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Solvable delay model for epidemic 
spreading: the case of Covid‑19 
in italy
Luca Dell’Anna

We study a simple realistic model for describing the diffusion of an infectious disease on a population 
of individuals. The dynamics is governed by a single functional delay differential equation, which, 
in the case of a large population, can be solved exactly, even in the presence of a time‑dependent 
infection rate. This delay model has a higher degree of accuracy than that of the so‑called SIR model, 
commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential 
equations. We apply this model to describe the outbreak of the new infectious disease, Covid‑19, in 
Italy, taking into account the containment measures implemented by the government in order to 
mitigate the spreading of the virus and the social costs for the population.

In a very few months a viral infection called Covid-19 (Coronavirus disease 19) originated in China, breaking 
through the borders of all the countries, rapidly spread all over the globalized world. Italy is one of the hardest 
hit countries suffering from the very dramatic consequences of this disease. The outbreak of the virus, the new 
coronavirus which caused the infection, seems out of our control. In the absence of a therapy and a vaccine, 
social distancing measures and a strict lockdown appear to be the most effective means to contain the growth 
of the infection. We should remind that there are places in the world where often infectious diseases, also those 
already defeated in the so-called more developed countries, can still cause very severe consequences among the 
local populations.

Even if we cannot answer the question why a virus starts spreading and which is its origin, we can still wonder 
how it diffuses. The aim of this work is, therefore, to provide a simple handy model for epidemic spreading, which 
could depend only on the couple of parameters which generally characterize an infectious disease: the infection 
rate and the infectiousness (or recovery) time. Both these quantities can be taken from the experience, therefore, 
we do not need further parameters to fit the data which could cause artificial predictions. We will show that the 
model we are presenting have the same, or even higher, predictive power than that of one of the most widely used 
technique in epidemiology, the SIR  model1–3. This latter model requires the presence of a recovery rate related to 
the number of recovered persons, without considering that the new cases of recovery (and fatality) come from 
infected cases occurred previously. The model we are proposing, instead, is based on the fact that the closed 
cases come from the infected ones after an average delay recovery time, therefore, contrary to the SIR model, 
formulated in terms of a set ordinary differential equations, it is described by just a functional retarded differential 
equation, bringing predictions more under control. In this work we derive the exact analytical solution of this 
model in the limit of a large population, also in the presence of a time-dependent infection rate, which is the 
case when containment measures are implemented in order to reduce the spreading of the infection. Moreover, 
the definition of the so-called basic reproduction number R0 (a parameter determining whether a infectious 
disease can spread or not) comes out naturally in our delay model. Actually delay models in epidemiology have 
been already implemented in many  cases5–10. We consider the case where the infection period is constant and 
provide for the first time an analytical result for the spreading of the disease in the early stage of the infection.

We finally apply this technique to give a quantitative description of the diffusion of Covid-19 in Italy, show-
ing the current scenario based on the actual situation and what would have happened without the containment 
measures. Generally it is quite difficult to give a reliable forecast on the fate of the epidemic spreading because 
it heavily depends on individual and social behaviors, on the effectiveness of the containment measures already 
implemented, or that will be taken, by the government and on the future political decisions. At the time being, 
even if the situation in Italy is improving, it seems that more efforts are needed in order to change course and 
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rapidly stop the spreading of the disease. Further measures might be useful, like, for instance, (i) running more 
diagnostic tests, at least, on all the doctors and medical workers who are in contact with many patients, (ii) 
improving the food distribution to avoid the crowding in the food shops and to ensure subsistence goods also 
to those who need, (iii) providing medical devices like surgical masks to all the population.

As last remark, we remind that the outbreak of Covid-19 has been declared a pandemic by the World Health 
Organization. Many countries are already heavily overwhelmed by this infection and by the risk for the public 
health, therefore, in a networked world we all have to behave and operate with an improved spirit of cooperation. 
The bitter lesson imparted by this tough situation is that we cannot save ourselves alone.

Results
the model. Let us introduce the model, assuming that the full population is constant, uniform, homoge-
neously mixed, and counts N persons who can be divided in three parts, susceptible, infected and recovered 
persons, whose numbers, at a given time t, are S(t), I(t) and R(t), respectively.

Let us define Io the initial infected persons at time t = 0 , and introduce P(t) , the probability of remaining 
infectious at later time t after becoming infectious. P(t) is a monotonic decreasing function with P(0) = 1 and 
limt→∞ P(t) = 0 . The initial number of the first infectious persons, therefore, decreases according to IoP(t) , 
meanwhile other susceptible persons become infected after coming in contact with those already infected, with 
a rate of infection α , which counts the number of contacts per unit of time, times the probability for a infected 
person to transmit the infection. The probability of new infections at a given time x is, therefore, proportional to 
the ratio S(x)/N of persons who are still susceptible and the number of infected persons who are still infectious, 
I(x)P(t − x) . At a later time t, the total number of infections are, therefore, given by

Equivalently, writing P ′(t) = dP(t)
dt  , Eq. (1) can be written as

Since P(t) is a non-increasing function, P ′(t) is negative, therefore the last two terms of Eq. (2) reduces the 
increase of infection due to the first term. For that reason we can identify those terms as minus the variation of 
the removed cases

It is convenient, for the benefit of future discussion, to introduce the total number of infected persons, either 
those who are still infected at time t, I(t), and those who recovered or died, R(t),

From Eqs. (2) and (3), since S(t)+ F(t) = N , we have that F(t) fulfills the following equation

which is valid for any choice of P(t).

Standard SIR model. If we now choose P(t) = e−βt , inserting it in Eqs. (2)–(3) we recover the well-celebrated 
SIR  model1–3

where β is the recovery rate. In order to make a comparison with what follows let us solve these equations when 
the population N is very large, and as long as F(t) ≪ N , such that S(t) ≃ N . In this situation we have

and solving dF(t)dt = αI(t) , with the initial condition F(t = 0) ≡ Fo = Io , we get that the growth of the total 
number of infections, at the early stage, has the following form

(1)I(t) = IoP(t)+
α

N

∫ t

0

S(x)I(x)P(t − x)dx

(2)
dI(t)

dt
=

α

N
S(t)I(t)+ IoP

′(t)+
α

N

∫ t

0

S(x)I(x)P ′(t − x)dx

(3)
dR(t)

dt
= −IoP

′(t)−
α

N

∫ t

0

S(x)I(x)P ′(t − x)dx

(4)F(t) = I(t)+ R(t)

(5)
dF(t)

dt
= α

(

F(t)− R(t)
)

(

1−
F(t)

N

)

(6)
dS(t)

dt
=−

α

N
S(t)I(t)

(7)
dI(t)

dt
=

α

N
S(t)I(t)− βI(t)

(8)
dR(t)

dt
=βI(t)

(9)
dI(t)

dt
= (α − β) I(t)
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Delay model. If, instead, we choose P(t) = �(t − T) , a step function, namely P(t) = 1 for 0 ≤ t ≤ T and 
P(t) = 0 for t > T , inserting it in the Eqs. (2), (3), being P ′(t − x) = −δ(t − x − T) , we get

From the equations above it is easy to see that dR(t)dt =
dF(t−T)

dt  , therefore R(t) = F(t − T)+ C , with C a constant 
value. We remind that, contrary to I(t), either F(t) and R(t) are both cumulant quantities, namely they are mono-
tonic increasing functions. Requiring that F(t) saturates at t → ∞ , the constant value has to be C = 0 , therefore

This equation describes the realistic fact that the total number of cases at some time t becomes that of removed 
cases at later time t + T , namely after an infectious period T. This seems to be the case also for the new corona-
virus spreading, by looking at some reported data for Covid-19 in Italy, shown in Fig. 3 (see also Ref.4). Equa-
tion (14) allows us to write Eq. (5) in terms of only the function F(t). Eq. (5), for the delay model, therefore, reads

where F(t − T) = 0 for t < T  . This delay differential equation is known to be linked to non-Markovian 
 dynamics11. If we consider the case where the population N is very large, and as long as F(t) ≪ N  , we can 
neglect the logistic term, 

(

1−
F(t)
N

)

≃ 1 , so to have

We expect that this functional retarded differential equation, Eq. (16), at least, at the early stage of the infection, 
could describe accurately the spreading of the epidemic disease.

Basic reproduction number. Let us rewrite Eq. (16), for t > T , in the following form

where we introduce and naturally identify R0 as the so-called basic reproduction number

which is a widely used parameter for predicting whether the infectious disease will spread into a population 
or turns off, and represents the average number of cases originated by a single infectious case during the infec-
tiousness period. Eq. (17) implies that the first derivative of F(t) is equal to its increment in a time interval T, 
divided by T, namely F(t) is linear in t if the rate is equal to the critical value α = T−1 ( R0 = 1 ). For α > T−1 
( R0 > 1 ), the function F(t) increases more than linearly, while for α < T−1 ( R0 < 1 ), F(t) goes slower than 
linearly (see Fig. 1). If we let α vary in time, when α = T−1 ( R0 = 1 ) the function F(t) has an inflection point, 
where it changes from being concave to convex or vice versa. Making a comparison with the SIR model, where 

(10)F(t) = Fo
β − α e(α−β)t

β − α
.

(11)
dS(t)

dt
=−

α

N
S(t)I(t)

(12)
dI(t)

dt
=

α

N
S(t)I(t)−

α

N
S(t − T)I(t − T)

(13)
dR(t)

dt
=

α

N
S(t − T)I(t − T)

(14)R(t) = F(t − T)

(15)
dF(t)

dt
= α

(

F(t)− F(t − T)
)

(

1−
F(t)

N

)

(16)
dF(t)

dt
= α

(

F(t)− F(t − T)
)

(17)
dF(t)

dt
= R0

F(t)− F(t − T)

T

(18)R0 = α T

Figure 1.  R0 for different slops of the epidemic curve as compared with its increment in a time interval T.
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R0 = α/β , one can identify β , the recovery rate with the inverse of the recovery time β ∼ 1/T . Notice that R0 
is well defined as long as F(t) ≪ N , namely in the early stage of the infection. In general terms one has to define 
the generalized reproduction number Rt = α(1− F(t)/N)T so that Eq. (15) can be written in the same form 
of Eq. (17) with Rt instead of R0.

Analytical solution. In this section we will provide the exact solution of Eq.  (16). Writing the time t as 
t = nT + t ′ , where n = ⌊ t

T ⌋ is the integer part of t/T, the solution of Eq. (16) is given by

where the functions Aℓ fulfill the following iterative equation

with A0(t) = 0 for any t < T and A0(T) = 1 , so that, for ℓ = 1 , we recover A1(t) = eαt . The full exact solution is, 
therefore, obtained by solving a cascade of n local integrals. The proof of Eqs. (19) and (20) is given in Methods.

At time t = nT , from Eq. (20), performing the chain of integrals, and putting the results in Eq. (19), we get 
the following exact result

For instance, for n = 1 and n = 2 , namely up to twice the infectiousness period, the total number of cases is 
simply F(nT) = Fo

(

enαT − (n− 1) αT e(n−1)αT
)

 . Surprisingly we find that Eq. (21) depends only on (αT) , which 
is the basic reproduction number R0 . It is easy to check from Eq. (21) that, while for large R0 = αT , F(nT) is 
dominated by an exponential behavior, for R0 = 1 , F(nT) becomes linear in n. From Eqs. (19) and (20) we can 
also write the following equation

By iteration one gets simply

where Im fulfills the following recursive equation, with inital value I0 = 1,

The final exact result for any time is, therefore,

where t ′ = mod(t,T) . For practical reasons, in order to avoid indeterminate forms, for t ′ = 0 and m = 0 , in 
Eq. (25) one can add an infinitesimal term ǫ → 0 , so to have (αt ′ + ǫ)m . Once we have the total number of 
infections F(t) at any time, we get also the number of removed cases, R(t) = F(t − T) , and we can easily cal-
culate, from Eq. (25), the number of persons who are still infected, at a given time t, which, by definition and 
from Eq. (16), is given by

Comparison between the delay model and the standard SIR model. As we have seen, one assumption the stand-
ard SIR model is based on is that the time in which individuals remain infectious is described by an exponen-
tial distribution, which is however biologically rather unrealistic. In reality, infectious periods are fairly closely 
centered about the mean duration of an infection. A constant infectious period is therefore a more realistic 
assumption. The conventional SIR model being formulated in terms of ordinary differential equations, requires 
the presence of an effective recovery (and fatality) rate which might not correspond to the actual rate since 
the new cases of recovery (and fatality) come from infected cases occurring a few days earlier. For that reason, 
instead of writing the problem in terms of ordinary differential equations one has to do it in terms of functional 

(19)F(t) = F(nT + t ′) = Fo

n
∏

ℓ=1

Aℓ(T)An+1(t
′)

(20)Aℓ(t) = eαt
(

1− α Aℓ−1(T)
−1

∫ t

0

dt′e−αt′Aℓ−1(t
′)

)

(21)F(nT) = Fo

n
∑

ℓ=0

(−1)ℓ

ℓ!

(

(n− ℓ) αT
)ℓ
e(n−ℓ)αT

(22)F(t) = F(nT + t ′) = eαt
′

(

F(nT)− α

∫ t′

0

ds e−αsF
(

(n− 1)T + s
)

)

(23)F(nT + t ′) = eαt
′

n
∑

m=0

(−α)mIm(t
′) F

(

(n−m)T
)

(24)Im(t
′) =

∫ t′

0

ds Im−1(s) =
t ′m

m!

(25)

F(t) = F(nT + t ′) =eαt
′

n
∑

m=0

(−1)m

m!
(αt ′)mF

(

(n−m)T
)

=Fo e
αt′

n
∑

m=0

n−m
∑

ℓ=0

(−1)ℓ+m

ℓ!m!
(αt ′)m

(

(n−m− ℓ)R0

)ℓ
e(n−m−ℓ)R0

(26)I(t) = F(t)− R(t) = F(t)− F(t − T) =
1

α

dF(t)

dt
.
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differential equations, as for the delay model. Even if the recovery rate of the SIR model is chosen to be equal to 
the inverse of the average infectious period, the dynamics obtained by solving Eqs. (6–8) does not correspond to 
the dynamics obtained by solving Eqs. (11–13). As shown in Fig. 2, even with the same initial conditions and the 
same R0 , the growth and the expected peak of the spreading of the infectious disease are quite different between 
the two models, even if the asymptotic final values are the same. For R0 ≃ 2.5 the SIR model predicts a much 
lower peak of I(t) with respect to that expected from the delay model, which is much sharper and occurs much 
earlier. In other words, the outbreak of an epidemic disease might be underestimated by the standard SIR model. 
We notice also that the analytic expression for F(t) in Eq. (25) describes fairly well the increase of the infection, 
at least in its early stage.

Time‑dependent infection rate: analytical solution. Let us now consider the possibility of having a time-depend-
ent infection rate α(t) in the dynamical equation for the total number of infected persons

Also in this more general case the exact solution, valid for any profile of α(t) , can be written in the same form 
of Eq. (19), namely, F(t) = F(nT + t ′) = Fo

∏n
ℓ=1 Aℓ(T)An+1(t

′) , where now the functions Aℓ are given by

F o r  i n s t a n c e ,  A1(t) = e
∫ t
0
α(t′)dt′  , 

A2(t) = e
∫ T+t
T α(t′)dt′

(

1− e−
∫ T
0
α(t′)dt′

∫ t
0
dt′ α

(

T + t ′
)

e−
∫ T+t′

T α(t′′)dt′′e
∫ t′

0
α(t′′)dt′′

)

 and so on. For constant α, 

Eq. (28) reduces to Eq. (20). See “Methods” for more details about the derivation. The solution F(t) has therefore 
to fulfill the following recursive equation, after splitting the time in n intervals T with the residual time 
t ′ = mod(t,T)

This general result implies that if we knew the time dependence of the infection rate or if we could tailor its 
evolution by, for instance, containment measures, we can know the exact analytical expression of F(t), the total 
number of infected persons, as a function of time, as long as F(t) is much smaller than N.

Covid‑19 in Italy. Let us consider the delay model in its general form, Eq. (15) where the infection rate α 
varies in time

as the effect of some containment measures taken in order to reduce the impact of an infection on the population. 
As an example, let us suppose that α(t) is modified by social distancing measures, lockdown and the shutdown of 

(27)
dF(t)

dt
= α(t)

(

F(t)− F(t − T)
)

.

(28)Aℓ+1(t) = e
∫ ℓT+t
ℓT α(t′)dt′

(

1− Aℓ(T)
−1

∫ t

0

dt′ α
(

ℓT + t ′
)

e−
∫ ℓT+t′

ℓT α(t′′)dt′′Aℓ(t
′)

)

.

(29)F(t) = F(nT + t ′) = e
∫ nT+t′

nT α(s)ds

(

F(nT)−

∫ t′

0

ds α(nT + s)e−
∫ nT+s
nT α(t′′)dt′′F

(

(n− 1)T + s
)

)

(30)
dF(t)

dt
= α(t)

(

F(t)− F(t − T)
)

(

1−
F(t)

N

)
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Figure 2.  (a) Number of susceptible S(t) (dotted lines), infected I(t) (solid lines), and recovered R(t) 
(dashed lines) persons as functions of time, for the SIR model, Eqs. (6–8) (blue lines) and for the 
delay model, Eqs. (11–13) (red lines), with initial conditions Io = I(t = 0) = 150 and R(0) = 0 , and 
S(t)+ I(t)+ R(t) = N = 6× 10

7 , with parameters α = 0.23 per unit of time and T = β−1 = 11 units of 
time (e.g. days), therefore the basic reproduction number in both the models is R0 ≃ 2.5 . (b) Total number of 
infected persons F(t) = I(t)+ R(t) , in log-scale, as a function of time from the standard SIR model (blue solid 
line) and from the delay model (red solid line). The gray dotted lines are the analytical results from Eq. (10) for 
the SIR model and Eq. (25) for the delay model, valid in the first stage of the infection.
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many work activities, as it is happening in Italy (and in many other countries) to mitigate and reduce the spread-
ing of the new coronavirus, Covid-19, after two main decrees imposed by the Italian Prime Minister ordering the 
lockdown of the whole national territory, taken on March 11th (lockdown and shutdown of many stores) and 
March 22th 2020 (shutdown of many factories and strengthening of social distancing measures), and after some 
other measures taken right before for local regions (e.g. the decree of March 8-th for the lockdown of Lombardy 
and other areas). As a result, we can imagine that α(t) decreases smoothly after those dates taking into account 
the adaptation time for the individuals to the new social behaviors and the period needed to complete the last 
activities before the blockade of the factories. Let us suppose, therefore, that α(t) can change in time according 
to a smooth step function as in Eq. (31),

where t1 and t2 are the times where the steps are located, τ1 and τ2 make the function to be smooth, α1 is the initial 
observed infection rate which causes the starting exponential growth of the epidemic disease, α2 the intermedi-
ate rate, which fits with the data, supposed to be reached after the first decree of lockdown, and α3 the supposed 
asymptotic infection rate after the second decree of lockdown. Fixing the average of recovery and fatality time 
T, the reproduction number is also a function of time, therefore we define

with a profile shown in Fig. 4. More precisely Rt = α(t)(1− F(t)/N)T , but as we will see, because of the con-
tainment measures, F(t) ≪ N at any time.

Solving Eq. (30), or, analogously, using the recursive relation in Eq. (29), with the time-dependent rate α(t) 
given by Eq. (31), with the parameters reported in Fig. 4, we obtain the solution F(t) which slowly goes to satura-
tion over time, in perfect agreement with the data for the total number of confirmed infected cases, as shown by 
Fig. 5, where the blue line is the expected curve, while the red points are the official data. The dotted gray lines in 
Fig. 5 represent F(t) if the containment measures had not been taken. As one can see from Figs. 4–5, only when 
Rt becomes smaller than 1, the curve flattens allowing for a stop of the epidemic spreading, avoiding that a large 
part of the population gets infected. For Rt ≃ 1 , F(t) would increase linearly, and I(t) would become almost 
constant, meaning that the number of new infections would be equal to the number of closed cases. A reliable 
forecast has to take into account the fact that the official data of infectious cases are made by counting mostly 
the symptomatic cases, probably discarding other infectious cases which could transfer the virus even without or 
with mild symptoms. Moreover, the data of both the total number of infected persons and that of the recovered 
ones could be affected by the procedure, the realization times and the number of the diagnostic tests. However, 
since our model relies on the infectiousness time, it does not need a fitting of the data for recovered persons 
which may be affected by systematic errors. This uncertainty on the data for closed cases would compromise the 
result for the SIR model. On the contrary, our theoretical prediction based on the delay model agrees fairly well 
with the data-set for total infected cases, as shown in Fig. 5.

As a final remark we remind that most of the confirmed infected cases in Italy are counted after the appear-
ance of the symptoms and the persons who exhibit severe ones are mostly hospitalized, and afterwards counted 
as infected persons. Some of them, unfortunately, die approximately 4 days after (therefore after approximately 
9 days from the onset of the first symptoms, as reported by the Istituto Superiore di Sanità14). We observe that, 
splitting the closed cases between real recovered persons, RR , and dead persons, RD,

(31)α(t) =

(

α1 − α2

1+ e(t−t1)/τ1
+ α2 − α3

)

1

1+ e(t−t2)/τ2
+ α3

(32)Rt = α(t)T

(33)R(t) = RR(t)+ RD(t)

 0

 10000

 20000

 30000
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R
(t)

   
   

  F
(t)

Figure 3.  Total number of confirmed cases of Covid-19 in Italy, F(t) (red dots), reported in Ref.12, since 21th 
February to 22th March 2020, compared with the closed cases, R(t) (blue dots), in the same period of time. If 
the numbers of closed cases are shifted in time by T ≃ 11 days (blue circles) they fairly overlap with the total 
numbers of cases.
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and since the confirmation of recovery needs extra diagnostic tests which are not widely performed yet, the 
most reliable data are those related to dead persons RD(t) , which are found to be linked to the total number of 
confirmed infected cases, F(t), in the following way

with γ = 1
7
 and a delay time of Td = 4 days, as show in Fig. 6. The number of victims follows the number of total 

confirmed cases and it is equal to 1/7 of its value four days before.
The fatality of the sick persons, those who exhibit some symptoms, is therefore quite high, 

limt→∞
RD(t)
F(t) = γ ≃ 14%.

Discussion
We present a simple but realistic model for describing epidemic spreading, based on the fact that the closed cases 
come from infected ones at an early time. This observation allows us to formulate the problem in terms of a single 
functional differential equation depending on two well defined clinically relevant parameters: the infection rate 
and the infectiousness time. We provide the exact analytical solution for such an equation, in the limit of a large 
population, finding how it depends on the basic reproduction number R0 = αT , see Eqs. (21) and (25). Contrary 
to the result of the conventional SIR model, the total number of cases has a combined polynomial and exponential 
growth. We derive the analytic solution also in the presence of a generic time-dependent infection rate, which is 
the case when some measures are taken to weaken the spreading of the epidemic disease. We apply, therefore, our 
model to study the spreading of Covid-19 in Italy, allowing the infection rate to vary in time, as a result of some 
containment measures implemented by the government in order to mitigate the consequences of the infection 

(34)RD(t) ≃ γ F(t − Td)
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Figure 4.  Time-dependent reproduction number Rt = α(t)T , as a function of time, based on the profile 
for the infection rate described by Eq. (31). We take T about 11 or 12  days4, t1 between 13th and 14th March 
2020, t2 on 26th March, τ1 ∼ 2 days, τ2 ∼ 1 day. The initial value is R0 = α1T ≃ 2.65 (in agreement with other 
estimates, see e.g.13), the intermediate value is Rt = α2T ≃ 1.45 , and the final value, Rt = α3T ≃ 0.85 . The 
vertical dotted blue lines point the dates of the main laws for the containment measures (8th–11th March and 
22th March 2020). The gray dotted lines correspond to Rt in the absence of the first and the second containment 
measures.
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Figure 5.  (a) Total number of infected persons over time, F(t) (red points), from official data for Covid-19 in 
 Italy12, where N = 6 · 107 , up to 25th April. The blue line is the theoretical prediction F(t) as solution of Eq. (30), 
with initial conditions, fixed at t = 0 the 21th February, Fo ≃ 150 , and α = α1 ≃ 0.23 ( R0 ≃ 2.65 ), and using 
the profile for the infection rate given by Eq. (31), with the parameters reported in Fig. 4. The gray dotted lines 
are the expected curves for F(t) if the first and the second containment measures (8–11th March and 22th 
March) had not been taken. (b) Daily number of infected persons, �F(t) , compared with the theoretical result 
obtained performing dF(t)

dt
 from the solution of Eq. (30).
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on the population. We find perfect agreement between the official data and the expected theoretical results. In 
general terms, the reproduction number should be suppressed well below 1 in order to rapidly recover the initial 
condition. By a rough estimation, in order to have a decline of the infection as fast as its growth, containment 
measures or possible therapies should be so effective to reduce the basic reproduction number and reach the 
final value Rf  such that Rf ≃

R0

2R0−1
 , starting from an initial value R0 . In the case of Covid-19 in Italy, the initial 

value for the basic reproduction number was R0 ≃ 2.6 , while the current one (April) seems to settle at Rf ≃ 0.8 , 
implying a rather slow decline of the infection. Finally we discussed the fatality rate, showing that the number of 
victims is exactly a fraction of the total number of cases few days before. Before we conclude a final comment is 
in order. The confirmed cases are mostly symptomatic or mild symptomatic. There are also asymptomatic cases 
which may contribute to the spreading of the infection. However, by scaling arguments, the infection rates of the 
symptomatic and asymptomatic are expected to be equal, otherwise either symptomatic or asymptomatic cases 
might become irrelevant. Under the hypothesis that the infectiousness time does not depend on the strength of 
the symptoms, the ratio between the total number of asymptomatic and symptomatic cases should be constant, 
although it could be very large. As a result, the total number of infected persons should be equal to the number 
of symptomatic cases times an overall pre-factor greater than one. The conclusion is, therefore, that, as far as the 
time evolution of the infection is concerned, which is the aim of this work, the study of only symptomatic cases 
is still relevant and greatly meaningful.

Methods
Solution of the retarded differential equation. For t ≤ T , the solution of Eq. (16) is F(t) = Foe

αt . Let 
us consider t = T + dt with infinitesimal dt, from Eq. (16)

Using this result we can calculate

Analogously, from that, we can proceed calculating

and going on by adding infinitesimal time steps, we find iteratively that

with A1(T) = eαT and defining

(35)F(T + dt) = F(T)+ dt α(F(T)+ F(0)) = F(T)(1+ α dt)− Foα dt = Foe
αT (1+ α dt)− Foα dt

(36)
F(T + 2dt) = F(T + dt)+ dt α(F(T + dt)+ F(dt)) = Foe

αT (1+ α dt)2 − Foα dt
[

(1+ α dt)+ eαdt
]

(37)
F(T + 3dt) =F(T + 2dt)+ dt α(F(T + 2dt)+ F(2dt)) = Foe

αT (1+ α dt)3

− Foα dt
[

(1+ α dt)2 + eαdt(1+ α dt)+ e2αdt
]

(38)F(T +mdt) =Foe
αT (1+ α dt)m − Foα dt

m−1
∑

j=0

ejαdt(1+ α dt)m−j−1 ≡ FoA1(T)A2(mdt)

(39)=F(T)A2(mdt)
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Figure 6.  (a) Total number of confirmed cases of Covid-19 in Italy, F(t) (red dots), reported in Ref.12, up to 
25th April 2020, compared with the deceased cases, RD(t) (blue dots), in the same period of time. If the numbers 
of dead persons are shifted in time by Td ≃ 4 days and rescaled by γ−1 = 7 (blue circles) they perfectly overlap 
with the total numbers of cases. The blue solid line is theoretical prediction for F(t), as solution of Eq. (30). (b) 
Daily number of infected persons, �F(t) (red dots), and daily number of victims �RD(t) (blue dots). The blue 
circles are the daily number of victims after rescaling according to Eq. (34), with Td = 4 days and γ = 1/7 . The 
solid blue line is dF(t)

dt
 from the solution of Eq. (30).
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In particular, for mdt = T  , we have an expression for F(2T) in terms of the function at early time, 
F(2T) = F(T)A2(T) . We can now start again with the iteration

One can proceed in the same way as before getting

which can be written as

where

We can notice that at any step T we can perform the same calculation since we can factorize the function F as

where, therefore, F(nT) = Fo
∏n

ℓ=1 Aℓ(T) and

In the continuum limit, dt → 0 and m → ∞ , keeping finite the time interval mdt = t , reminding that

we finally obtain the result reported Eq. (20).
In the presence of time dependent infection rate, splitting again the time in n intervals T and the residual 

time in m infinitesimal intervals dt, we define

Proceeding iteratively as done for the constant rate case, but now taking trace of the different values of α,

after several steps, similar to those done previously, we find that Eq. (46) can be generalized in the following way

whose continuum limit is given in Eq. (28).
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