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oblique collision of ion acoustic 
solitons in a relativistic degenerate 
plasma
S. K. el‑Labany, W. f. el‑taibany , e. e. Behery  & Rami Abd‑elbaki *

the interaction (oblique collision) of two ion acoustic solitons (iASs) in a magnetized relativistic 
degenerate plasma with relativistic degenerate electrons and non‑degenerate cold ions is studied. the 
extended poincaré–Lighthill–Kuo (pLK) method is used to obtain two Korteweg deVries (KdV) wave 
equations that describe the interacting iASs, then the phase shifts due to interaction are calculated. 
We studied influence of the fluid number density on the interaction process, interacting solitons phase 
shifts and also phase velocities. the introduced model is valid for astrophysical objects with high 
density matter such as white dwarfs, neutron stars, degenerate electrons gas in metals and laboratory 
degenerate plasma. An inverse proportionality between the phase shifts, phase velocity and the 
equilibrium electron fluid number density n

eo
 was established in the range 1035 m−3

> n
eo

> 10
38

m
−3 . 

We found that the soliton waves get sharper (narrower) and higher with increasing the electrons fluid 
number density n

eo
 , and hence less spacial occupying. the phase shifts and the phase velocity remain 

approximately unchanged in the range of 1035 m−3

< n
eo

< 10
38

m
−3 . the impact of the obliqueness 

angle θ on the soliton interaction process is also studied.

The study of matter properties under extreme conditions has gained a growing interest of  research1–3. Such 
excessive conditions occur in a number of astrophysical compact  objects4–7, planetary systems and cosmic 
 environments7,8. The neutron stars and white dwarfs are examples for such  systems1,9–11. Higher density is a 
common property in the previously mentioned systems which causes degeneracy to form what is called a degen-
erate plasma where the mean interparticle separation n−1/3 is comparable or smaller than the electrons de Broglie 
wavelength �B i.e. n�3B ≥ 1 ; �B = h

(2πmekBT)
1/2

12,13, where n stands for the particle number density. Under such 
conditions the relativistic and quantum impacts are unavoidable and the relativistic degeneracy pressure which 
arises as a result of the Pauli-Exclusion mechanism must be taken in to consideration. The high degenerate matter 
density in such compact objects, which are considered as “relics of stars” that have reached the end of burning 
thermonuclear fuel, and as a consequence no production of thermal pressure anymore. Lack of thermal pressure 
results in a size shrinking significantly, which in turn makes the density of their interiors to become extremely 
high. Under this situation, these objects generate nonthermal pressure via fermion (electron) degenerate pressure 
and also particle-particle interactions.

The observational evidences besides theoretical analysis indicate that these compact objects, which support 
themselves against the gravitational collapse through cold fermion (electron) degenerate pressure, are of two 
categories. The white dwarf is one of the first category examples which is supported by the pressure of degenerate 
electrons whose interior is not far from being a dense solid ion lattice that is surrounded by degenerate electrons. 
The neutron star on the other hand is classified as an example of the second category whose interior is near to a 
giant atomic nucleus that is a mixture of interacting electrons, nucleons and may be other elementary particles 
which is supported by the pressure due to a combination of nuclear interactions besides nucleon degeneracy. 
Such unique states and extreme matter conditions occur due to the significant compression of the interstellar 
 medium14,15, where the electron degenerate pressure doesn’t depend on the electron temperature but only relies 
on the electron number density. The astrophysical objects mentioned earlier have a very high density, for example, 
the degenerate electron number density in a typical white dwarf is in the order of 1030 cm−3 or even  more14,16 
and hence the Fermi energy for the electrons is comparable to its mass energy and therefore the electron speed 
is in comparison to the light speed in vacuum. These compact interstellar objects provide us cosmic laboratories 
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for analyzing the medium matter properties as well as waves and  instabilities17–20 at an excessive high-density 
degenerate situation in such a medium for which quantum besides relativistic effects become  important17,21.

Scientists gave a great interest to the study and analysis of the nonlinear dynamics of Ion Acoustic Solitons 
(IASs) in magnetized  plasmas22–25 and a special interest for the unstable relativistic and ultrarelativistic degen-
eracy  state26–29. The importance of such a field is to understand the role of degeneracy when combined with 
relativistic or ultrarelativistic speeds. For example the electron degeneracy in the massive white dwarfs which 
holds it against their gravitational pressure gets soften as the electrons obtain relativistic leading to further gravi-
tational star  collapse30. An increase of the steepness and strength of a quantum ion acoustic shock wave with the 
decrease of the stretched time coordinates was founded by Masood et al.31. The quantum corrections and raising 
positron concentration impact on the phase shifts was examined by El-Labany et al. in a dense quantum plasma 
composed of electron-positron-ion32. El-Taibany and Mamun have studied electromagnetic perturbations in 
electron-positron degenerate ultrarelativistic  plasma15. Zobaer et al. studied electrostatic shock structures and 
their fundamental features in a degenerate dense plasma that contains both nonrelativistic and ultrarelativistic 
degenerate electrons and cold non- relativistic degenerate  ions33. Behery et al. studied the propagation and stabil-
ity of non-linear solitons by getting the Zakharov-Kuznetsov equation in a supersonic relativistic quantum plasma 
indicating their despersion properties and highlighting the possible applications in both space and laboratory 
 plasma34. Choudhury et al.35 have studied a two soliton interaction in a semiconductor of quantum plasma, also 
they investigated the effect of quantum diffraction parameter and hole to electron equilibrium density ratio on 
the phase shifts.

The oblique interaction in solitons occurs when the two solitons approach each other at an obliqueness angle 
θ where 0 < θ < 180 . Akbari-Moghanjoughi et al36,37 studied the electron acoustic solitons that obliquely interact 
in two electron populated quantum degenerate plasmas where they discussed critical quantum diffraction param-
eter and its effect on solitons’ types and their interaction phase shifts. Moreover they considered the collision 
angle and fractional plasma constituents concentration. The influence of the positron concentration, electron 
superthermality and obliqueness of magnetic field on the soliton-cnoidal wave are investigated  by38 in detail. 
The plasma parameters that exist in white dwarf stars for the fast and slow modes of magnetoacoustic waves are 
used  by39 to study the interaction of obliquely propagating solitons. Iqbal  Shaukat40 studied the impact of the 
quantizing magnetic field inclusion on the solitary wave propagation characteristics which may be of interest in 
understanding the nonlinear electrostatic structures propagation in dense astrophysical environments such as 
white dwarfs. The particle-in-cell simulations using both one-dimensional and two-dimensional was used by 
Wu et al41 and the formation besides basic properties of these long-lived electromagnetic relativistic solitons are 
studied. Theoretical and experimental observation of multi-soliton formation in femtosecond degenerate optical 
parametric oscillators (OPOs) by Ning and  Zhang42. Cole et al43 reported the observation of soliton crystals in 
monolithic Kerr microresonators–spontaneously and collectively ordered ensembles of co-propagating solitons 
whose interactions discretize their allowed temporal separations. There are collective nonlinear wave–wave 
interactions in dense plasmas like intense laser–solid density plasma  experiments44,45, astrophysical superdense 
bodies (e.g. the white dwarf core and neutron stars)46,47 and the micro and nano scale quantum  diodes48–50.

It is of interest to propose 3D plasma model that allows both the degeneracy and relativistic features and can 
be applicable to the previously mentioned plasmas as in laser–solid density plasma experiments, astrophysical 
superdense bodies and the micro and nano scale physical entities like quantum diodes . Specifically, in this work 
we studied the ion-acoustic excitations in an electrostatic plasma model, where the electrons are considered to 
be degenerate and on the other hand, a cold nondegenerate ion fluid due to their larger mass is considered. In 
this paper we introduce the propagation and interaction of nonlinear pulses named solitons under the effect of 
fluid number density. Our main aspect that is studied in this research is the impact of changing the fluid num-
ber densities on the solitary pulses including their interaction (oblique collision), phase velocities and phase 
shifts. This paper will be organized as follows: in the hydrodynamic model section we introduce the basic set 
of normalized equations describing our plasma model. In the nonlinear analysis section a nonlinear analysis 
for our system is done with the help of suitable asymptotic expansion to solve our plasma system which is the 
Poincaré–Lighthill–Kuo (PLK)  method51,52 to get two Korteweg deVries (KdV) wave equations that describe the 
interacting IASs and also the phase shifts due to interaction are calculated. All the numerical analysis and discus-
sion are presented in the section that comes after. Finally there is a conclusion section that summarizes our work.

the hydrodynamic model
In the existence of a static external magnetic field B = Boẑ along z direction with the unit vector ẑ such that Bo is 
the magnetic field strength, considering the movement of ion acoustic (IA) excitations in a relativistic degenerate 
plasma. We consider a two component degenerate relativistic plasma composed of ions and electrons. Introduc-
ing the normalized set of governing equations that were adopted  from34 as follows:

(1)
∂

∂t
(γini)+∇ · (γiniui) = 0,

(2)
∂

∂t
(γene)+∇ · (γeneue) = 0,

(3)
∂

∂t
(γiui)+ (ui · ∇)(γiui)+∇φ −�

(

ui × ẑ
)

= 0,
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This system has been declared with ni and ne represent the fluid number density for ions and electrons, 
respectively, ui and ue are their fluids velocity. me and e denote the electron mass and charge respectively, mi is 
the ion mass, c is the speed of light and γj =

(

1− c−2(Vouj)
2
)− 1

2 where j is i for ions and e for electrons and 
Vo =

(

EFe
mi

)1/2

 . Also � = eziBo
miωpi

= ωci
ωpi

 , β = mec
2zi

3EFe
 and δ = EFe

mic2
 , such that +zie is the ionic charge and 

EFe =
√

P2Fec
2 +m2

e c
2 −mec

2 is the relativistic Fermi energy for electrons. We have done the normalization 

such that t, ∇ , ue , ui and φ were normalized by ω−1
pi =

(

∈omi

e2z2i nio

)1/2

 , 
(

∈oEFe
e2z2i nio

)−1/2

 , 
(

EFe
mi

)1/2

 , 
(

EFe
mi

)1/2

 and EFeezi
 

respectively.
Introducing the parameter α as:

where PFe is the electron Fermi momentum. The electron pressure Pe is given by:

defining ρe as the internal energy density of the electron fluid which is related to to Pe through the relation:

Presuming neo is the equilibrium electron fluid number density, so neo = zinio is the condition for charge neutral-
ity at equilibrium for the proposed model. As for the equilibrium state, we have

The Fermi and Bohm pressure terms contribute to the electron pressure, however the Bohm term will be omit-
ted in this study because it dominates at very small wavelengths near to or smaller than the inter particle mean 
distance which causes a break down for the fluid model at extremely small  wavelengths53.

oblique collision
To study the oblique collision of two ion acoustic (IA) excitations, namely solitons (as comes latter), Poin-
caré–Lighthill–Kuo (PLK) method will be employed to investigate the collision process of these two solitons 
traveling in two arbitrary directions at an angle θ : 0 < θ < 180 . Now we assume that the two solitons denoted 
as S1 and S2 in an initial state such that the two solitons are asymptotically far apart and travel obliquely toward 
each other. After some time, an interaction, a collision occurs and then departure. We also suppose that the two 
solitons interact with each other weakly. Hence, the collision is expected to be quasi elastic. According to the 
PLK method, we expand the dependent variables as

where j will stand for ions as i and electrons as e. The non linearity strength is characterized by ǫ which is a small 
parameter. Introducing ξ and η as the trajectories (independent variables) of the two solitons S1 and S2 which are 
given as the following stretched coordinates.

where � and �′ are the phase velocities of the IA soliton waves. S1 and S2 move in two different directions with 
R1 = lxx + lyy + lzz and R2 = l

′

xx + l
′

yy + l
′

zz , respectively, such that 
(

lx , ly , lz
)

 and (l′x , l
′

y , l
′

z) represent the direc-
tional cosines of S1 and S2 wave vector along the x, y and z axes, respectively. Po(η, τ) = Qo(ξ , τ) = 0 at the initial 
state of the two solitons S1 and S2 but after the interaction, a change in the solitons’ trajectories takes place and 

(4)∇φ −�
(

ue × ẑ
)

−
βγeα

2
on

−1/3
e

(

1+ α2
on

2/3
e

)

[

∇ + δue
∂

∂t

]

ne = 0,

(5)∇2φ − (γene − γini) = 0.

(6)α =
PFe

mec2
=

�

mec

(

3π2ne
)1/3

,

(7)Pe =
m4

e c
5

24π2�3

[

α
(

2α2 − 3
)(

α2 + 1
)1/2

+ 3 sinh−1 α

]

,

(8)Pe + ρe = nemec
2
√

α2 + 1.

α = αo

(

ne

neo

)1/3

with αo =
�

mec

(

3π2neo
)1/3

(9)

nj = 1+ ǫ2nj1 + ǫ3nj2 + ǫ4nj3 + · · · ,

ujx = ǫ3ujx1 + ǫ4ujx2 + ǫ5ujx3 + · · · ,

ujy = ǫ3ujy1 + ǫ4ujy2 + ǫ5ujy3 + · · · ,

ujz = ǫ2ujz1 + ǫ3ujz2 + ǫ4ujz3 + · · · ,

φ = ǫ2φ1 + ǫ3φ2 + ǫ4φ3 + · · · ,

(10)

ξ = ǫ
(

lxx + lyy + lzz − �t
)

+ ǫ2Po(η, τ)+ ǫ3P1(η, τ)+ · · · ,

η = ǫ

(

l
′

xx + l
′

yy + l
′

zz + �
′
t
)

+ ǫ2Qo(ξ , τ)+ ǫ3Q1(ξ , τ)+ · · · ,

τ = ǫ3t,
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hence Po(η, τ)  = 0 and Qo(ξ , τ)  = 0 and to be determined later. The angle between the propagation directions 
of the two solitons is given explicitly by θ = cos−1{(lx l

′

x + ly l
′

y + lz l
′

z)/[(l
2
x + l2y + l2z )

1/2(l
′2
x + l

′2
y + l

′2
z )

1/2]}54.
After transforming from x, y and z space to ξ , η and τ space, now we can substitute Eqs. (9) and (10) into Eqs. 

(1) – (5). Using the following solvability condition

then collecting the terms of the same ǫ powers; we get for the lowest ǫ order:

The set of Eqs. (12) – (14) are used to obtain the phase velocities � and �′ as

as a consequence, it leads to ni1 = ne1 and uiz1 = uez1 from Eqs. (12), (13) and (16).
For the next higher ǫ order, we have

Thus, we get the values of the next order of perturbed dependent variables as

Also as a result from the consistence of the above relations, we have uiz2 = uez2 . For the next higher order of ǫ , 
we get the following equation

(11)φ1(ξ , η, τ) = φ
ξ
1(ξ , τ)+ φ

η
1(η, τ),

(12)
ne1 =

(

1+ α2
o

)

βα2
o

(

φ
ξ
1 + φ

η
1

)

ni1 =
l2z
�2

φ
ξ
1 +

l
′2
z

�
′2 φ

η
1

,

(13)
uez1 =

(

1+ α2
o

)

βα2
o

(

�

lz
φ
ξ
1 −

�
′

l
′

z

φ
η
1

)

uiz1
lz

�
φ
ξ
1 −

l
′

z

�
′ φ

η
1

,

(14)
uix1 = −

1

�

(

ly
∂

∂ξ
φ
ξ
1 + l

′

y

∂

∂η
φ
η
1

)

uiy1 =
1

�

(

lx
∂

∂ξ
φ
ξ
1 + l

′

x

∂

∂η
φ
η
1

) ,

(15)uex1 = uey1 = 0.

(16)� = lzαo
√

β

(1+α2o)
and �

′
= l

′

zαo

√

β

(1+α2o)
,

(17)φ2(ξ , η, τ) = φ
ξ
2(ξ , τ)+ φ

η
2(η, τ).

(18)
ne2 =

(

1+ α2
o

)

βα2
o

(

φ
ξ
2 + φ

η
2

)

ni2 =
l2z
�2

φ
ξ
2 +

l
′2
z

�
′2
φ
η
2

,

(19)

uez2 =

(

1+ α2
o

)

βα2
o

(

�

lz
φ
ξ
2 −

�
′

l
′

z

φ
η
2

)

uiz2 =

(

lz

�
φ
ξ
2 −

l
′

z

�
′ φ

η
2

) ,

(20)

uix2 =
1

�

(

�lx

�

∂2

∂ξ2
φ
ξ
1 −

�
′
l
′

x

�

∂2

∂η2
φ
η
1 − ly

∂

∂ξ
φ
ξ
2 − l

′

y

∂

∂η
φ
η
2

)

uiy2 =
1

�

(

�ly

�

∂2

∂ξ2
φ
ξ
1 −

�
′
l
′

y

�

∂2

∂η2
φ
η
1 + lx

∂

∂ξ
φ
ξ
2 + l

′

x

∂

∂η
φ
η
2

)
,

(21)uex2 = uey2 = 0.
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where

and considering the right hand side of Eq. (22), the proportionality to η(ξ) of the first (second) term requires 
that these two terms to be secular terms as a reason for the independence of the integrated functions on η(ξ) . 
To avoid spurious resonances, we must eliminate those secular terms, so we have

Returning again to Eq. (22), for this order of ǫ , The third and fourth terms are not secular terms. However, for 
the next order they will  be55,56. Hence, we get the following equations for the leading phase shifts as

and

Equations (30) and (31) represent two-side traveling KdV wave equations in ξ and η reference frames, respectively 
and they lead to the corresponding IA solitary wave solutions as

(22)

−2(�l′z + �
′lz)uiz3 =2

l2z
�

∫

(

∂φ
ξ
1

∂τ
+ A1φ

ξ
1

∂φ
ξ
1

∂ξ
+ B1

∂3φ
ξ
1

∂ξ3

)

dη

+ 2l′2z �

∫
(

∂φ
η
1

∂τ
− A2φ

η
1

∂φ
η
1

∂η
− B2

∂3φ
η
1

∂η3

)

dξ

−

∫∫
(

D
∂Po

∂η
− E1φ

η
1

)

∂2φ
ξ
1

∂ξ2
dξdη

+

∫∫
(

D
∂Qo

∂ξ
− E2φ

ξ
1

)

∂2φ
η
1

∂η2
dξdη

(23)A1 =3
l2z
�
− 2�−

δ�

2
−

(

1+ 3α2
o

)

�

3βα2
o

,

(24)A2 =3
l
′2
z

�
′ − 2�

′
−

δ�
′

2
−

(

1+ 3α2
o

)

�
′

3βα2
o

,

(25)B1 =
�
3

2l2z

[

(

l2x + l2y + l2z

)

+
1

�2

(

l2x + l2y

)

]

,

(26)B2 =
�
′3

2l
′2
z

[

(

l
′2
x + l

′2
y + l

′2
z

)

+
1

�2

(

l
′2
x + l

′2
y

)

]

,

(27)E1 =
δl2z
2

−
l4z
�2

−

(

1+ 3α2
o

)

3βα2
o

l2z − l2z ,

(28)E2 =
δl

′2
z

2
−

l
′4
z

�
′2
−

(

1+ 3α2
o

)

3βα2
o

l
′2
z − l

′2
z ,

(29)D = − 4lz l
′

z

(30)
∂φ

ξ
1

∂τ
+ A1φ

ξ
1

∂φ
ξ
1

∂ζ
+ B1

∂3φ
ξ
1

∂ζ 3
= 0,

(31)
∂φ

η
1

∂τ
− A2φ

η
1

∂φ
η
1

∂η
− B2

∂3φ
η
1

∂η3
= 0.

(32)D
∂Po

∂η
= E1φ

η
1 ,

(33)D
∂Qo

∂ζ
= E2φ

ξ
1 .

(34)φ
ξ
1 =φ

ξ
1msech

2





�

A1φ
ξ
1m

12B1

�
1
2
�

ξ −
A1φ

ξ
1m

3
τ

�



,
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where φξ
1m and φη

1m are the amplitudes of the two solitons S1 and S2 , respectively in their initial position. Due to 
the collision, leading phase changes occur which can be calculated using Eqs. (32) and (33) to get

For an oblique collision, the trajectories ξ and η of the two solitary waves can be reformed using Eqs. (36) and 
(37) to be

In order to get the phase shifts resulting from the oblique collision process, we suppose that the two solitons S1 and 
S2 are at the initial time ( t = −∞ ) asymptotically far from each other such that soliton S1 is at ξ = 0 and η = −∞ 
while soliton S2 is at η = 0 and ξ = +∞ . After the oblique collision occurs i.e. at ( t = +∞ ), the soliton S2 is at 
η = 0 and ξ = −∞ far to the left of soliton S1 which is at ξ = 0 and η = +∞ . Defining △Po and △Qo to be the 
corresponding phase shifts which can be estimated as  follows54,56

and

Equations (40) and (41) indicate that a negative phase shift for each soliton in its propagation direction occurs as 
the soliton S1 is traveling to the right while the soliton S2 is traveling to the left. The negative phase shifts implies 
that the trajectories of the propagated solitons have a lagging behind the expected if they just leaved each other 
with no  interaction56,57.

numerical analysis and discussions
The oblique collision process of a relativistic degenerate two species plasma containing ions and electrons is 
studied in this paper under the effect of many important parameters that influence the interaction procedure. 
Our main interest is to study the impact of fluid number densities on the interaction process. The two derived 
KdV equations for the two solitons will be studied numerically under the effect of interaction. We also numeri-
cally investigate the phase shifts △Po and △Qo . We expressed all the vales in SI unit system, so physical quantities 
like e, � , me , ǫo and c are all having their SI value while other parameters, let us use the following numerical value 
lz = 0.1− 0.9 , l′z = −lz , ly = l

′

y = l
′

x = lx , zi = 1 , and finally the smallness parameter ǫ = 0.01.
The oblique collision at two different obliqueness angles is presented in Fig. 1 where the interaction at an 

angle θ = 34.7◦ appears in Fig. 1a while Fig. 1b shows the collision at an angle θ = 48.2◦ . Figure 2 illustrates the 
interaction (oblique collision) under the influence of different electron fluid number density neo , both Fig. 2a,b 
are plotted at ǫ = 0.01 , � = 0.2 and θ = 48.2◦ . One can observe the direct effect of neo on the soliton waves shape 
where in Fig. 2b the two solitons are much more sharper and apparently higher than the two interacting soliton 
waves in Fig. 2a. Figure 3 shows a density plot for the oblique collision of the two soliton solutions in Eqs. (34) 
and (35) where the impact of � is clear in the two panels of Fig. 3. Figure 3a is plotted for � = 0.2 , while Fig. 3b is 
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presented for � = 0.4 and all other conditions are the same in both which are θ = 48.2◦ , ǫ = 0.01 and neo = 1035 . 
One can immediately deduce that the greater the value of � , the narrower the width of the soliton becomes.

Figure 4 represents a full interaction process for an oblique collision of the two solitons that are obtained as 
solutions for the KdV equations. In this figure also, Fig. 4, we introduced another aspect which is the influence 
of the equilibrium electrons fluid number density neo on both the spacial occupying of the solitons and their 
shape, by introducing four solitons where each two of them are plotted at different neo . We presented the two 
blue solitons at neo = 1036 m−3 while the two red ones at neo = 1033 m−3 . Seven time moments are introduced 

Figure 1.  An overview, in a density profile, for the two solitons interaction at different values of obliqueness 
angle θ with , ǫ = 0.01 , neo = 10

35 , φη
1m = 0.3 , φξ

1m = 0.4 and � = 0.2.

Figure 2.  An overview, in a 3-D profile, for the two solitons interaction at different values of neo with , ǫ = 0.01 , 
θ = 48.2

◦ , φη
1m = 0.3 , φξ

1m = 0.4 and � = 0.2.

Figure 3.  A density plot for the two solitons interaction at different values of � with θ = 48.2
◦ , ǫ = 0.01 , 

φ
η
1m = 0.3 , φξ

1m = 0.4 and neo = 10
35 m−3.
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to illustrate the process prior to the interaction till collision and then separation. It is obvious that the effect of 
increasing the equilibrium electrons fluid number density neo has a direct influence on the width of the soliton 
and spontaneously the height of the soliton of course where it gets sharper and higher with raising neo . The 
phase shifts △Po and △Qo due to the oblique collision are studied also. We find in general as illustrated in Fig. 5 
that there is approximately an inverse proportionality between the phase shift △Po , △Qo and neo in the range of 
neo ≈ 1035 m−3 to 1038 m−3 , while for the range 1035 m−3 > neo > 1038 m−3 the change in phase shifts is nearly 
unnoticed. Figure 5 also discusses the impact of the obliqueness angle θ on the phase shifts when they are plotted 
against the equilibrium electron fluid number density neo . One can notice that there is an increase in the phase 
shift when raising the angle θ at a fixed value of neo.

Figure 6 clarifies the dependency of the phase shifts △Po and △Qo on � at different equilibrium electrons fluid 
number density neo , it is found that increasing neo results in a decrease in the phase shifts in general. A notable 
inverse proportionality in Fig. 6 among the phase shifts △Po , △Qo and neo , however with the higher values of � 
at � > 0.45 and regardless the value of neo , the phase shifts tend to be constant against � . Also Fig. 6 shows that 
at constant � , the phase shifts get lower with raising the equilibrium electrons fluid number density neo which 
agrees with the result obtained in Fig. 5.

Figure 4.  Depiction for the collision process,in a 2-D profile, of the two solitons via the first order perturbed 
quantities ne1 and uez1 at an angle θ = 48.2

◦ , ǫ = 0.01 and � = 0.2 . Each panel has ne1 (left) and uez1 (right). The 
blue curve is presented for φξ

1m = 0.4 and neo = 10
36 m−3 while the red thick curve is plotted for φη

1m = 0.4 and 
neo = 10

33 m−3.
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The impact of equilibrium electrons fluid number density neo on the phase velocity is introduced in Fig. 7, 
in which it is found that an inverse proportionality between the phase velocity � and neo which is similar to the 
range that was presented in Fig. 5 which is between neo ≈ 1035 m−3 to 1038 m−3 , on the other hand for the 
range 1035 m−3 > neo > 1038 m−3 the phase velocity � tends to be nearly unchanged against neo specially for 
higher values of obliqueness angle θ . Figure 7 also shows that the higher the value of θ , the greater the value of 
the phase velocity � specially for the range of the equilibrium electrons fluid number density neo < 1035 m−3.

Our model would be a suitable theoretical model that can be applied to dense degenerate plasmas like intense 
laser–solid density plasma  experiments44,45, astrophysical superdense bodies (e.g. the white dwarf core and neu-
tron stars)46,47, the micro and nano scale quantum  diodes49,50 and quantum free-electron  lasers58 .

Figure 5.  The demeanor of the △Po and △Qo against the electrons fluid number density neo at different 
obliqueness angles θ where ǫ = 0.01 , φη

1m = 0.3 , φξ
1m = 0.4 and � = 0.2.

Figure 6.  The demeanor of the △Po and △Qo against � at different equilibrium electrons fluid number density 
neo where ǫ = 0.01 , φη

1m = 0.3 , φξ
1m = 0.4 and θ = 48.2

◦.
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conclusion
As a summary, we have studied the oblique collision between two ion acoustic solitons waves (IASs) in a rela-
tivistic degenerate plasma that consists of degenerate electrons and nondegenerate cold ions. The extended 
Poincaré–Lighthill–Kuo (PLK) method has been used to study this interaction, getting two Korteweg deVries 
(KdV) wave equations describing two obliquely interacting solitons and obtaining the leading phase shifts due 
to the interaction. We studied mainly the effect of electrons fluid number density neo on the interaction of the 
two solitons with each other, phase shifts and phase velocity. We find that the soliton wave gets more higher 
and sharper (narrower) in width as neo increases. An inverse relationship between both the phase shifts △Po and 
△Qo and neo in the range neo ≈ 1035 m−3 to 1038 m−3 while for the range 1035 m−3 > neo > 1038 m−3 there was 
approximately no phase shifts change against neo . An increase of the phase shifts at a constant value of neo when 
raising the value of the obliqueness angle θ . The phase velocity showed inverse relationship with neo in the range 
neo ≈ 1035 m−3 to 1040 m−3 , but for the range 1035 m−3 > neo > 1040 m−3 , there are nearly no change. Also 
we found that the phase velocity � increases with the raising of the obliqueness angle θ particularly for the range 
of the equilibrium electrons fluid number density neo < 1035 m−3.
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