4.555 6.229 0.953 4.464 6.544

V 5 CpG2–3,5–7 0.9546 4.6139 6.3257 0.9534 4.4101 6.4919

SVMl
T 7 CpG1–7 0.935 5.575 7.531 0.943 5.221 7.194

V 5 CpG2–6 0.930 5.650 7.793 0.945 5.130 7.058

SVMp
T 7 CpG1–7 0.799 9.946 13.046 0.830 9.734 12.124

V 5 CpG3–7 0.778 10.456 13.582 0.833 9.465 12.098

GBR
T 7 CpG1–7 0.992 1.993 2.627 0.953 4.549 6.520

V 5 CpG2,4–7 0.989 2.378 3.121 0.955 4.426 6.398

mMDA
T 3 CpG1,5–6 0.933 5.650 7.625 0.940 5.320 7.357

V 3 CpG2,5–6 0.929 5.801 7.855 0.943 5.231 7.223
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Thus, the models giving the best age prediction accuracy on the testing set were in order  SVMr, GBR and 
MQR (MAD of 4.41–4.77 and RMSE of 6.40–6.73) followed by  SVMl and mMDA (MAD of 5.13–5.32 and 
RMSE of 7.06–7.36), while  SVMp presented the poorest age prediction accuracy (MAD of 9.47–9.73 and RMSE 
of 12.10–12.12) and was omitted for all other downstream analyses (Fig. 1, Table 2 and Supplementary Fig. 6). 
We also evaluated whether averaging the predicted age between the different statistical models used could 
further improve the age prediction accuracy. Our results showed that multiple model averaging from ELOVL2 
DNA methylation could slightly improve the age prediction accuracy (MAD of 4.36 and RMSE of 6.36 from the 
averaging of GBR,  SVMr and MQR predictions, Supplementary Table 4).

improvement of age‑prediction accuracy of the models by increasing the number of technical 
replicates and inter‑laboratory implementation and optimization of the models. We further 
evaluated the different models and the impact of the increase of technical replicates on age prediction accuracy 
using an independent testing set of 100 blood samples from individuals aged between 19 and 65  years (see 
description in the “Material and methods”). We first evaluated the Z-P1, MQR,  SVMr,  SVMl, BGR and mMDA 
models on the dataset composed of one technical replicate. The results showed that for each statistical model 
the combinations of CpGs giving the best age prediction accuracy in this independent testing set required a 
lower number of CpGs (1–4 CpGs) than previously identified in the training and testing sets and relied mainly 
on CpGs 6 and 7 (Table 3). Thus, the combinations of CpGs previously identified in Table 2 with each statistical 
model presented lower age prediction performances in this independent dataset than those obtained with these 
new CpG combinations (Supplementary Table 5). This indicated that some inter-laboratory variations might 
influence the combinations of CpGs giving the best performance for age prediction. These variations could be 
observed in our independent testing set for CpGs 1–3, whose average DNA methylation was slightly higher than 

Figure 1.  Scatterplots of predicted age and chronological age of the training and testing samples obtained 
with ELOVL2 age-prediction models based on six different statistical approaches. The plotted data were 
obtained from the combination of CpGs giving the best age prediction accuracy on the training set. Z-P1, 
Zbiec-Piekarska  model25 using multiple linear regression; MQR, multiple quadratic regression; SVM, support 
vector machine with radial kernel (r), linear (l) and polynomial (p) functions; GBR, gradient boosting regressor; 
mMDA, missMDA. Four out-of-scale values (y-axis) are missing for SVMp.
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that of the initial training and testing sets (Supplementary Fig. 7) and that could thereby explain their absence in 
the CpG combinations giving the best prediction accuracy (Table 3).

The statistical models presenting the best age prediction accuracy in this independent testing set were MQR, 
 SVMr and BGR (MAD of 4.78–4.89 and RMSE of 6.23–6.40) followed by Z-P1,  SVMl, and mMDA, which pre-
sented slightly lower performance (MAD of 5.45–5.93 and RMSE of 6.87–7.23, Fig. 2, Table 3 and Supplementary 
Fig. 8). Regarding the effect of technical replicates, our results showed that the performances of each tested model 
were improved as the number of technical replicates increased, where duplicating PCR reactions improved age 
prediction more than duplicating pyrosequencing experiments from a single PCR (Fig. 2, Table 3 and Supple-
mentary Fig. 8). The best performances were achieved with MQR and  SVMr from six replicates experiments 
(MAD of 4.17–4.23 and RMSE of 5.50–5.52, Table 3). As previously shown, averaging the predicted age between 
the different statistical models could further improve the age prediction accuracy (MAD of 4.156 and RMSE of 
5.461 using the averaging of  SVMr and MQR predictions and the six-replicate dataset, Supplementary Table 6).

Discussion
Several multi-locus age prediction models based on DNA methylation of blood or other body fluids relied on 
less than a dozen markers using mainly pyrosequencing to several tens or hundreds of loci using epigenotyping 
 arrays12,21,26. To our knowledge, only a single-locus model based on two CpGs of the ELOVL2 promoter and 
multiple linear regression has been proposed to date, in which the MAD of age predictions were of 5.03 and 
5.75 in the training (303 samples) and testing (124 samples) sets  respectively25. Despite multi-locus age predic-
tion models generally presented better age prediction accuracy than the ELOVL2 single-locus model in their 
original studies, our recent study evaluating six blood based age prediction models using DNA methylation 
analysis by pyrosequencing showed that the performances of multi-locus models could sometimes be poorer in 
independent validation  studies26. This could be attributed to inter-laboratory variations and discrepancies result-
ing from slight experimental differences accumulated during the different stages of sample processing, which 
could potentially increase as the number of PCR and pyrosequencing assays  increases26. In a more recent study 
Pfeifer et al. evaluated two published multi-locus age prediction models using an independent validation  set44. 
Their results presented worse age prediction performances (MAD of 9.84 instead of 3.75 in the original  study27) 
that they also attributed to inter-laboratory variations caused by some differences in experimental conditions 
(reagents used, PCR and pyrosequencing conditions and devices…)44.

The objective of the present study was thereby to improve the age prediction performances of single-locus 
blood-based age prediction models using ELOVL2 promoter DNA methylation and also to propose an approach 
for the implementation and optimization of the best models in different laboratories in order to deal with the 
effects of inter-laboratory variations that could decrease the age-prediction  performances26,44. Using three dif-
ferent parameters: (1) the choice of the statistical model, (2) the combination of CpG sites and (3) technical 
replications, we aimed to improve the age prediction that would avoid the need to increase the number of 
analyzed loci and to use multi-locus models, thus greatly simplifying the experimental procedures, the costs 
and also the amount of DNA required. Combining DNA methylation data of the ELOVL2 promoter from four 
independent studies allowed us to take into account some inter-laboratory variations in the developed models 

Table 3.  Age prediction performances of the different statistical models on an independent validation set.

Model
Number of 
CpGs CpGs Estimators

Training set 
(n = 1,028)

Testing set 1 
(n = 385)

Independent testing set 2 (n = 100)

1 PCR and 1 
PSQ/PCR (1 
replicate)

1 PCR and 2 
PSQ/PCR (2 
replicates)

2 PCR and 1 
PSQ/PCR (2 
replicates)

3 PCR and 1 
PSQ/PCR (3 
replicates)

3 PCR and 2 
PSQ/PCR (6 
replicates)

Zbiec-Pierkar-
ska 1 2 CpG5,7

R 0.918 0.932 0.880 0.893 0.902 0.909 0.914

MAD 6.885 6.397 5.445 5.319 5.147 5.050 5.011

RMSE 9.127 8.803 6.870 6.624 6.440 6.290 6.201

MQR 4 CpG6 & 
 CpG4

2
,6

2
–7

2

R 0.934 0.945 0.904 0.911 0.919 0.924 0.927

MAD 5.521 4.910 4.786 4.619 4.425 4.266 4.232

RMSE 7.574 7.057 6.225 5.996 5.765 5.598 5.504

SVMr 2 CpG6,7

R 0.947 0.948 0.902 0.906 0.917 0.923 0.925

MAD 5.051 4.701 4.784 4.668 4.388 4.211 4.174

RMSE 6.843 6.833 6.287 6.140 5.771 5.581 5.515

SVMl 2 CpG6,7

R 0.905 0.927 0.902 0.905 0.917 0.922 0.923

MAD 6.246 6.036 5.536 5.484 5.289 5.211 5.197

RMSE 9.078 8.095 6.874 6.796 6.525 6.404 6.375

BGR 2 CpG6,7

R 0.976 0.947 0.900 0.904 0.913 0.919 0.920

MAD 3.471 4.772 4.892 4.842 4.577 4.436 4.469

RMSE 4.660 6.931 6.397 6.314 5.973 5.803 5.741

mMDA 1 CpG6

R 0.906 0.927 0.902 0.905 0.917 0.922 0.923

MAD 6.291 6.079 5.926 5.875 5.736 5.673 5.598

RMSE 9.008 8.104 7.234 7.158 6.932 6.826 6.772
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while increasing the training set sample size, which should result in an improved precision of age  estimates33,34. 
The use of different PCR and pyrosequencing assays in these different studies could partially explain the observed 
inter-laboratory variations in the DNA methylation data. Our results showed that for the best combinations of 
CpGs obtained with the six tested statistical models (MQR,  SVMr,  SVMl,  SVMp, BGR and mMDA), five presented 
better age prediction accuracy compared to the Zbiec-Piekarska model in our training and testing sets (Fig. 1 
and Table 2), while only three statistical models (MQR,  SVMr and BGR) outperformed the same model when 
compared to the performances of its original  study25. We also showed that averaging the predictions of these 
three models could be a way to improve the age prediction accuracy slightly (Supplementary Table 4). It should 
be highlighted that 127 (multiple) linear regression models (from every combination of the 7 CpGs) were also 
tested in our study in MQR and their age prediction performances were among the worst 30% (not shown), 

Figure 2.  Scatterplots of predicted age and chronological age of the independent testing set of 100 blood 
samples from individuals of 19–65 years obtained with ELOVL2 age-prediction models based on six 
different statistical approaches. The plotted data were obtained from the combination of CpGs giving the 
best age prediction accuracy on this independent testing set. Due to replicate measures per sample and to 
allow comparison between conditions, only one age prediction value per sample was randomly picked for 
representation. Z-P1, Zbiec-Piekarska  model25 using multiple linear regression; MQR, multiple quadratic 
regression; SVM, support vector machine with radial kernel (r) and linear (l) functions; GBR, gradient boosting 
regressor; mMDA, missMDA.
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confirming that the relationship between age and ELOVL2 DNA methylation is better modeled using multiple 
quadratic  regression27. Moreover, Zbiec-Piekarska model under-evaluated the age of the youngest and oldest 
individuals in our study and this tendency was already visible in the original  study25. Of note, the  SVMp showed 
the poorest age prediction performances in our study although it had been identified as the best approach for 
age estimations among 17 statistical models including also  SVMr in a recent study using 12 different  loci38. This 
suggests that the selected markers and/or the number of markers used could greatly influence the age prediction 
accuracy of the statistical model.

In an independent test set of 100 blood samples, we evaluated MQR,  SVMr,  SVMl, BGR and mMDA on their 
age prediction accuracy as well as the effect of technical replicates of PCR and pyrosequencing experiments 
generated in our laboratory. Our results showed that the best age prediction accuracy was always obtained with 
different combinations of fewer CpG sites than previously identified (Tables 2 and 3). This indicates that the inter-
laboratory variations occurring during the implementation of pyrosequencing assays due to some differences in 
the experimental conditions might influence the age prediction accuracy, as was also shown in the multi-locus 
 models26. As a consequence, the best combination of CpGs could also vary across laboratories and should there-
fore be systematically evaluated to obtain the best age prediction performances. We have also evaluated the effect 
of replicate PCR and/or pyrosequencing experiments on age prediction accuracy in this independent validation 
cohort, which has been rarely performed in other studies. We showed that increasing PCR and pyrosequencing 
replicates could be a simple way to improve the age prediction accuracy in each tested model, with a stronger 
effect of pyrosequencing replicates from independent PCR reactions than from the same PCR reaction (Fig. 2, 
Table 3 and Supplementary Fig. 7). The best age prediction performance obtained with  SVMr (MAD of 4.17, 
Table 3) was even better than the performances from the best multi-locus model of Bekaert identified in our 
previous study that compared five multilocus-models (MAD of 4.526).

Due to the constraints inherent in our study, we used different combinations of CpGs of the ELOVL2 pro-
moter that are very close in the DNA sequence. We showed that their DNA methylations were highly correlated, 
which could have introduced multicollinearity in our developed models. For example, multicollinearity could be 
detected in the three MQR equations presented in our study for variables with variance inflation factors (VIF) 
higher than 10, thus inducing less confident estimations of their coefficients in the equations (Supplementary 
Table 7). However, although multicollinearity is an issue for explanatory modeling, it is not the case when we are 
only interested in predictions as in the context of our  study43. Nevertheless, in order to handle collinear variables 
in the models, ridge regression (RR), principal component regression (PCR) or partial least squares regression 
(PLS) could have been performed. A principal components analysis describing variance in our dataset could also 
be first performed and used to reduce the number of correlated variables (Supplementary Fig. 9).

Our study showed that the use of a single-locus blood-based age prediction model could achieve improved 
performances equaling multi-locus models. For optimal inter-laboratory implementation and age prediction 
performances of ELOVL2 single-locus age prediction models, we recommend the use of our experimental condi-
tions for ELOVL2 PCR and pyrosequencing assays combined with one of the three best statistical models identi-
fied in our study:  SVMr, MQR or GBR. The evaluation of the selected statistical models trained on our provided 
training dataset using every combination of the 7 CpG sites (14 variables for MQR) should systematically be 
performed on an independent set of testing samples (obtained from individuals with as large an age difference 
as possible). It would allow the identification of the best CpG combination that should be used in the different 
laboratories to obtain the best estimates of predicted age. Two or three measures of ELOVL2 DNA methylation 
from independent PCR experiments should then be used to further improve the age prediction accuracy of the 
samples of interest. Another approach has also been proposed for inter-laboratory adaptation of multi-locus 
DNA methylation-based age prediction models in order to manage and deal with inter-laboratory variations 
that decreased the age prediction  performances44. It required retraining the models using an independent train-
ing set, in addition to an independent validation  set44. Our proposed approach could be simpler, faster and less 
expensive as it only requires an independent validation set.

In conclusion, we showed that the performances of a single-locus age-prediction model based on ELOVL2 
promoter methylation could be improved by modifying the statistical model used, the combination of CpGs cho-
sen and also the number of technical replicates. With these improvements, the ELOVL2 single-locus model could 
therefore match the performances of multi-locus models while greatly simplifying the experimental procedures, 
the costs and also the amount of DNA needed due to the need of only one locus, which could be particularly use-
ful for forensic applications. The development of single-locus age prediction models based on ELOVL2 promoter 
methylation was also particularly interesting as DNA methylation of this age-prediction biomarker, contrary to 
other DNA methylation-based age-prediction biomarkers, has proven to be correlated with age in most types of 
 tissues45 and could thereby potentially be used on different types of samples without requiring many changes. 
Our model could also potentially be used to study the modification of the epigenetic clock in individuals with 
different health conditions, as shown in numerous studies using high-throughput multi-locus age prediction 
models relying on epigenotyping microarray  data12 and low-throughput multi-locus age prediction models 
based on  pyrosequencing17,46. Further evaluations of our single-locus age prediction models based on ELOVL2 
promoter methylation should be performed on samples from different types of tissues as well as from individu-
als with different health conditions and/or diseases to define the applicability of these models to such samples.

 Data availability
The training set was provided as Supplementary Datasets 1 (for MQR) and 2 (for  SVMr and GBR) and the test-
ing set was provided as Supplementary Datatsets 3 (for MQR) and 4 (for  SVMr and GBR). A customizable list of 
variables (CpGs) is also required for MQR and is provided as Supplementary Dataset 5.



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15652  | https://doi.org/10.1038/s41598-020-72567-6

www.nature.com/scientificreports/

 code availability
The codes were provided for the three best statistical models identified in our study, i.e. MQR, SVMr and GBR 
(Supplementary Information 2) and allowed users to identify the CpG combinations giving the best age predic-
tion performances with their own testing set.
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