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Asymmetry induced suppression 
of chaos
Animesh Biswas1, Sudhanshu Shekhar Chaurasia1, P. Parmananda1 & Sudeshna Sinha1,2*

We explore the dynamics of a group of unconnected chaotic relaxation oscillators realized by mercury 
beating heart systems, coupled to a markedly different common external chaotic system realized by 
an electronic circuit. Counter-intuitively, we find that this single dissimilar chaotic oscillator manages 
to effectively steer the group of oscillators on to steady states, when the coupling is sufficiently 
strong. We further verify this unusual observation in numerical simulations of model relaxation 
oscillator systems mimicking this interaction through coupled differential equations. Interestingly, 
the ensemble of oscillators is suppressed most efficiently when coupled to a completely dissimilar 
chaotic external system, rather than to a regular external system or an external system identical to 
those of the group. So this experimentally demonstrable controllability of groups of oscillators via a 
distinct external system indicates a potent control strategy. It also illustrates the general principle 
that symmetry in the emergent dynamics may arise from asymmetry in the constituent systems, 
suggesting that diversity or heterogeneity may have a crucial role in aiding regularity in interactive 
systems.

A fixed point of a dynamical system, also commonly known as an equilibrium or steady state, is a state where 
all variables are constant in time. Steady states are often the desired target of complex systems comprised of 
mechanical1, optical2,3, thermo-optical4, electrical, chemical5,6 and biological oscillators7. So, the unearthing 
mechanism that can guide complex dynamics to stable fixed states is of considerable relevance, both for under-
standing the diverse ways in which intrinsic complexity can be reigned, as well as for applications that rely on 
stabilization of steady states8–21. Conversely, the enhancement of chaos also has important practical engineering 
applications22, and in that context too it is valuable to find underlying mechanisms that may have lead to the 
undesirable steady states.

Here we consider the dynamics of an ensemble of uncoupled oscillators, coupled only to a common external 
oscillator. That is, the oscillators in the group have no direct coupling amongst themselves, and the interaction 
is wholly mediated via the external system23,24. So this common oscillator can be considered analogous to a 
pacemaker or pacesetter, with feedback, driving the group of oscillators. We examine the scenario where the 
external oscillator is intrinsically chaotic and has qualitatively different dynamics arising from a class of systems 
quite distinct from those comprising the oscillator ensemble.

In the sections below we first present experimental results demonstrating the taming of chaos by coupling to 
an external markedly different chaotic system. Specifically our oscillator group is comprised of chaotic mercury 
beating heart electrochemical oscillators, and the external system is a chaotic electronic circuit. We further 
verify our central experimental result through extensive numerical simulations on a model system of coupled 
differential equations suggestive of the experimental set-up. We conclude with discussions on the general scope 
and implications of these results.

Experimental demonstration of asymmetry induced chaos suppression
We consider three mercury beating heart (MBH) oscillators ( O1,O2,O3 ) connected to an external Chua oscillator 
(E), as shown in the schematic diagram in Fig. 1a. Figure 1b shows the circuit diagram of an inductor-free Chua 
oscillator and Fig. 1c shows the schematic of an MBH oscillator. The group of MBH oscillators are bidirection-
ally coupled to the external oscillator via resistance ( Rc ), where the inverse of the Rc is the measure of coupling 
strength. The coupling between the Chua and MBH oscillators and the circuit of Chua oscillator are implemented 
on the breadboard using electronic components such as resistors, capacitors, and op-amps (741-IC).
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In an MBH system, a concave watch glass of radius of curvature of 7.56 cm is used to contain the mercury 
drop (Hg) and an aqueous electrolytic solution. One millilitre volume of mercury is placed on the watch glass 
and immersed under an electrolytic solution. Here, the electrolytic solution is a mixture of 10 ml of 6 M H2SO4 
(Merck, Emparta ACS, 98.0%) and 15 ml of 0.2 M Ce(SO4)2 (Sigma Aldrich). Before each experiment, we cleaned 
the mercury following the protocol described in the Ref.25. A pointed iron (Fe) nail (2 mm of diameter, purity 
≥ 99.0% , Alfa Aesar) is placed at an appropriate position near the Hg drop to start the oscillations on the drop. 
The iron nail is polished with a sandpaper No. 1000 before the experiments. Moreover, the iron nail is fixed near 
the upper edge of the Hg drop to get the sustained irregular aperiodic oscillations. A Platinum (Pt) wire (Sigma-
Aldrich, 0.5 mm of diameter, 99.99% purity) is submerged in the center of the drop to provide electrical contact. 
Three such MBH oscillators exhibiting chaotic oscillatons are used in our experiments. All the MBH oscillators 
have a common ground via iron nails. The signals (electrode potentials) are recorded between the Pt wires and 
Fe nails using the data acquisition control card (DAQ measurement computing USB-1616HS-4, 1000 Hz) with 
a computer interface. The details of the underlying nonlinear dynamics and chemistry of the regular and chaotic 
MBH oscillator can be found in the relevant literature26–33. Specifically, we consider the MBH oscillators in the 
parameter range that has been shown to yield chaotic dynamics32.

In Fig. 1b, the schematic diagram of the Chua oscillator shows the circuit implementation of the simulated 
inductor and Chua diode by using op-amps (741-IC), resistors ( R1 − R10) , and capacitors ( C1,C2, and C3 ). The 
parameter values for the circuit are taken from the paper by Torres et al.34. Few parameter values are different 
such as C3 = 3.3µF , C1 = 3.3µF , C2 = 47µF , and R = 1.73 k� in our experiments. For other components, see 
Ref.34. The parameter R controls the periodic/chaotic dynamics of the oscillator. The signals of the oscillator are 
the corresponding voltages V1 and V2 across the capacitors C1 and C2 . According to the circuit components, the 
variable V1 shows double scroll chaotic dynamics, and V2 shows single scroll chaotic dynamics. In our experi-
ments, we couple the variable V2 to the group of chaotic MBH oscillators. The Chua oscillator is also grounded 
at the common ground of the MBH oscillators.

We now present the emergent dynamics of three surrounding chaotic MBH oscillators bi-directionally cou-
pled to a common external chaotic Chua oscillator. The single-scroll chaotic signal V2 of the Chua oscillator is 
coupled to the MBH oscillators, and the suppression of oscillations of the entire system is explored as a func-
tion of coupling strength ( 1Rc  ). Figure 2a shows a superimposed time series of all the four oscillators (Chua and 
MBH oscillators) from an experimental trial. The coupling is turned ‘OFF’ and ‘ON’ two times systematically at 
a fixed coupling strength ( Rc = 40� ). Figure 2b shows the dynamics for MBH oscillators and the chaotic Chua 
oscillator when the coupling is ‘OFF’. Figure 2c shows the fixed point dynamics of all four oscillators when the 
coupling is ‘ON’.

The dynamics of the coupled Chua and the MBH oscillators show the transitions from uncorrelated irregu-
lar oscillations to synchronized regular oscillations and fixed-point dynamics as the coupling strength ( 1Rc  ) 
increases. For weak coupling ( Rc = 270� ), the suppression of oscillations does not occur, and the dynamics 
of the oscillators are uncorrelated (Fig. 3a). As the coupling strength increases, we find period-1 oscillations 
(Fig. 3b) and fixed-point dynamics (Fig. 3c–d) for all the coupled oscillators (MBH and Chua oscillators). For 
moderate coupling strength ( Rc = 200� ), oscillators show synchronized period-1 oscillations (Fig. 3b). Fixed 
point dynamics of the oscillators are observed within a range of coupling strength ( Rc = 2� to 100� ). The fixed 
point values for the MBH oscillators are different for different coupling strengths, reminiscent of oscillation death. 
For Rc = 100� , the fixed point values for the MBH oscillators are close to 0.1 (Fig. 3c). For strong coupling 
strength ( Rc = 2� ), the fixed point values for MBH oscillators are close to 0 (Fig. 3d). The fixed point value for 
the single scroll Chua is 0 for both Rc = 100� and 2�.

Finally, the phase space plots of the uncontrolled and controlled dynamics of the Chua and one representa-
tive surrounding MBH oscillator are shown in Fig. 4 for different coupling strengths. The data plotted in the 

Figure 1.   The experimental setup. (a) Schematic diagram of three surrounding MBH oscillators ( O1,O2,O3 ) 
are connected to an external Chua oscillator (E). (b) The circuit diagram of an inductor-free Chua oscillator. The 
inductor and Chua diode are implemented by using op-amps, resistors, and capacitors. (c) A schematic diagram 
of an MBH oscillator. The coupling between the MBH oscillators and Chua are made via resistance ( Rc ), and the 
inverse of resistance is the measure of coupling strength.
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phase plots correspond to the time series data in the Fig. 3. Figure 4a shows the uncontrolled dynamics of the 
Chua oscillator at weak coupling ( Rc = 270� ). The controlled period-1 (purple color) and fixed point (red dot) 
dynamics of Chua are shown in Fig. 4b for Rc = 200� , and Rc = 2� ) respectively. For the oscillator group, the 
phase space plot is shown for one representative MBH oscillator in Fig. 4c,d. Figure 4c shows the uncontrolled 
chaotic dynamics of the MBH oscillator and Fig. 4d shows the controlled period-1 (orange color) and fixed point 
(blue dot) dynamics for Rc = 200� , and Rc = 2� respectively.

Numerical simulations
We now explore the dynamics of a group of relaxation oscillators coupled to a single external chaotic Chua sys-
tem. While serving as an illustrative toy model mimicking the experimental setup above, this model system also 
allows us to systematically vary the size of the group of oscillators and coupling strengths over a large range, thus 

Figure 2.   The redox time series of three chaotic MBH oscillators (Cyan, orange, and goldenrod) and the single 
scroll Chua oscillator (purple color) are shown. (a) Superimposed time series of all the four oscillators for the 
section of coupling ‘OFF’–‘ON’–‘OFF–‘ON’–‘OFF’ state at fixed coupling value ( Rc = 40� ). (b) Uncorrelated 
dynamics of the oscillators while the coupling is ‘OFF’. (c) Fixed point dynamics of all the oscillators at coupling 
‘ON’ state. The fixed point values of the MBH oscillators are close to 0.04, and for Chua, the fixed point value is 
0.

Figure 3.   The dynamics of the three surrounding MBH oscillators and the central Chua oscillator are shown 
as a function of coupling strength ( 1Rc  ). (a) For weak coupling ( Rc = 270� ), the dynamics of all the coupled 
oscillators are uncorrelated and irregular. (b) At moderate coupling strength ( Rc = 200�) , oscillators show 
synchronized period-1 dynamics. (c) Oscillations of all the coupled oscillators are suppressed, and they show 
fixed point dynamics at coupling resistance value Rc = 100� . The fixed point values for the MBH oscillators are 
close to 0.1, and for the Chua, the value is close to 0. (d) At Rc = 2� , the dynamics are still fixed point, but the 
fixed point values of MBH oscillators now close to 0.
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enabling us to explore a broader scenario. Specifically we examine the dynamics of N oscillators in the group, 
labelled by index i = 1, . . .N , given by the FitzHugh-Nagumo relaxation oscillator equations,

where ( xi , yi ) are the state variables of the ith oscillator of the group, with xi mimicking the voltage and yi repre-
senting the slower recovery current. As in the experiment, the dynamical variable yext of the external oscillator 
is the only state variable that couples the external system to the oscillator group, with parameter C determining 
the strength of coupling. Note again that there is no mutual coupling among the relaxation oscillators, which 
couple bidirectionally only to the common external system. Further note that in the experiment the coupling 
between oscillators is proportional to the potential difference between the oscillators, and so the form of the 
coupling is well modelled as being diffusive.

The external chaotic system, which is distinct from the group, is considered to be the paradigmatic chaotic 
Chua system, given by the dynamical equations

(1)

dxi

dt
=xi −

x3i
3

− yi + I + C{yext − xi}

τ
dyi

dt
=xi − b yi + a

(2)

dxext

dt
=α{yext − xext − g(xext)}

dyext

dt
={xext − yext + zext} + C

N∑

j=1

{xj − yext}

dzext

dt
=− βyext

Figure 4.   Phase space plots of the uncontrolled and controlled dynamics of the Chua and one representative 
MBH oscillator. (a) For weak coupling, uncontrolled dynamics of the Chua oscillator ( Rc = 270� ). (b) 
Controlled period-1 dynamics (purple color) and fixed point dynamics (red mark) of Chua oscillator for 
Rc = 200� and Rc = 2� , respectively. (c) Uncontrolled dynamics of one representative MBH oscillator at weak 
coupling ( Rc = 270� ). (d) Controlled period-1 (orange color) and fixed point (blue mark) dynamics of an 
MBH oscillator at Rc = 200� and Rc = 2� , respectively.
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where g(x) = m1x + 0.5(m0 −m1)(|(x + 1)| − |(x − 1)|) . A wide set of parameters that yielded chaotic attrac-
tors were examined, and we present results from a representative system with parameters α = 15.6 , β = 28 , 
m1 = −5.0/7.0 and m0 = −8.0/7.0 in Eq. (2).

When the coupling is weak, the oscillators in the group retain their relaxation oscillations, and the external 
system maintains its chaotic behaviour. However remarkably, as displayed in representative examples in Fig. 5a, 
steady states emerge when the the ensemble of relaxation oscillators interact strongly with the external chaotic 
system. As a reference note that the same relaxation oscillators when coupled to an external relaxation oscillator 
of the same type do not yield steady states, even at very high coupling strengths (see Fig. 5d). These numerical 
trends are also corroborated by linear stability analysis obtained through the analysis of the eigenvalue spectrum 
of the Jacobian (see Fig. 6). We varied the number of oscillators N in the group from one to twenty, and found 
similar qualitative behaviour, with the specific window of coupling strength in which steady states emerge 
depending on N.

In order to explore a broader set of systems we simulated the dynamics of this group of oscillators coupled 
to an external single-scroll chaotic Rössler system and an external double-scroll chaotic Lorenz system, with 
the external system coupled to the oscillator group either through xext or yext of the external system (see Fig. 5 
for some illustrative results). We incorporated varying time-scales of the intrinsic dynamics of the oscillators 
and the external system as well. Under variation of coupling strengths and the specific nature of the dynamics 
(such as the number of attractor scrolls) of the external system and oscillator group, we found a wide range of 
dynamical patterns arise. These patterns include chimera states35–41, bursty or irregular low-amplitude oscil-
lations, and distorted attractors with the external system cloning the oscillator group dynamics or vice-versa. 
However, the broad observation that holds across systems is that an ensemble of uncoupled oscillators, strongly 
coupled to a significantly dissimilar external system, induces oscillation suppression in both the oscillator group as 
well as the external system. This occurs even when the external system and the oscillator group is chaotic. In 
fact counter-intuitively, an ensemble of oscillators are tamed more effectively by an external dissimilar chaotic 
system than an external regular system.

Figure 5.   Time evolution of one representative relaxation oscillator in the group described by Eq. (1), with 
parameters a = 0.8 , b = 0.7 , I = 0.5 and τ = 12.5 , when coupled to the following external systems: (a) chaotic 
Chua system ( C = 1 , with the external system coupled to the oscillator group through variable yext ); (b) 
chaotic double-scroll Lorenz system ( C = 0.5 , with the external system coupled to the oscillator group through 
variable xext ); (c) chaotic single-scroll Rössler system ( C = 2 , with the external system coupled to the oscillator 
group through variable xext ); (d) identical relaxation oscillator ( C = 5 , with the external system coupled to the 
oscillator group through variable xext ). Here the x variable of all the oscillators and xext of the external system 
are displayed. Clearly the first three cases, where the external system is chaotic and dissimilar go to fixed points, 
while coupling to an identical external system yields synchronized oscillations but no steady states.
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Conclusions
In summary, we have investigated through laboratory experiments, as well as numerical simulations, the behav-
iour of an ensemble of uncoupled oscillators, with varying intrinsic dynamics, coupled diffusively to an external 
oscillator. The common external system may be similar or dissimilar to the group. We explored all possible sce-
narios, with the intrinsic dynamics of the external oscillator ranging from regular to chaotic. Counter-intuitively, 
we find that an external oscillator manages to successfully steer a group of oscillators on to steady states at suf-
ficiently high coupling strengths when it is distinct from the group, rather than identical. That is, the oscillator 
group coupled to an external oscillator synchronizes for strong coupling, regardless of whether the external 
one is identical or dissimilar, regular or chaotic. However surprisingly, fixed states emerge only if the external 
oscillator is significantly dissimilar. These results then indicate the easy controllability of oscillators by coupling 
to an external dissimilar chaotic system, thereby offering a new potent control strategy. Since this phenomenon 
was observed in a generic class of systems it holds promise of having wide-ranging validity. However, we must 
add the caveat that its full scope and extent is as yet undetermined. So an open question here is the generality 
of these results under varying dynamics and coupling classes, and this warrants future work across different 
systems, both theoretical and experimental42.

Lastly, we would like to discuss these findings from a conceptual point of view. Our observations here demon-
strate specific examples of the interesting general principle of asymmetry inducing symmetry in coupled dynamical 
systems43. That is, a coupled system constituted of exact replicas often yield irregular spatiotemporal patterns, 
while markedly different constituents can yield very regular and symmetric spatiotemporal patterns such as 
steady states or synchronized low amplitude regular oscillations. This dynamical behvaiour can also be interpreted 
as an anti-chimera state. While chimera states, which have commanded widespread research attention in recent 
years35–41, signal the emergence of asymmetric spatial patterns in a system comprised of identical dynamical 

Figure 6.   Maximum real part �max of the eigenvalues of the Jacobian at the fixed points, as a function of 
coupling strength C, for the case of a group of three FtizHugh-Nagumo relaxation oscillators (cf. Eq. (1)) 
coupled to the following external systems: (a) chaotic Chua system, (b) chaotic Lorenz system, (c) chaotic 
Rössler system, and (d) an identical FitzHugh-Nagumo relaxation oscillator. These four cases correspond 
to the external systems considered in the time series displayed in Fig. 5a–d. It is clear that after a threshold 
coupling strength the eigenvalues are negative for cases (a–c), signalling the emergence of a stable steady state 
for sufficiently strong coupling when the external system is dissimilar. However in case (d), where the external 
system is identical, notice that �max is positive and remains constant under increasing coupling strength (which 
is a consequence of the vanishingly small contribution of the coupling term when the oscillators are close to 
synchrony), and this indicates that no stable fixed points emerge in that case.
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elements, here we have the emergence of symmetric spatiotemporal patterns through coupling to a system that 
is significantly different. This further suggests that diversity or heterogeneity may have a crucial role in aiding 
regularity in interactive systems.
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