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Generalized entropies, density 
of states, and non‑extensivity
Sámuel G. Balogh1*, Gergely Palla1,2, Péter Pollner1,2 & Dániel Czégel3,4,5,6*

The concept of entropy connects the number of possible configurations with the number of variables 
in large stochastic systems. Independent or weakly interacting variables render the number of 
configurations scale exponentially with the number of variables, making the Boltzmann–Gibbs–
Shannon entropy extensive. In systems with strongly interacting variables, or with variables driven 
by history-dependent dynamics, this is no longer true. Here we show that contrary to the generally 
held belief, not only strong correlations or history-dependence, but skewed-enough distribution of 
visiting probabilities, that is, first-order statistics, also play a role in determining the relation between 
configuration space size and system size, or, equivalently, the extensive form of generalized entropy. 
We present a macroscopic formalism describing this interplay between first-order statistics, higher-
order statistics, and configuration space growth. We demonstrate that knowing any two strongly 
restricts the possibilities of the third. We believe that this unified macroscopic picture of emergent 
degrees of freedom constraining mechanisms provides a step towards finding order in the zoo of 
strongly interacting complex systems.

Today, witnessing the feedback loop of developing digital technologies and increasing amount of data collected, 
there has been an ever increasing need and opportunity to understand and control complex biological, social 
or technological systems1–5. The hallmark of such systems is that their global behavior emerges out of a large 
number of stochastic variables interacting in a non-trivial way6–9. A useful level of description is provided by 
(generalized) statistical mechanics, an effort to identify relations between relevant observable summary statistics 
of stochastic dynamics over configuration space. In many cases, the microscopic dynamical rules governing the 
system are not known; instead, their effect on first-order and higher-order statistics over configuration space 
form the basis of understanding. (By first-order statistics we mean visiting probabilities, whereas higher-order 
statistics refer to spatial and temporal correlations). A first classification of all systems is given by the mere size 
of the configuration space W in the function of the number of microscopic variables N. This is also a necessary 
classification for system-size independent modeling. In the absence of interactions, W(N) grows exponentially 
as the joint distribution over microscopic variables factorize. Non-trivial joint distributions, however, result in 
non-trivial restrictions on configuration space and possibly non-exponential scaling of W(N). Such systems 
are labelled non-extensive. In this paper, we factor sources of non-extensivity to first-order and higher-order 
statistical properties of the joint distribution over microscopic variables. In particular, effective classification of 
all higher-order statistics, however complicated they are, have been introduced under the name of generalized 
entropies. Generalized entropies indirectly model correlations: the specific entropic form that scales with system 
size (i.e., extensive, S ∼ N ), tells us which class the system itself belongs to.

A variety of generalized entropic functionals have been introduced to phenomenologically extend statis-
tical mechanics to specific non-ergodic or strongly interacting systems, both within and outside the realm 
of physics including spin-like systems9–11, cosmic ray energy spectra12, multifractals13, networks14, quantum 
information15–17, special relativity18, anomalous diffusive processes19–23, superstatistics24,25, time series analysis26–28 
and artificial neural networks29.

The diversity of proposed entropic functionals reflects the conceptual diversity behind the assumptions all 
leading, in weakly correlated systems, to the same mathematical form of the Boltmann–Gibbs–Shannon entropy, 
SBGS =

∑W
i=1 −pi ln pi . In particular, arguments relying on thermodynamics, statistical mechanics, dynamical 
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systems, information theory, and statistics all provide means to derive SBGS as a useful measure, and they all 
provide different means to generalize it2,18,30–39. Here we do not commit to any of these conceptual frameworks, 
instead, following the work by Hanel and Thurner in Ref.30, we rely on an axiomatic characterization of general-
ized entropies, based on the Shannon–Khinchin axioms SK1–SK440. Assuming that most of the relevant general-
ized entropic forms can be written as a sum of a pointwise function g over probabilities,

with a notable exception being the class of Rényi entropies, SRényi = 1
1−α

log
∑W

i=1 p
α
i  , axioms SK1–SK4 regarding 

Sg [p] translate to the language of the entropic kernel g(p). Prescribing all SK1–SK4 uniquely determines g to be 
proportional to the Boltzmann–Gibbs–Shannon kernel, gBGS = −p ln p . A surprisingly rich phenomenology of 
all possible generalizations to non-extensive systems can be achieved by discarding the only SK axiom that pre-
scribe the resulting entropy to be additive, namely, the decomposability axiom SK4, S[pAB] = �S[pA|B]�B + S[pB] , 
expressing that the entropy of a joint distribution pAB can be decomposed to the expected entropy of the condi-
tional distribution pA|B and the entropy of the marginal pB.

Interestingly, assuming equiprobable configurations ( pi ≡ W−1 ), all possible entropies obeying to SK1–SK3 
follow the asymptotic scaling law

with Hanel–Thurner (H–T) exponent 0 < c ≤ 130. A particularly simple representative of each possible asymp-
totic non-extensivity class is given by the one-parameter family of Tsallis entropies41, gq(p) =

p−pq

q−1  , with gq 
belonging to the class c = q , limiting gBGS (class c = 1 ) as q → 1.

We note that the Hanel–Thurner exponent c has been introduced as part of a two-parameter asymptotic 
classification (c, d) of generalized entropies30, along with a representative entropic form Sc,d corresponding to 
each class. Sc,d , however, is asymptotically non-equivalent to another two-parameter entropy, a generalization 
of that of Tsallis, Sq,δ42. Indeed, the latter asymptotically scales as Sq,δ(W) ∼ Wδ(1−q) when q < 1 , belonging to 
the class c = 1− δ(1− q) , d = 0.

Crucially, for any specific system, the functional form of the generalized entropy that is extensive maps any 
correlation structure beyond first-order statistics {pi} to its global consequences: the scaling of configuration 
space W(N) with system size, classified by the H–T exponent c. In this paper, we unify this phenomenological 
description with the effect of first-order statistics to gain a complete picture of sources of non-extensive configu-
ration space growth, factored to first-order and higher-order statistics. In particular, as entropies are invariant to 
relabeling of states i ↔ j , they only depend on the fraction of states with probability p. This probability density 
over probabilities we call density of states ρ(p) , similarly to statistical physics and condensed matter theory, where 
densities over log-probabilities play an important role.

The paper is organized as follows. The “Methods” section introduces the general formalism, the “Results” 
section discusses the role of specific density of states, and the Discussion summarizes the results. Detailed cal-
culations are given in the Supplementary Information.

Methods
In this section, we develop a simple mathematical framework relating three central concepts of strongly correlated 
systems: first order statistics, quantified in terms of density of states ρ(p) , higher-order statistics, modeled by 
generalized entropic functionals Sg [p] and the scaling of configuration space with system size W(N), classified 
by the H–T exponent c. Figure 1a illustrates the idea.

While doing so, we attempt to provide a step-by-step introduction to the logic of generalized statistical 
mechanics. Generalized statistical mechanics phenomenologically classifies all conceivable correlated systems by 
compressing all statistical dependences in the system’s stochastic dynamics into one relevant measure: the scaling 
of configuration space with system size. It uses a reverse logic: starting from the size of the configuration space 
W, through the prescription of extensivity of system-specific generalized entropic functional, one arrives to the 
system size N(W)43,44. Note that based on observing (some statistics of) the dynamics over configuration space, 
this is a meaningful definition of system size, whereas the mere number of variables is not: think of a configura-
tion space defined by many copies of the same variable (i.e., maximal mutual information between them). In 
order to avoid confusion, from now on we refer to N as effective system size. Inverting (the asymptotics of) N(W) 
tells us the system’s configuration space scaling W(N), classified by the H–T exponent c through Eq. (2). We 
complement this algorithmic recipe, depicted in Fig. 1c, with the missing ingredient, first-order statistics ρ(p) , to 
yield a coherent picture of all possible sources of non-extensivity, factored to first and higher-order correlations.

Asymptotically, W → ∞ , any generalized entropy Sg can be written as

(1)Sg
[

p
]

=

W
∑

i=1

g
(

pi
)

(2)R� = lim
W→∞

Sg [pi ≡
1

�W ]

Sg [pi ≡
1
W ]

∼ �
1−c

(3)Sg
[

p
]

=

W
∑

i=1

g
(

pi
)

= W

1
∫

0

ρ(p)g(p)dp = W
〈

g(p)
〉

ρ
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Figure 1.   (a) Generalized entropies Sg , providing a phenomenological classification of higher order statistics 
over configuration space, density of states ρ(p) , summarizing first order statistics over configuration space , and 
configuration space scaling with system size W(N). Knowledge of any two strongly restricts the possibilities 
for the third. (b) Computation of entropy Sg , corresponding to the shaded area, based on kernel g and density 
of states ρ . In this example, g = gBGS = −p ln p , ρ(p) is exponential, and the size of the configuration space 
is W = 106 , corresponding to 

〈

p
〉

ρ
= W−1 = 10−6 . (c) Computational steps relating generalized entropy 

Sg , density of states ρ , configuration space scaling W(N), and Hanel–Thurner exponent c. Density of states 
and generalized entropies summarize first and higher order statistics over configuration space, respectively, 
whereas configuration space scaling and the H–T exponent classify complex systems based on how available 
configuration space scales with effective system size N. Note that the starting point is the size of configuration 
space W; effective system size N is determined by leveraging extensivity of the system-specific generalized 
entropic form.
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by grouping terms with the same probability in the sum, weighted by the density of states ρ , visualized in Fig. 1b. 
Concavity of g, along with Jensen’s inequality, 

〈

g
(

p
)〉

ρ
≤ g

(

〈

p
〉

ρ

)

 , guarantees that Sg is maximal for the uniform 
distribution over states, ρ(p) = δ(p− 1/W) (see Supplementary Information).

The density of states ρ cannot be arbitrary, however: it is constrained by the normalization condition on p,

that is, the expected value of p under ρ is fixed to be 1/W, decreasing the dimension of the parameter space of ρ 
by 1. When needed, we emphasize this constraint by explicitly writing ρ(p|W) . An additional technical difficulty 
stems from the fact that the support of ρ is bounded. In this paper, we choose density of states that are bounded on 
[0, 1] but limit well-known distributions over a semi-infinite support as W → ∞ , and consequently, as 

〈

p
〉

ρ
→ 0.

The particular forms of ρ we consider, with detailed calculations in the “Results” section and in the Sup-
plementary Information, are (1) a delta function ρ(p) = δ(p− 1/W) , corresponding to uniform distribution 
over states (microcanonical, MC), (2) a combination of multiple delta functions, describing multiple uniform 
domains in configuration space, possibly scaling differently with configuration space size W (multi-delta, MD), 
(3) a case in which a single state has macroscopic (non-disappearing) probability at the limit W → ∞ and the 
probability of all other states are equal (Bose–Einstein, BE), (4) an exponential density of states (exponential), 
(5) a log-gamma density of states that limits log-normal (log-gamma), one that is a power-law with exponent 
limiting −1 (power law), and (6) a two-parameter family over [0, 1], the beta distribution, where we tune the one 
remaining free parameter to achieve a power-law tail with a tunable exponent (beta).

Configuration space scaling.  A simple classification of all correlated systems can be given by assessing 
how the associated extensive generalized entropy ( Sg ∼ N ) reacts to configuration space rescaling, W → �W . 
This idea, consistent with the Shannon–Khinchin axiomatic foundations of information, is articulated in terms 
of the Hanel–Thurner (H–T) exponent c, defined in Eq. (2). Here we generalize H–T scaling to systems with 
arbitrary (not necessarily uniform) visiting probabilities over states as

H–T scaling in case of a uniform distribution over configuration space is recovered by setting 
ρ(p|W) = δ(p− 1/W) , simplifying Eq. (5) to R� = limW→∞ �g

(

1
�W

)

/g
(

1
W

)

∼ �
1−c , implying that g(p) scales 

as pc as p → 0+ . For example, gBGS = −p ln p ∼ p , and gq =
p−pq

q−1 ∼ pq if 0 < q ≤ 1 , in agreement with SBGS 
and Sq belonging to H–T class c = 1 and c = q , respectively.

In a general framework, however, non-extensivity, classified by the H–T exponent c, depends on both first 
order and higher order statistics, accounted for by ρ and g jointly. In particular, as the density of states ρ broad-
ens (while still obeying to the expected value constraint 

〈

p
〉

ρ
= W−1 ), contributions to the total entropy come 

from configurations with a wider range of probabilities. Figure 2b shows the contribution of configurations with 
probability p < r to the total entropy, which we call cumulative entropy �g (r),

for specific combinations of density of states ρ and entropy kernels g.
How does broadening of ρ affect the scaling of available configuration space W(N), and its classification, given 

by the H–T exponent c? In the following, we perform exact calculations following the steps illustrated on Fig. 1c, 
for specific density of states ρ and entropy kernels g. We summarize the results in Table 1 for BGS entropy and 
in Table 2 for Tsallis entropies.

Results
In order to keep track of the consequences of changing the density of states ρ alone, we introduce the following 
nomenclature. We refer to the scaling of Sg = W

〈

g(p)
〉

ρ
 with W as regular if

with C1  = 0 , where δ denotes uniform configuration probabilities over the sample space (microcanonical ensem-
ble). Otherwise, the scaling is referred to as anomalous.

(4)1 =
∑

i

pi = W

1
∫

0

ρ(p)pdp = W
〈

p
〉

ρ
,

(5)R� = lim
W→∞

Sg

[

{pi}|
〈

p
〉

ρ
= 1

�W

]

Sg

[

{pi}|
〈

p
〉

ρ
= 1

W

] =

�W
1
∫

0

ρ(q|�W)g(q)dq

W
1
∫

0

ρ(q|W)g(q)dq

∼ �
1−c .

(6)�g (r) =

r
∫

0

ρ(p)g(p)dp

1
∫

0

ρ(p)g(p)dp

,

(7)W
〈

g(p)
〉

ρ

W→∞
≃ C0 + C1W

〈

g(p)
〉

δ
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Uniform distribution over configuration space (microcanonical).  The simplest example is associ-
ated with the microcanonical ensemble whose density of states is written as ρ(p) = δ(p− 1/W) . This form 
enables us to analitically express all forms of generalized entropies as

Based on that, e.g. the SBGS ∼ lnW  and Sq ∼ 1−W1−q

q−1  dependence for the Boltzmann–Gibbs–Shannon and 
Tsallis entropies can be shown in a straightforward manner. Hence, extensivity of SBGS is ensured by imposing 
exponential configuration space scaling W(N) ∼ eN , whereas Sq is extensive under W(N) ∼ N

1
1−q (for further 

details see Tables 1 and 2).
As the upper bound of Sq is always realized by the microcanonical ensemble, this case is corresponding to 

maximal disorder, which coincides with the SK2 maximality axiom.

(8)Sg = W

1
∫

0

δ

(

p−
1

W

)

g(p)dp = Wg

(

1

W

)

.

Figure 2.   (a) Continuous, parameter-free density of states we consider in this paper. (b) Contribution 
of configurations with probability p < r to the total entropy of the system, which we call cumulative 
entropy �g (r) , for different combinations of density of states ρ and entropy kernels g. In each case, 
〈

p
〉

ρ
= W−1 = 2−20 ≈ 10−6 . (c) Hanel–Thurner exponent, given by Eq. (5), of Tsallis entropies for the 

microcanonical ensemble and log-gamma (limiting log-normal) density of states. Although the H–T exponent 
of BGS entropy ( q = 1 ) is invariant to changing the density of states from microcanonical to log-gamma, this 
is no longer true for Tsallis entropies ( q < 1 ), indicating that non-extensivity class of any system is jointly 
determined by its extensive generalized entropy and the system’s density of states. (d) Scaling of BGS entropy 
SBGS with configuration space size W when the system’s the density of states follows a beta distribution with a 
power-law tail, characterized by a(W). Note that in systems with a ∼ W−ǫ with ǫ ≥ 1 , BGS entropy converges 
to a finite value in the thermodynamic limit W → ∞.
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Multiple uniform domains over configuration space (multi‑delta).  A straightforward generaliza-
tion of the classical microcanonical ensemble, let us discuss a system whose phase space is decomposeable into 
several disjunct k + 1 sub-domains (e.g., k + 1 different set of configurations). The volume of these sub-domains 
might scale differently with the size of the system being denoted by V0(N),V1(N), . . . ,Vk(N) . We additionally 
assume that the V0(N) function is standing for the scaling of a forbidden region, and each configuration cor-
responding to the same n-th set of configurations is occurring with a probability proportional to the size of this 
population ∼ Vn . Hence, the density of states with the correct pre-factors can simply be formulated as

where 
∑k

j=0 Vj(N) = W(N) . In case of k = 1 , Eq. (9) is reducing to

Despite its simplicity, the previous bimodal form has been pointed out to naturally emerge in various complex 
system, such as in confined binary decision trees21 or correlated spin systems9,45. In Ref.45 the authors discuss 
specific examples of composite systems, that is, complex systems which are composed of many identical but 
distinguishable sub-systems. They introduce a � parameter quantifying the correlation of the system, and dis-
cuss the behaviour of Tsallis entropy under non-equiprobable microstates (more precisely, over a multi-peaked 
density of states with each peak corresponding to the distinguishable sub-systems). They establish analytical 

(9)ρ(p) =
V0

W
δ(p)+

k
∑

j=1

Vj

W
δ

(

p−
Vj

∑k
m=1 V

2
m

)

,

(10)ρ(p) =
V0

W
δ(p)+

V1

W
δ

(

p−
1

V1

)

.

Table 1.   Scaling relations between BGS entropy SBGS ∼ W
〈

−p ln p
〉

ρ
 , configuration space size W, and 

effective system size N, along with Hanel–Thurner exponent c, summarizing the results of the paper. Detailed 
calculations, following the outline shown in Fig. 1c, are given in the “Results” section and in the Supplementary 
Information.

ρ(p) Sg (W) c W(N)

Microcanonical; δ
(

p− 1
W

)

lnW 1 eN

Multi-delta; Eq. (9) ξ lnW 1 eN

Bose–Einstein; Eq. (14) W−2
W−1 ln

(

W−1
W−2

)

+ 2
W−1 ln (W − 1) 2 e−W−1

(

− N
2

)

Exponential; We−Wp lnW 1 eN

Log-gamma; 
lnw

(

1
p

)

Ŵ(w+1)
lnW 1 eN

Power; 1
W−1 p

−1+ 1
W−1 1− 1

W
1 Never extensive

Beta; p
a−1(1−p)a(W−1)−1

B(a,a(W−1))
ψ(aW + 1)− ψ(a+ 1)

{

1, if a ≫ 1
W

1, if a ≤ 1
W

{

eN , if a ≫ 1
W

Not extensive, if a ≤ 1
W

Table 2.   Scaling relations between Tsallis entropies Sq ∼ W
〈

p−pq

q−1

〉

ρ
 , configuration space size W, and 

effective system size N, along with Hanel–Thurner exponent c, summarizing the results of the paper. Detailed 
calculations, following the outline shown in Fig. 1c, are given in the “Results” section and in the Supplementary 
Information.

ρ(p) Sg (W) c W(N)

Microcanonical; δ
(

p− 1
W

)

1−W1−q

q−1
q N

1
1−q

Multi-delta; Eq. (9) 1−
(

Wξ
)1−q

q−1
1− ξ + ξq N

1
ξ(1−q)

Bose–Einstein; Eq. (14) 1−
(

1− 1
W−1

)q
−

(

1
W−1

)2q−1

q−1
2q N

1
1−2q

Exponential; We−Wp 1−W1−q

q−1
q N

1
1−q

Log-gamma; 
lnw

(

1
p

)

Ŵ(w+1)
1−W

log2

(

2
1+q

)

q−1
log2

(

1+ q
)

N

1

log2

(

2
1+q

)

Power; 1
W−1 p

−1+ 1
W−1 1− W

qW−q+1
1 Never extensive

Beta; p
a−1(1−p)a(W−1)−1

B(a,a(W−1))
1

q−1

(

1−W
B(aW ,q)
B(a,q)

)

{

q, if a ≫ 1
W

1, if a ≤ 1
W

{

N
1

1−q , if a ≫ 1
W

not extensive, if a ≤ 1
W
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expressions for the Tsallis entropy as a function of � , S�q , and found that there always exists a pair of (�, q) for 
which S�q can be made extensive.

From a mathematical point of view, under the multi-delta ρ defined in Eq. (9), generalized entropies take 
the form of

where V∗ = maxj Vj defines the asymptotically leading term. In spite of the obvious analogy between Eq. (8) 
and the last part of Eq. (11), the two expressions can fairly differ from each other, e.g. in terms of non-extensivity 
classes. In the next paragraph, we proceed with providing a higher resolution picture of entropies defined under 
multi-delta density.

The entropy form in Eq. (11) implicitly suggests that if a particular region V0 of the configuration space is 
forbidden, or the regions Vi=1,...,k �= V∗ are rarely visited, then the generalized entropies are principally deter-
mined by the behaviour of the dominant term V∗ . This implies that extensivity is entirely encoded in the specific 
dependence of V∗ = V∗(W) . For simplicity hereinafter we assume that the volume of the entire configuration 
space is scaling with the volume of the leading sub-domain as V∗(W) ∼ Wξ , yielding

where 0 < ξ ≤ 1 for obvious reasons (see Supplementary Information). For the linear case ( ξ = 1 ) regular sample 
space scaling is recovered30, however, sub-linear dependence has very interesting consequences in terms of the 
H–T scaling given in Eq. (2). Plugging V∗(W) ∼ Wξ into Eq. (5), i.e. keeping track of how entropies change 
under the rescaling of the configuration space volume we obtain

where c = 1− ξ + ξq . Compared to the microcanonical ensemble where Tsallis entropy, Sq is extensive under 

W(N) ∼ N
1

1−q , here extensivity is satisfied if W(N) ∼ N
1

1−ξ+ξq . For the sake of detailed comparison of the scaling 
exponents under different forms of ρ see Tables 1 and 2.

Complex systems with V∗(N) ∼ Nγ , where γ > 1 are commonly reported in the literature9,44. This type of 
sub-exponential growth of the configuration space can often be attributed to the presence of forbidden configu-
rations and by thus, to the decrease in the number of accessible states. Based on this, the corresponding density 
of states is given by a bimodal form of ρ defined in Eq. (10). Owing to unattainable part of the configuration 
space [described by the first term in Eq. (10)], the asymptotics of the number of accessible microstates scales as 
Waccessible ∼ V∗(W) ∼ (lnW)γ , in contrast with the regular exponential growth, where Waccessible ∼ W . This 
implies the inadmissibility of BGS entropy and also that the associated extensive entropy has to be a different 
one than that is extensive for the microcanonical case. In general, the inadmissibility of BGS entropy for systems 
with confined configuration spaces has already been discussed in slightly different contexts such as in Refs.9,44.

A single macroscopic state (Bose–Einstein).  In this example we consider a system comprising of a 

single state with a macroscopic large probability, p1 = 1− 1
W−1 , together with W − 1 evenly distributed further 

states whose corresponding probabilites are given by pi=2,...,W = 1
(W−1)2

 . Based on the analogy with a Bose–Ein-
stein condensate, we refer to this system as Bose–Einstein, and write the corresponding density of states as

Using that, generalized entropies can analytically be expressed as

Note that Eq. (15) differs greatly from its microcanonical analogue Eq. (8), revealing that even few configura-
tions with macroscopic probabilities can significantly alter the behaviour that we would predict based on the 
microcanonical ensemble.

A system hallmarked by the density of states given above in Eq. (14) is displaying strong heterogeneity 
in its configurations as the variance of configuration probabilities decays linearly with the expected value, 
σ 2W→∞

∼
〈

p
〉

∼ W−1 , contrary to the microcanonical picture, where σ 2 ∼ 0 ∼ W−∞ . Due to the presence of 
macroscopically large weights, entropic forms have non-zero contributions coming from p ≈ 1 , therefore H–T 
scaling is given by

(11)Sg = W
〈

g(p)
〉

ρ
=

k
∑

j=1

Vjg

(

Vj
∑k

m=1 V
2
m

)

≈ V∗g

(

1

V∗
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,
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+
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where c = 2 for BGS and c = 2q for Tsallis entropies (see Supplementary Information). Note that in both cases 
the c exponent is greater than that of corresponding to the microcanonical picture. Hence, this example appar-
ently reveals how H–T scaling is changing as ρ(p) broadens. As another consequence, under the previous density 
of states, Tsallis entropy with deformation parameter q < 1

2 is extensive if W(N) ∼ N
1

1−2q however, for q > 1
2 

extensivity of Sq surprisingly requires W(N) to be monotonically decreasing (see Tables 1 and 2).

Exponential density of states (exponential).  Another characteristic type of decays can be formulated 
through an exponential density of states, which is simply expressed as

Although this density function satisfies the normalizaton condition only in the asymptotic sense, i.e., 
∫ 1
0 ρ(p)dp = 1+ O (e−W ) , the corresponding approximation error decays rapidly with W. Hence, the expected 

value of the above exponential form can safely be approximated by 
〈

p
〉

ρ
= 1

W + O (e−W ) , in accordance with the 
constraints imposed in “Methods” section. The Boltzmann–Gibbs–Shannon entropy in this case takes the form of

while the Tsallis entropy with q < 1 deformation parameter can be given as

where the equality is obtained by neglecting asymptotically vanishing terms. Although the aforemen-
tioned density of states satisfies the necessary conditions only asymptotically, the closely related form 
of ρ(p) = limp→0 (W − 1)

(

1− p
)W−2

∼ We−Wp has the nice property of exactly fulfilling both nor-
malization and expected value constraints. For example, the BGS entropy in this case can be written as 
SBGS = ψ(W + 1)− ψ(2) ≈ lnW − 1

2W − ψ(2) , where ψ(x) = d lnŴ(x)
dx  denotes the Digamma function.

The results above show that an exponentially decaying ρ(p) is always resulting in regular scaling. This prac-
tically implies that all the results obtained for the microcanonical ensemble, including i.e. the H–T scaling 
properties can automatically be extended to the exponential case without any modifications (see Tables 1 and 2).

Log‑gamma density of states (log‑gamma, limiting log‑normal).  A density of states that limits 
log-normal when W → ∞ yet is defined on the bounded support [0, 1] can be defined as the distribution of 
the product of independent uniform variables on [0, 1]. We call this distribution log-gamma, since in log-trans-
formed variables, it is a sum of exponentially distributed variables, i.e., a gamma distribution. As the number of 
terms in the sum approaches infinity, gamma limits normal; consequently, as the number of terms in the product 
approaches infinity, log-gamma limits log-normal (for details, see Ref.46). Its tail on a log–log scale (limiting a 
quadratic function, interpolating between an exponential and a power law tail) is shown in Fig. 2a. The log-
gamma density of states is defined as46

where w = log2 (W)− 1 . Under the previous form of ρ , BGS entropy reads (see Supplementary Information)

corresponding to a regular (logarithmic) scaling with W. In contrast, the Tsallis entropy surprisingly shows 
anomalous scaling for q  = 1 as

where c = log2
(

1+ q
)

�= q . On one hand this means that the microcanonical and log-gamma density of states 
are practically indistinguishable from the point of view of BGS entropy, while on the other hand, it also implies 
that H–T exponent c = log2

(

1+ q
)

 associated with Tsallis entropies and their deformation parameters q do not 
coincide anymore. Consequently, under log-gamma density of states extensivity of Sq can be obtained for the 

systems where W(N) ∼ N

1

log2

(

2
1+q

)

 . In Fig. 2c we show how Sq scales with W as a function of the deformation 
parameter for both microcanonical and log-gamma density of states.
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(17)ρ(p) = We−Wp.
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≈ lnW ,
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As an interesting example, let us discuss a binary spin chain, where fixed groups of nearby spins tend to stick 
together so that, they form Neff = γ log2 N (with γ being a positive parameter and γ > 1 ) number of sub-domains 
each of them behaving as if it was a single spin variable. Due to the reduction of the degrees of freedom, the 
number of accessible microstates scales as V∗ ∼ 2Neff ∼ 2γ log2 N . Configurations however, where units of the 
same sub-domain point to opposite directions are forbidden. We additionally assume that that the probabilities 
associated with the allowed configurations, i.e. the probabilities of the sub-domains for strictly pointing either 
upward or downward are not fixed, but drawn from an uniform distribution on [0, 1]. The above spin system 
realizes a density of states, which can be formulated as a combination of multi-delta and log-gamma, namely

where first term describes forbidden configurations, while the second one emerges from the accessible configu-
rations, mathematically corresponding to the distribution of the product of Neff  independent and uniform spin 
variables (for further details see Supplementary Information). Note that BGS entropy is not extensive for the 
previously discussed spin system since SBGS ∼ log2 N . On the other hand, Tsallis entropy with q < 1 is asymp-
totically given by

therefore, proposing an extensive entropic measure in case of γ = 1

log2

(

2
1+q

) , or reversely if q = 2
1− 1

γ − 1.

Power law density of states (power law).  Power-law like decay offers a much larger heterogeneity over 
the configuration space compared to e.g., the exponential density of states, and therefore, might dramatically alter 
the dependence of entropies upon W. To illustrate this, let us first define the corresponding density of states as

Surprisingly, this slow decay characterized by the strong inhomogeneity of probabilities over the configuration 
space yields to an anomalous scaling of both BGS and Tsallis entropy,

Note that BGS and Tsallis entropies remain finite even in the limit of W → ∞ , consequently their extensivity can 
not be carried out anymore, disenabling thermodynamical description of the corresponding systems. In general, 
we proclaim that the impossibility of extensivity suggests the lack of disorder and uncertainty.

Beta density of states (beta).  A particularly interesting example of first order statistics is the normalized 
Beta distribution, representing family of continuous probability density functions that are parametrized by two 
positive shape parameters a and b, written as

where B(a, b) denotes the Beta function. In order to satisfy the previously discussed expected value constraint, 
the shape parameters should algebraically be related to the sample space volume as 

〈

p
〉

ρ
= a

a+b = 1
W  , therefore 

b = a(W − 1) . According to previous relation, either a or b could be chosen arbitrarily while the correct choice 
for the other shape parameter has to be made in the light of the previous one. Under these settings BGS entropy 
can simply be expressed as

where ψ(x) = d lnŴ(x)
dx  denotes the Digamma function. When a is in the regime of a ∼ 1

W−1 ≪ 1 , the correspond-
ing density of states becomes so wide that it results in anomalous scaling of the entropy,

whereas greater values a ≫ 1 yield regular SBGS ∼ lnW scaling. The Tsallis entropy takes the form of

which again results in anomalous scaling for a ∼ 1
W−1.
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(
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According to the above, first order statistics following the Beta distribution can lead to substantially different 
types of configuration space scaling depending on the specific choice for the shape parameter a = a(W) . This 
can be seen by letting b ≈ aW and then using the approximate form of Eq. (27) which reads

with the free parameter of a(W) controlling the broadness of the distribution. By tuning the shape parameter 
in Eq. (31) above, we can smoothly interpolate between an exponential and power law like ρ(p) , and in parallel 
keep track of how our system virtually undergoes a transition from a highly disordered state (hallmarked by 
exponential density) to the ordered regime (characterized by power-law density).

We proceed with providing a detailed description of the above transition. For simplicity, here we restrict our 
analysis solely to the BGS entropy, however the results can straightforwardly be extended to the Tsallis entropy. If 
a(W) > 1

W−1 , the first term in Eq. (28) is dominating the second term, and based on the asymptotic expansion of 
the Digamma function we recover the regular SBGS ≈ ψ(aW + 1) ∼ lnW scaling. If however, a(W) < 1

W−1 , the 
density of states takes a power law like form, and the system is governed into a highly ordered configuration. The 
very existence of this transition between the two different regimes is mathematically encoded in the properties 
of the Digamma function. At the transition line a(W) = 1

W−1 between the two regimes

Below this line the BGS entropy can not satisfy extensivity. In slightly more intuitive terms, the distribution of 
the configuration probabilities becomes so wide in this regime that practically no uncertainty is appearing in the 
system description, which therefore, cannot be made extensive. In Fig. 2d. we illustrate the scaling of the BGS 
entropy in multiple different cases.

Discussion
Any dynamics, microscopic and coarse-grained, transient and stationary, takes place in the space of all configura-
tions of a system. The size of the configuration space, W, is controlled by the system size N. For systems composed 
of weakly interacting variables, W scales exponentially with N; the two provides a synonymous description of 
system size. System size independent (statistical) models can be formulated in terms of homogeneous (e.g., 
intensive or extensive) functions of N, without paying much attention to the fact that dynamics actually takes 
place on configuration space.

In complex systems of many strongly interacting variables, this is no longer true. The size of the configuration 
space might scale non-exponentially with system size, depending on multiple, not yet fully understood facets 
of correlated, history-dependent dynamics. A macroscopic attempt to extend ideas of statistical mechanics, 
in particular, the idea of size-invariance, formulated in terms of well-defined thermodynamic limits, to such 
complex systems can be built on the concept of generalized entropies Sg . Generalized entropies connect system 
size N with configuration space size W by implicitly re-defining system size as proportional to the generalized 
entropy characteristic to the system. Generalized entropies are, therefore, extensive by definition, i.e., Sg ∼ N . 
Note that this inverse logic is necessary as the space of dynamics is the configuration space; system size, of which 
homogeneous functions and system-size invariant models can be formulated, is auxiliary.

Generalized entropies account for higher-order statistics of the dynamics over configuration space, resulting 
in history-dependence (mathematically formulated as e.g., non-ergodicity), or correlated visiting probabilities. 
What they do not describe is visiting probabilites themselves, reflected by the fact that Sg takes these visiting 
probabilities as arguments. Conventional statistical mechanics suggest that changing visiting probabilities, i.e., the 
distribution over configurations, does not alter the (asymptotic) relation between system size and configuration 
space size: the Boltzmann–Gibbs–Shannon entropy SBGS is extensive in all known ensembles.

In this paper, we show that this is not the case. First order statistics of visiting probabilities, formulated in 
terms of density of states ρ , might very well change the relation between N and W. We identify three classes of 
density of states. Class i) does not change the asymptotic scaling of W(N) compared to the uniform (micro-
canonical) distribution over configuration space ρ = δ(p−W−1) . These density of states we call regular, as 
defined in Eq. (7).

Class (ii) entails density of states that change W(N) asymptotically (i.e., they are anomalous, according to 
Eq. 7) yet an extensive generalized entropy can be still assigned. This extensive generalized entropy is necessarily 
a different one that is extensive for the microcanonical case. The appropriate generalized entropy is thus depend-
ent on the visiting probabilities, e.g., on the thermodynamic ensemble in equilibrium statistical physics. This is 
observed in a ρ corresponding to a system with a microstate with macroscopic probability (that we call Bose–Ein-
stein, BE) in both weakly and strongly correlated systems, modeled by SBGS and by the family of Tsallis entropies, 
Sq , respectively. First order statistics also modify the non-extensivity scaling W(N) in strongly correlated systems 
in case of a ρ limiting log-normal, and a ρ is corresponding to multiple uniform domains in configuration space, 
whereas they do noft modify W(N) in weakly correlated systems. A paradigmatic example of the above class 
is provided by the description of quantum spin chains, e.g. in Refs.47–49. It is pointed out therein, that a sub-set 
of configurations is physically unattainable, thus constituting a frozen, thermodynamically inactive part of the 
whole configuration space. Although the specific form of the corresponding ρ is not known, the effective size of 
the sample space grows as Waccessible ∼ 2ln L instead of Waccessible ∼ 2L with L being the linear size of the system. 
As a consequence of the inactive part of configuration space, quantum analogue of SBGS (Von Neumann entropy) 
in this case, fails to provide an extensive measure since SBGS ∼ ln L . In general, including the above example, if 
a particular region of the sample is inaccessible (always described by a delta function at p = 0 in ρ ) and by thus 

(31)ρ(p)
p→0
∼ p−1+ae−Wap

(32)SBGS = ψ

(

2+
1

W − 1

)

− ψ

(

1+
1

W − 1

)

= 1−
1

W
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the assumption of equiprobable configurations is violated the associated extensive generalized entropy has to be 
different than that we would predict under the assumption of microcanonical ensemble.

The third class describes density of states having so much of their probability mass concentrated in the vicin-
ity of 0 that W(N) saturates, and therefore, no extensive entropy can be assigned to such systems. We find that 
systems with a power-law density of states, with exponent approaching −1 in the limit of W → ∞ belong to this 
class, regardless of their higher-order statistics. Such systems have non-zero visiting probability at all configura-
tions, yet these visiting probabilities are so skewed that both SBGS and Sq saturates at a finite value when W → ∞.

We believe that this unified macroscopic picture of strongly interacting and history-dependent processes, 
based on first and higher order statistics of visiting probabilities over configuration space, makes statistical 
mechanics a more flexible tool for modeling complex systems both within and outside the realm of physics.
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