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Quantum circuit optimization using 
quantum Karnaugh map
J.‑H. Bae1, paul M. Alsing2, Doyeol Ahn1,3,4* & Warner A. Miller3

every quantum algorithm is represented by set of quantum circuits. Any optimization scheme for a 
quantum algorithm and quantum computation is very important especially in the arena of quantum 
computation with limited number of qubit resources. Major obstacle to this goal is the large number 
of elemental quantum gates to build even small quantum circuits. Here, we propose and demonstrate 
a general technique that significantly reduces the number of elemental gates to build quantum 
circuits. this is impactful for the design of quantum circuits, and we show below this could reduce the 
number of gates by 60% and 46% for the four- and five-qubit Toffoli gates, two key quantum circuits, 
respectively, as compared with simplest known decomposition. Reduced circuit complexity often 
goes hand-in-hand with higher efficiency and bandwidth. The quantum circuit optimization technique 
proposed in this work would provide a significant step forward in the optimization of quantum circuits 
and quantum algorithms, and has the potential for wider application in quantum computation.

In quantum information science there has been significant effort directed towards various physical implementa-
tions of quantum bits and quantum  circuits1–11. The efficient design of quantum circuits for processing quantum 
information is a fundamental problem in quantum algorithm design and quantum computation because qubits 
are very expensive  resources12–22. This is especially important in the regime of quantum computation with lim-
ited number of  qubits13–22. More recent  work23–30 includes more fundamental quantum information theoretic 
aspects on quantum computations in relation to the previously mentioned queries. One approach to address 
this quantum design problem is to adapt some successful approaches that were used in the classical design of 
circuits. During the development of microelectronics, the separation of device technology and the systems by 
means of an invariant interface to simplify the design was an essential and outstanding step to cope with the 
complexity of the  system31. It is almost certain that this principle of hierarchical design or a related one will 
also be valid for quantum architecture. Nonetheless, an equivalent invariant interface for the efficient design of 
quantum circuits is still lacking to the best of our knowledge. In the case of the conventional logic design there 
is an efficient method called the Karnaugh  map32. However, applying this method to simplify quantum circuits 
is nontrivial because the representation of the quantum state evolution in Hilbert space by classical Boolean 
algebra through Karnaugh map is not quite  straightforward33,34. Here, we propose a quantum mechanical version 
of Karnaugh map called the quantum Karnaugh map (QKM) which operates on the Hilbert space state vectors 
to facilitate the efficient design of universal quantum circuits. Our preliminary study shows an almost 60% and 
46% reduction of the number of circuit elements for the four- and five-qubit Toffoli gates, respectively. While 
the representative, though non-trivial example of the Toffoli gate is simple to demonstrate the implementation 
of the QKM, realistic algorithm can have much more complexity and number of gates.

In classical logic gate design, the logic functions expressed by the minterm expansion can be generally simpli-
fied by utilizing theorems of Boolean algebra such as the consensus theorem:XY + X ′Z + YZ = XY + X ′Z32,35 
Here X, Y , Z are Boolean variables and X ′, Y ′, Z′ are their complement forms. The  minterm35 of n variables is 
a product of n literals in which each variable appears only once in true or complemented form, but not both. A 
literal is a Boolean variable or its complement. If we denote the value and the minterm of the truth table of ith 
row as ai and mi , the minterm expansion of logic function f is given by.

(1)f =
∑

i

aimi ,
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 where ai in [0, 1] . The Karnaugh  map32,35 is a technique to find a minimum sum-of-products expression for 
a logic function. A minimum sum-of-products expression is defined as a sum of product terms that (a) has a 
minimum number or terms and (b) of all those expressions which have the same minimum number of terms 
has a minimum number of literals. Just like a truth table, the Karnaugh map of a function specifies the value of 
the function for every combination of the value of the independent variables. A three-variable Karnaugh map 
is shown in Fig. 1. In the upper row, the Boolean variable x1x2 are labeled in the sequence 00, 01, 11, 10 so 
that values in adjacent columns differ in only one variable. Each square of the map corresponds to the values of 
Boolean variables and a minterm as indicated. Minterms in adjacent squares of the map can be combined since 
they differ in only one variable, e.g. if f (ijk) = 0 except for f (110) and f (100) , then x1x2x′3 and x1x′2x

′
3 combine 

to form x1x′3.
In order to develop analogous quantum Karunaugh map (QKM), we start by recalling a controlled unitary 

gate C1(U) defined in the {|00�, |01�, |10�, |11�} basis that satisfies the following switching function properties:

Here, Uij , i, j = 0, 1 are the unitary matrix elements of C1(U) . We found that, instead of counting the cases 
for the {|00�, |01�, |10�, |11�} basis separately, we obtain the same results by employing an compact 2-qubit basis 
{∣

∣0̃
〉

2
,
∣

∣1̃
〉

2

}

 which are defined by.

Here, for simplicity, we denote I and O for the identity and null 2× 2 matrices in 2-dimensional Hilbert space, 
respectively. In this compact 2-qubit notation, the first and the second column of 

∣

∣0̃
〉

2
 corresponds to two qubit 

states |00� and |01� , respectively. Likewise, the first and the second column of 
∣

∣1̃
〉

2
 corresponds to the two qubit 

states |10� and |11� ; respectively. One can expand C1(U) in the compact qubit basis as follows.

where U =
(

u00 u01
u10 u11

)

 . The detailed mathematical description of compact qubits and analysis of quantum 

circuits using QKM is given in the method section and the supplementary information (SI).

Results
Decomposition of four- and five-qubit Toffoli Gates. One can decompose the given gate in terms of 
single qubit gates and CNOT gates. The CNOT gate is denoted as the C1(X) gate in this work by substituting U 

by X in Eq. (2), where X is a Pauli matrix, X =
(

0 1

1 0

)

 . For example, Fig. 2 shows the canonical 4 qubit Toffoli 

gate at the top of the figure, and its minimum gate representation at the bottom of the figure. The basic single 
qubit gates used to decompose Toffoli gate are as  follows36:

 

(2)C1(U)
∣

∣xy
〉

=
{

∣

∣xy
〉

for x = 0,

u0y|x0� + u1y|x1�=
∑

k={0,1}
|xk� uky for x = 1.
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, S =
(

1 0

0 i

)
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)

.

Figure 1.  Depiction of a classical Karnaugh map.
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Here, H is the Hadamard gate, S the phase gate and T is the π/8  gate29. These are the elementary single qubit 
gates acting on the single-qubit state. It was shown that these unitary operations on one qubit and the CNOT gate 
is sufficient for general quantum  programming12,37–39. The top quantum circuit is the extension of the Toffoli gate 
described by the figure 4.9 of Nilsen and  Chuang38 by adding one more input qubits. The number of elementary 
gates to construct 4-qubit Toffoli gate C3(X) in the top circuits is 106 which consists of 36 CNOT gates and 70 
single qubit gates. The bottom of Fig. 2 shows that the reduced gate has 11 elements which are equivalent to 16 
CNOT gates and 29 single qubit gates. This is an almost 60% reduction of the number of elementary gates to 
implement 4-qubit Toffoli gate. Details of the 4-qubit Toffoli gate C3(X) reduction is given in the Section 3 of SI. 
The partial circuits A, B, C and D will be explored later in this section and in the SI. The first step of the reduction 
is replacing a half of the C2(X) gates by C1(X) gates. Here C2(X) gate is the 3-qubit Toffoli gate shown in Fig. S2 
of SI and is described by equation (S3).

In Fig. 3, we show, by direct calculation, that the bottom circuits of Fig. 2 is indeed a four-qubit Toffoli gates 
in which |Tout� = X|Tin� if and only if C1 = C2 = C3 = 1 otherwise the target bit |Tin� is not changed. In order 
to prove that we first calculate the quantum states at points (1), (2), …, (10) marked in the bottom of the circuits 
in Fig. 3. We describe the changes of the target qubit at each point as:

(1) H|Tin� , (2) XC1C2H|Tin� , (3) T†XC1C2H|Tin� , (4) XC3T†XC1C2H|Tin� , (5) TXC3T†XC1C2H|Tin� , (6) 
XC1C2TXC3T†XC1C2H|Tin� , (7) T†XC1C2TXC3T†XC1C2H|Tin� , (8) XC3T†XC1C2TXC3T†XC1C2H|Tin� , (9)  
HTXC3T†XC1C2TXC3T†XC1C2H|Tin� , and (10) SC1C2 |C3� . Here Xα = X when α = 1 and Xα = I when α = 0 . Sα is defined  
in the same way. Furthermore XC1C2 = X for C1C2 = 1 and XC1C2 = I for C1C2 = 0(SI). Let’s consider the possible  
combination of input qubits. When C1C2 = 0 and C3 = 0 , then HTXC3T†XC1C2TXC3T†XC1C2H = HTT†TT†H = HH = I ; 
When C1C2 = 0 and C3 = 1 , then HTXC3T†XC1C2TXC3T†XC1C2H = HTXT†TXT†H = I ; When C1C2 = 1  

and C3 = 0  ,  then HTXC3T†XC1C2TXC3T†XC1C2H = HTT†XTT†XH = I  ;  For  C1C2 = 1 ,  C3 = 1 ,  then  

HTXC3T†XC1C2TXC3T†XC1C2H = HTXT†XTXT†XH = −iX . On the other hand, when C1C2 = 1 and C3 = 0 ,  
S|0� = |0� and S|1� = i|1� . Therefore, |1� ⊗ |1� ⊗ |1� ⊗ |Tin� becomes |1� ⊗ |1� ⊗ (i|1�)⊗ (−iX|Tin�) = |1� ⊗ |1� ⊗ |1� ⊗ (X|Tin�) ,  
thus proving that the reduced quantum circuits is indeed four-qubit Toffoli gate.

In Fig. 3, we also show the three QKMs for this reduced representation from the analysis we provided above. 
The first QKM is that of the partial circuit enclosed by blue-dashed line. The entries of the QKM are in the form 
of I ⊗ I ⊗ I ⊗ (·) and are obtained from the quantum states at point (9). The second QKM corresponds to the 
partial circuit enclosed by green-dashed line and the entries of the QKM are in the form of I ⊗ I ⊗ (•)⊗ I and 
obtained from the above analysis. The final QKM is that of the four-qubit Toffoli gate C3(X) and is obtained by 
the multiplication of the first two QKMs defined by equation (S9).

In Figs. 4 and 5, we show that the first two quantum circuits shown in Fig. 2 are equivalent to C3(X) , by the 
equivalency of their QKM representations In order to achieve this, we first show that partial circuits A (enclosed 
by red-dashed line) and B (enclosed by blue-dashed line) of Fig. 2 have the same QKM in Fig. 4. The entries 
of the QKM are in the form of I ⊗ I ⊗ I ⊗ (·) . In Fig. 5, we show the QKM of a partial circuits C (enclosed by 

Figure 2.  Three equivalent quantum circuit decomposition of a 4-qubit Toffoli gate C3(X) . The minimum gate 
representation of C3(X) is shown in the bottom of the figure. The partial circuits A, B, C and D are explored in 
Figs. 3 and 4.
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Figure 3.  Reduced decomposition of C3(X) . The reduced gate has 11 elements which are equivalent to 16 
CNOT gates and 29 single qubit gates. This is almost 60% reduction of the number of elementary gates to 
implement of C3(X) from the original representation with 106 elementary gates. We also show three QKMs 
for this reduced representation. The first QKM is that of the partial circuits enclosed by blue-dashed line. The 
entries of the QKM are in the form of I ⊗ I ⊗ I ⊗ (•) and obtained from the quantum states at point (9). The 
second QKM corresponds to the partial circuits enclosed by green-dashed line and the entries of the QKM are 
in the form of I ⊗ I ⊗ (·)⊗ I and obtained from the above analysis. The final QKM is that of the 4-qubit Toffoli 
gate C3(X) and obtained by the multiplication of the first two QKMs defined by equation (S19).

Figure 4.  We show that the first two quantum circuits are equivalent to C3(X) . In order to achieve this, we first 
show that partial circuits A (enclosed by red-dashed line) and B (enclosed by blue-dashed line) of Fig. 2 have the 
same QKM in Fig. 4. The entries of the QKM are in the form of I ⊗ I ⊗ I ⊗ (·).
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green-dashed line) of Fig. 2. The entries of the QKM are in the form of I ⊗ I ⊗ (·)⊗ I . This QKM is also the 
same as that of a partial circuit D enclosed by the orange-dashed line in Fig. 2. Detailed calculation of QKM 
entries is given in the SI.

The procedure for the reduction of the general Cm−1(X) gate is as follows:

1. Find the sub-circuit with the largest number of Cm−2(X) gates. Cm−2(X) are located altenatively with other 
unitary gate.

2. Replace half of Cm−2(X) gates by Cm−3(X) gates; check QKM equivalency.
3. Replace half of Cm−3(X) gates by Cm−4(X) gates; check QKM equivalency.
4. Continue the process until one reaches only C1(X) gates with equivalent QKM.
5. Repeat steps 1 to 4 until one cannot further reduce the circuit.

One needs to check the QKM when you reduce the circuit in every step. Figure S7 of SI shows the five-
qubit Toffoli gate constructed with the minimum number of elemental gates using this technique. If we denote 
χm{Cm(X)} the number of elemental gates needed to construct Cm(X) gate, we obtain, χ2

{

C2(X)
}

= 16 , 
χ3

{

C3(X)
}

= 45 and χ4
{

C4(X)
}

= 115 for our QKM based technique. Until now the simplest known 
 decomposition13,37 of the five-qubit Toffoli gate requires 50 two-qubit gates or 250 elemental gates. Our decom-
position of five-qubit Toffoli gate is 46% smaller than that of the simplest known decomposition.

It would be interesting to consider the potential application of QKM to quantum algorithms. Figure 6 shows 
the elementary implementation of the Deutsch  algorithm32 and its corresponding QKM. Here 
|ψ0� = (H ⊗H)(|C1� ⊗ |Tin�) , |ψ1� = Uf |ψ0� , |ψ2� = (H ⊗ I)|ψ1� and Uf (|x� ⊗ |y�) = |x� ⊗ |y ⊕ f (x)� . For 

example if |C1� = |0� , |Tin = |1� , f (0) = 0 and f (1) = 1 , then we obtain |ψ2� = 1√
2
|1� ⊗ (|0� − |1�) . We can 

expand this Deutsch algorithm to the five-qubit case. We first apply the Walsh-Harmard transformation to the 
register. Then we have the state |ψ1� = (H ⊗H ⊗H ⊗H ⊗ I)|ψ0� . Then apply the f (x)-controlled NOT gate 
on the register which is a Uf  gate. If we choose this gate as a five-qubit Toffoli gate, then we have 46% reduction 
in the quantum circuit complexity which could being almost 200% speedup. By performing quantum circuits 

Figure 5.  We show the QKM of a partial circuits C (enclosed by green-dashed line) of Fig. 2. The entries of the 
QKM are in the form of I ⊗ I ⊗ (·)⊗ I . This QKM is also the same as that of a partial circuit D enclosed by 
orange-dashed line in Fig. 2.

Figure 6.  Implementation of the Deutsch algorithm and corresponding QKM.
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studies on IBM’s 20-qubit ‘Poughkeepsie’ architecture, one of the authors (P. M. A.) found that a single CNOT 
operation can be reliably performed in this NISQ  environment40. The comparison of the QKM reduced circuits 
and the conventional circuits on the real NISQ machine such as IBM-Q will be the subject of future study.

Discussion
The present results offer an efficient methodology for the design of complex quantum circuits which are the 
building blocks of quantum computers and quantum information processors. The lessons from the development 
of classical microelectronics taught us that the separation of device technology and the systems by means of 
an invariant interface to simplify the design is an essential and outstanding step to cope with the complexity of 
the system. Our hypothesis is that this principle of hierarchical design will be, in some form, valid for quantum 
architecture. This can begin to be impactful especially with the advent of prototype quantum computers with 
around 50 available qubits from IBM, Google and Intel, to name a few, where qubits are the most expensive 
resources. Following this motivation, we demonstrated here a ~ 60% reduction in the number of elementary 
gates to implement four-qubit quantum gate using the QKM. The first step of the reduction of four-qubit Tof-
foli gate C3(X) can be achieved by replacing half of the three-qubit Toffoli gates C2(X) embedded in a 4-qubit 
quantum circuit by two-qubit CNOT gates C1(X) , as can be seen by the Fig. 4. Further simplification can be 
achieved by replacing the phase shift circuit C by a 2-qubit S gate embedded in a 4-qubit quantum circuit as 
can be seen Fig. 2. We also demonstrated the decomposition of five-qubit Toffoli gate with 46% reduction in the 
number of elementary gate when compared with known simplest decomposition. We hope that the introduc-
tion of the QKM proposed in this work would lead to further development of quantum information science and 
engineering by separating the quantum circuit design and the device technology. The use of the QKM may help 
accelerate the solid-state implementation of quantum computers because the proposed scheme utilizes most of 
the conventional design methodology.

Method
compact qubit notation. We start by recalling a controlled unitary gate C1(U) defined in the 
{|00�, |01�, |10�, |11�}  basis1

where U =
(

u00 u01
u10 u11

)

.

The controlled unitary gate satisfies the following switching function properties:

It is well known that we may expand any operators by outer product of the complete basis, i.e., 
C1(U) =

∑

n C
1(U)|n��n| with 

∑

n |n��n| = In where In is the n× n identity matrix in an n-dimensional Hilbert 
space and |n��n| ≡ |n� ⊗ �n| with ⊗ denoting a tensor product. Equation (7) can be rewritten as

We found that instead of counting the cases for the {|00�, |01�, |10�, |11�} basis, we obtain the same results 
by employing a compact 2-qubit basis 

{∣

∣0̃
〉

2
,
∣

∣1̃
〉

2

}

 which are defined by.

Here, for simplicity, we denote I and O for the identity and null 2× 2 matrices in 2-dimensional Hilbert 
space; respectively. In this compact 2-qubit notation, the first and the second column of 

∣

∣0̃
〉

2
 corresponds to two 

qubit states |00� and |01� ; respectively. Likewise the first and the second column of 
∣

∣1̃
〉

2
 corresponds to the two 

qubit states |10� and |11� ; respectively. The compact 2-qubit is a short-hand notation representing two qubits with 
common first qubit index such as 0 in |00� and |01� , denoted as 

∣

∣0̃
〉

2
 . The compact 2-qubits satisfies the following 

closure relation:

where

(6)C1(U) =







1 0 0 0

0 1 0 0

0 0 u00 u01
0 0 u10 u11







(7)

C1(U)|00� = |00�,
C1(U)|01� = |01�,
C1(U)|10� = u00|10� + u10|11�,
C1(U)|11� = u01|10� + u11|11�.
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∣

∣xy
〉

=
{

∣

∣xy
〉

for x = 0,
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∑

k={0,1}
|x k� uky for x = 1.
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and

Here I4 is the identity matrix in a four-dimensional Hilbert space.
For a three-qubit gate, the compact 3-qubits are defined as

For example,

where the first and the second column corresponds to 3-qubit states |000� and |001� ; respectively. It is straight-
forward to show that the compact 3-qubits satisfy the following completeness relation.

Data availability
All data generated or analyzed during this study are included in this article (and its supplementary information 
files).
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