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Quantification of extracellular 
volume fraction by cardiac 
computed tomography 
for noninvasive assessment 
of myocardial fibrosis 
in hemodialysis patients
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Extent of myocardial fibrosis in hemodialysis patients has been associated with poor prognosis. 
Myocardial extracellular volume (ECV) quantification using contrast enhanced cardiac computed 
tomography (CT) is a novel method to determine extent of myocardial fibrosis. Cardiac CT-based 
myocardial ECV in hemodialysis patients with those of propensity-matched non-hemodialysis control 
subjects were compared. Twenty hemodialysis patients (mean age, 67.4 ± 9.6 years; 80% male) and 
20 propensity-matched non-hemodialysis controls (mean age, 66.3 ± 9.1 years; 85% male) who 
underwent comprehensive cardiac CT consisted of calcium scoring, coronary CT angiography, stress 
perfusion CT and delayed enhancement CT were evaluated. Myocardial ECV was significantly greater 
in the hemodialysis group than in the control group (33.8 ± 4.7% versus 26.6 ± 2.9%; P < 0.0001). In 
the hemodialysis group, modest correlation was evident between myocardial ECV and left atrial 
volume index (r = 0.54; P = 0.01), while there was no correlation between myocardial ECV and other 
cardiac parameters including left ventricular mass index and severity of myocardial ischemia. Cardiac 
CT-based myocardial ECV may offer a potential imaging biomarker for myocardial fibrosis in HD 
patients.

Abbreviations
HD  Hemodialysis
CAD  Coronary artery disease
CMR  Cardiac magnetic resonance
ECV  Extracellular volume fraction
LV  Left ventricular
CT  Computed tomography
LVMI  Left ventricular mass index
LAVI  Left atrial volume index
CTA   Computed tomography angiography
CTP  Computed tomography perfusion
MBF  Myocardial blood flow
SSS  Summed stress score
CAD-RADS  Coronary artery disease-reporting and data system
LVEF  Left ventricular ejection fraction
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The risk of cardiovascular mortality is increased in chronic kidney disease and hemodialysis (HD)  populations1,2. 
The leading cause of cardiovascular death among HD patients is sudden cardiac death, however, the exact under-
lying arrhythmic mechanisms remain  elusive3. A postmortem study of HD patients without coronary artery 
disease (CAD) showed that 98.3% had myocardial fibrosis, and the pattern of fibrosis was  diffuse4. A recent study 
demonstrated that diffuse myocardial interstitial fibrosis, not replacement fibrosis, is associated with dispersion 
of ventricular repolarization in patients with hypertrophic  cardiomyopathy5, which suggests the importance 
of including an assessment of interstitial fibrosis in risk stratification for ventricular arrhythmias. Tradition-
ally, identification of myocardial fibrosis was performed by endomyocardial biopsy. However, this procedure 
is invasive and may lead to severe complications, while also suffering from sampling errors and interobserver 
discrepancies in  interpretation6,7.

Cardiac magnetic resonance (CMR) can determine the extracellular volume fraction (ECV) of left ventricular 
(LV) myocardium by measuring T1 relaxation times before and after administration of gadolinium contrast, and 
has become a noninvasive standard reference of myocardial  fibrosis8–11 Myocardial ECV is increased by myo-
cardial fibrosis in a wide range of cardiac diseases, including cardiac sarcoidosis, cardiac amyloidosis, ischemic 
cardiomyopathy, hypertrophy cardiomyopathy and dilated  cardiomyopathy11. An excellent correlation between 
myocardial ECV assessed by CMR and interstitial fibrosis determined by quantitative histopathology has been 
confirmed in a number of  studies8,9,12. However, in patients with HD, low risk gadolinium-contrast medium for 
nephrogenic systemic fibrosis should only be administered with the smallest possible dose if contrast study is 
considered necessary for clinical  management13.

Recently, several studies have demonstrated the potential of contrast enhanced cardiac computed tomog-
raphy (CT) to assess myocardial fibrosis with myocardial ECV. Nacif et al. showed a good correlation between 
myocardial ECV values determined by CMR and cardiac CT (r = 0.82, P < 0.001)14. Moreover, Bandula et al. 
demonstrated a significant correlation between CT-derived myocardial ECV and histologic fibrosis as a percent-
age (r = 0.71, P < 0.001)15. Cardiac CT could thus offer a suitable approach for assessing myocardial fibrosis and 
coronary stenosis in a single study. However, whether or not ECV quantification by cardiac CT allows assessment 
of increased myocardial fibrosis in HD patients has not been investigated.

The present study sought to explore the ability of cardiac CT to evaluate the extent of interstitial myocardial 
fibrosis in HD patients by comparing CT-derived myocardial ECV between HD patients and propensity matched 
non-HD control subjects. In HD patients, we also examined the relationship between myocardial ECV and vari-
ous parameters including LV mass index (LVMI), left atrial volume index (LAVI), and severity of myocardial 
ischemia.

Materials and methods
Study population. At our institution, a comprehensive cardiac CT consisted of coronary CT angiography 
(CTA), stress dynamic CT perfusion (CTP) and ECV measurement is considered for patients between 45 and 
85 years old who are clinically referred for coronary CT angiography with moderate to high pretest likelihood for 
obstructive coronary artery disease. Between October 2013 and November 2016, a total of 402 patients under-
went the comprehensive cardiac CT study. Among them, we consecutively recruited a total of 22 HD patients for 
this study. Of these, we excluded 2 patients who had undergone maintenance HD for < 12 months. Propensity 
score matched (age, sex, coronary risks and BMI) non-HD control subjects without any history of cardiovascular 
disease other than CAD were selected from the same cohort. The final study population comprised the 20 eligi-
ble HD patients and 20 propensity matched control subjects. This study was approved by the Clinical Research 
Ethics Review Committee of Mie University Hospital and performed in accordance with relevant guidelines and 
regulations. Written informed consent for study participation was obtained from all participants (including all 
control subjects).

Image acquisition. Comprehensive cardiac CT examinations were performed using a second- or third-
generation dual-source CT (SOMATOM Definition Flash or SOMATOM Force, Siemens Healthcare, Forch-
heim, Germany). A comprehensive cardiac CT protocol has been described in detail in  elsewhere16, but in brief, 
the protocol included unenhanced CT (for coronary artery calcium scoring and calculation of ECV), stress 
dynamic CTP (evaluation of myocardial ischemia), coronary CTA and delayed-phase CT (for evaluation of 
delayed enhancement and calculation of ECV).

Stress dynamic CTP was performed with adenosine triphosphate administration and injection of 40 mL (an 
iodine concentration of 370 mgI/mL) of iopamidol (Iopamiron 370; Bayer-Schering Pharma, Berlin, Germany) 
at a flow rate of 5 mL/s17. Dynamic data sets were acquired for 30 s via an electrocardiographically triggered axial 
scan mode, repeated at 2 alternating table positions. Tube voltage was set at 80 kV and 70 kV with the second- and 
third-generation dual-source CT, respectively, and tube current was determined using an automatic exposure 
control system with a quality reference of 350 mAs/rot at 120 kV for the second-generation and 300 mAs/rot at 
80 kV for the third-generation scanner. A standard prospective CTA was performed 10 min after stress dynamic 
CTP with injection of contrast medium at 0.84 mL/kg over 12 s (26 mgI/kg/s). Tube voltage was 2 × 100 kV or 
80 kV in the second-generation scanner and 2 × 80 kV or 70 kV in the third-generation scanner, and tube current 
was determined using the automatic exposure control system with a quality reference of 350 mAs/rot at 120 kV 
in the second-generation scanner and 300 mAs/rot at 120 kV in the third generation scanner. Gantry rotation 
time was 0.28 s in the second-generation scanner and 0.25 s in the third-generation scanner.

Seven minutes after coronary CTA, end-systolic delayed-phase images were acquired by electrocardiographi-
cally triggered axial scan at two alternating table  positions18. Tube voltage was 80 kV and tube current was 
370 mA for the second-generation scanner, and was automatically determined by the automatic exposure control 
system with the quality reference of 580 mAs/rotation at 80 kV for the third-generation scanner. Pre-contrast 
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CT was performed using the same acquisition protocol applied for delayed-phase CT. The time interval between 
stress dynamic CTP and delayed-phase CT was approximately 20 min.

Image analysis. Delayed enhancement and ECV. The presence of ischemic and non-ischemic enhance-
ment was visually evaluated on delayed-phase CT by two observers, including a radiologist with > 10 years of 
experience in cardiac CT and CMR. Discrete subendocardial or transmural delayed enhancement in a coronary 
distribution was considered an ischemic pattern, while patchy or diffuse enhancement in the midwall or subepi-
cardium with sparing of the subendocardium was considered non-ischemic19,20. Myocardial ECV was calculated 
using commercial software (CT myocardial ECV analysis; Ziosoft, Tokyo, Japan) employing the following equa-
tion: ECV = (ΔHUm/ΔHUb)·(1 − Hct), where ΔHUm is the change in myocardial CT attenuation, in Hounsfield 
units (HU), ΔHUb is the change in CT attenuation of the blood, and Hct is the  hematocrit21 (Supplementary 
Material Online 1). In this software, automatic three-dimensional non-rigid registration of the myocardium is 
performed between unenhanced and delayed phase CT to generate subtraction  image22. Then, change in CT 
attenuation (ΔHU) was obtained on the subtraction image (Fig. 1). Subendocardial and subepicardial borders 
were contoured manually by two independent observers to allow assessment of interobserver reproducibility. 
The software finally produces a polar map showing 16 American Heart Association myocardial segments with 
the mean ECV value for each segment. In this study, ECV values in segments with ischemic pattern were ex-
cluded from further analysis.

Stress dynamic CTP. Stress dynamic CTP images were postprocessed using commercially available perfusion 
software (syngo VPCT body; Siemens Healthcare). Myocardial blood flow (MBF) was estimated using a dedi-
cated parametric deconvolution technique, based on a 2-compartment model of the intravascular and extravas-
cular  spaces23. Maximum slopes of time-attenuation curves fitted for every voxel were used to generate an MBF 
map of 3-mm thickness and 1-mm increments. Polygonal regions of interest that measured 1–2  cm2 were placed 
within each of the 16 American Heart Association myocardial segments. Global MBF was calculated as the 
mean of the 16 segments. Severity of myocardial ischemia was evaluated using a summed stress score (SSS)17. 
A normalized MBF value was calculated as an MBF value in each segment divided by the highest MBF value 
within the 16 segments on an MBF map, then SSS was calculated by adding scores of all segments using a 5-point 
scale based on normalized MBF values: 0 = normal (> 0.75); 1 = mildly abnormal (≤ 0.75, > 0.675); 2 = moderately 
abnormal (≤ 0.675, > 0.60); and 3 = severely abnormal (≤ 0.60).

Assessment of coronary artery. The amount of coronary artery calcium was quantified from unenhanced CT 
using the Agatston scoring  method24. Coronary CTA images were visually evaluated for the presence of stenosis 
in segments with a reference diameter ≥ 1.5 mm as the consensus decision of two observers. Severity of CAD 
was ranked using the Coronary Artery Disease Reporting and Data System (CAD-RADS): 0, no atherosclerotic 
change; 1, 1–24% stenosis; 2, 25–49%; 3, 50–69%; 4A, 70–99% in 1 to 2 vessels; 4B, 70–99% in 3 vessels or ≥ 50% 
in the left main coronary artery; or 5, 100%. Obstructive CAD was defined as stenosis ≥ 50% in ≥ 1 vessel (CAD-
RADS ≥ 3)25.

Figure 1.  The process of calculating myocardial extracellular volume (ECV). Step 1: Generation of subtraction 
image. Subtraction images are generated from pre-contrast and delayed-phase CT by using an automatic three-
dimensional non-rigid image registration. Step 2: Determination of left ventricular (LV) axis and segmentation 
of LV myocardium (tracing of endocardial and epicardial border). This step is also automated in the software 
with function of manually correction. A region of interest is placed in the LV cavity on the subtraction image 
to obtain ΔHUb. Step 3: Generation of ECV polar map. Entering the hematocrit value gives the ECV values for 
each segment in a polar map. In the polar map, ECV values are displayed as fractions.
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LV volume and function, left atrial volume. LV volumes and LV ejection fraction (EF) were echocardiographi-
cally calculated using the modified Simpson method from apical 4- and 2-chamber views. LV systolic dysfunc-
tion was defined as an LVEF less than 50%26. Echocardiography was performed in the supine position using a 
Vivid7 Dimension cardiovascular ultrasound system (GE Vingmed Ultrasound AS, Horten, Norway). LV mass 
was obtained from coronary CTA using commercially available software (Syngo.CT Cardiac Function; Siemens 
Healthcare).

Left atrial volume was measured from CT datasets (40–75% of the R-R interval before opening of the atrio-
ventricular valves) on a three-dimensional CT workstation (Ziostation2; Ziosoft, Tokyo, Japan) with the biplane 
area length  method27.

Statistical analysis. Normality was assessed using the Shapiro–Wilk test. Values are expressed as 
mean ± standard deviation, or median (interquartile range) as appropriate. Values were compared between the 
two groups by independent t tests and Mann–Whitney U tests. Categorical data were assessed using the chi-
square test or Fisher’s exact test, as appropriate. Correlations within each group between continuous indices were 
assessed using Pearson’s and Spearman’s correlation coefficients for parametric and nonparametric data, respec-
tively. In a previous  study22, ECV within each subject group was normally distributed with standard deviation of 
5 percent points. Assuming a true difference of 5 percentage points between the population means of the HD and 
control groups, we will need to study 17 HD patients and 17 control subjects to be able to reject the null hypoth-
esis that the population means of the HD and control groups are equal with the power of 0.80 and the Type I 
error probability of 0.05. Thus, the sample size of 20 per group in this study was considered sufficient for the 
purpose. Propensity scores for the likelihood of coronary artery disease (age, sex, hypertension, dyslipidemia, 
diabetes mellitus, current smoking, previous percutaneous coronary intervention, history of myocardial infarc-
tion, and BMI) were obtained by logistic regression. Matching was made on logit-transformed propensity scores 
matched to the nearest neighbor in a 1:1 fashion with a caliper of 0.05. A blinded list of mixed HD patients and 
control subjects in a random order was used for CT image analysis. Two independent observers measured ECV 
to assess inter-observer reproducibility. Furthermore, one observer measured ECV twice with a washout period 
of 3 months to determine intra-observer reproducibility. The inter- and intra-observer reproducibility of the 
myocardial ECV measurement were tested by calculating mean bias and 95% limits of agreement (confidence 
intervals) from Bland–Altman analyses, the coefficient of variation (CV), and interclass correlation coefficient 
(ICC). Values of P < 0.05 were considered significant. The analyses were performed using SPSS software (version 
23; SPSS, Chicago, IL).

Results
Baseline patient characteristics. Demographic data for 20 HD patients and 20 propensity matched 
non-HD control subjects are shown in Table 1. No differences in age, sex, body mass index, blood pressure, 
drug and medical history, history of myocardial infarction, and history of CAD were identified between groups. 
Hematocrit was lower in the HD group than in the control group. Mean dose-length product for the whole 
comprehensive cardiac examination was 806.7 ± 288.7 Gy cm, corresponding to an estimated effective dose of 
11.3 ± 4.0 mSv. Mean radiation dose for ECV measurement (total of pre-contrast CT and delayed-phase CT) was 
3.4 ± 0.6 mSv. The iodinated contrast dose was 40 mL for stress dynamic CTP (an iodine concentration of 370 
mgI/mL) and 0.84 mL/kg body weight for CTA. In addition, 10 mL of contrast medium was used to determine 
the timing of CTA acquisition (test bolus). No additional contrast was injected after CTA before delayed-phase 
CT. The cumulative dose of injected contrast agent per patient was 102.6 ± 9.9 mL in this study. All patients were 
in sinus rhythm and free of valvular disease.

Coronary artery calcium score, coronary CTA, stress dynamic CTP and delayed-phase 
CT. Table 2 shows the results of coronary artery calcium scoring, coronary CTA, stress dynamic CTP and 
delayed-phase CT in the two groups. Total coronary artery calcium score was significantly higher in the HD 
group than that of control group (1993.1 ± 2,465.6 vs. 277.6 ± 406.5; P = 0.009). However, there was no difference 
in severity of CAD as classified by CAD-RADS category, global MBF (107.0 ± 40.4 vs. 120.9 ± 28.8; P = 0.22) or 
SSS (8.8 ± 9.1 vs. 6.4 ± 6.4; P = 0.66). As for delayed-phase CT, 7 HD patients (22 of the 320 segments) and 8 con-
trol subjects (34 of the 320 segments) showed ischemic delayed enhancement, while none demonstrated non-
ischemic delayed enhancement. All segments with ischemic delayed enhancement were excluded from ECV 
analysis.

Myocardial ECV, LV mass, function and left atrial volume. Myocardial ECV was significantly greater 
in the HD group (33.8 ± 4.7%) than in the control group (26.6 ± 2.9%; P < 0.0001) (Fig. 2). The mean LVEF was 
57.1 ± 13.3% in HD group and 64.6 ± 5.7% in control group (P = 0.15). Although none showed overt heart fail-
ure, LV systolic dysfunction was observed in 7 patients (35%) in the HD group and 1 patient in the control 
(5%; P = 0.02). However, even in a subgroup of patients without LV systolic dysfunction, myocardial ECV was 
significantly higher in 13 HD patients compared to 19 control subjects (33.5 ± 5.1% vs 26.3 ± 2.7%, P = 0.002). 
The examples of myocardial ECV map are shown in Fig. 3. LVMI was significantly greater in the HD group 
(90.9 ± 28.9 g/m2) than in the control group (64.5 ± 11.0 g/m2; P < 0.0001). LAVI was significantly increased in 
the HD group than in the control group (51.9 ± 22.4 mL/m2 vs 30.2 ± 10.4 mL/m2; P < 0.0001) (Table 3). The 
segmental variation of myocardial ECV was shown in Supplementary Material Online 2.

Correlation of myocardial ECV in HD group with cardiac and HD parameters. Correlations 
between myocardial ECV and various parameters in HD group are shown in Table 4. Myocardial ECV corre-
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lated significantly with LAVI both in HD group (r = 0.54; P = 0.01) and in the control (r = 0.56; P = 0.01) (Fig. 4). 
Myocardial ECV did not show significant association with SSS, CAD-RADS, LVMI, or LVEF. No correlation was 
identified between myocardial ECV and interdialysis body weight gain (difference between weight at the end of 
dialysis and weight at the time of scanning), ultrafiltration volume, or dialysis vintage.

Inter- and intra-observer reproducibility. The mean inter-observer difference was 0.48 ± 1.50% (95% 
limits of agreement: − 3.42 to 2.46%), while the mean intra-observer difference was 0.28 ± 1.37 (95% limits of 
agreement: − 2.97 to 2.41%). The CV for the inter-observer and intra-observer measurements of myocardial 
ECV was 3.20% and 2.98%, respectively. The ICC for the inter-observer and intra-observer measurements of 
myocardial ECV were 0.962 (95% confidence interval: 0.905 to 0.985) and 0.966 (95% confidence interval: 0.914 
to 0.987).

Discussion
In the current study, we investigated the extent of diffuse myocardial fibrosis by comparing myocardial ECV 
derived from cardiac CT between HD patients and control subjects for the first time. The main findings of our 
study were: (1) myocardial ECV was significantly greater in HD patients than in control subjects; (2) there was 
a significant correlation between myocardial ECV and LAVI in HD group.

By simply quantifying the interstitial presence of contrast medium relative to the plasma, ECV is well suited to 
measure interstitial expansion occurring with fibrosis in the absence of interstitial  edema28. Compared to native 

Table 1.  Demographic data of HD patients and control subjects. All data are shown as mean ± standard 
deviation, median (interquartile range), or number of participants (percentage), as appropriate. BMI body 
mass index, BSA body surface area, SBP systolic blood pressure, DBP diastolic blood pressure, HR heart rate, 
eGFR estimated glomerular filtration rate, CAD coronary artery disease, MI myocardial infarction, ACEi 
angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker. *P < 0.05.

HD (n = 20) Control (n = 20) P value

Age (years) 67.4 ± 9.6 66.3 ± 9.1 0.71

Male (n, %) 16 (80%) 17 (85%) 0.68

BMI (kg/m2) 23.4 ± 3.8 23.7 ± 2.3 0.73

BSA  (m2) 1.7 ± 0.2 1.7 ± 0.2 0.44

Dialysis vintage (months) 124.2 (48–156) –

Hematocrit* (%) 33.4 ± 5.0 41.0 ± 3.9 < 0.0001

SBP* (mmHg) 141.7 ± 20.8 141.3 ± 14.2 0.94

DBP (mmHg) 68.3 ± 15.7 75.0 ± 8.4 0.10

HR (beats/min) 68.5 ± 10.6 63.3 ± 7.7 0.09

eGFR (ml/min/1.73  m2) – 71.7 ± 15.6

Medical and drug history

Hypertension (n, %) 18 (90%) 16 (80%) 0.38

Diabetes (n, %) 11 (55%) 10 (50%) 0.75

Dyslipidemia (n, %) 9 (45%) 11 (55%) 0.53

History of CAD (n, %) 7 (35%) 8 (40%) 0.74

History of MI (n, %) 3 (15%) 4 (20%) 0.63

ACEi/ARB (n, %) 9 (45%) 8 (40%) 0.75

Calcium channel blocker (n, %) 12 (60%) 10 (50%) 0.53

Alpha-blocker (n, %) 1 (5%) 1 (5%) 1.00

Beta-blocker (n, %) 9 (45%) 5 (20%) 0.19

Diuretic (n, %) 3 (15%) 3 (15%) 1.00

Statin (n, %) 7 (35%) 11 (55%) 0.20

Antiplatelet (n, %) 16 (80%) 13 (65%) 0.29

Antidiabetic drugs (n, %) 4 (20%) 7 (35%) 0.29

Insulin (n, %) 4 (20%) 2 (10%) 0.38

Erythropoietin (n, %) 20 (100%) –

Etiology of renal disease

Diabetic nephropathy (n, %) 10 (50%)

Nephrosclerosis (n, %) 6 (30%)

Glomerulonephritis (n, %) 2 (10%)

Polycystic kidney disease (n, %) 1 (5%)

Cholesterol crystal embolism (n, %) 1 (5%)

Propensity score 0.129 ± 0.103 0.120 ± 0.106 0.78
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Table 2.  Imaging results of coronary artery calcium scoring, coronary CTA, stress dynamic CT perfusion, and 
delayed-phase CT. CAD-RADS Coronary Artery Disease-Reporting and Data System, CAD coronary artery 
disease, CTP computed tomography perfusion, MBF myocardial blood flow, SSS summed stress score, MI 
myocardial infarction, ECV extracellular volume fraction. *P < 0.05.

HD (n = 20) Control (n = 20) P value

Coronary calcium scoring

Total* 1,993.1 ± 2,465.6 277.6 ± 406.5 0.009

Coronary CTA 

CAD-RADS 0–2 (n, %) 6 (30%) 11 (55%) 0.11

CAD-RADS 3 (n, %) 3 (15%) 5 (25%) 0.43

CAD-RADS 4A (n, %) 4 (20%) 2 (10%) 0.38

CAD-RADS 4B (n, %) 1 (5%) 0 (0%) 0.31

CAD-RADS 5 (n, %) 6 (30%) 2 (10%) 0.11

Obstructive CAD (n, %) 14 (70%) 9 (45%) 0.11

Single-vessel disease (n, %) 7 (35%) 5 (25%) 0.49

Multivessel disease (n, %) 7 (35%) 4 (20%) 0.29

Stress dynamic CTP

Global MBF (mL/100 mL/min) 107.0 ± 40.4 120.9 ± 28.8 0.22

SSS 8.8 ± 9.1 6.4 ± 6.4 0.66

SSS ≥ 4 (n, %) 13 (65%) 11 (55%) 0.52

SSS ≥ 8 (n, %) 8 (40%) 5 (25%) 0.31

SSS ≥ 12 (n, %) 7 (35%) 3 (15%) 0.14

Delayed-phase CT

Ischemic pattern (n, %) 7 (35%) 8 (40%) 0.74

Non-ischemic pattern (n, %) 0 (0%) 0 (0%) 1.00

Myocardial ECV (%)* 33.8 ± 4.7 26.6 ± 2.9 < 0.0001

Figure 2.  Bee swarm plot comparing myocardial extracellular volume (ECV) in hemodialysis (HD) group and 
control group.
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T1 mapping by CMR, which potentially allows quantification of myocardial fibrosis in HD patients without use 
of contrast  media29,30, ECV generally shows better agreement with histologic fibrosis. This is because native T1 is 
affected by more confounders (e.g. lipids, iron, intracellular edema) than  ECV28. Additionally, myocardial ECV 
derived from cardiac CT had excellent inter- and intra-observer reproducibility in this study, which enhaced 
the validity and reliability of this study.

Figure 3.  Delayed enhancement images (a, b) and myocardial extracellular volume (ECV) polar maps (c, 
d) of a control subject and a hemodialysis (HD) patient. No focal area of delayed enhancement is detected 
in the control subject (a) or HD patient (b). The myocardial ECV polar map of the control subject (c) shows 
normal myocardial ECV. The myocardial ECV polar map of the HD patient (d) shows higher ECV, indicative of 
advanced myocardial fibrosis that is undetectable from the delayed enhancement image (b). In the polar maps, 
ECV values are displayed as fractions.

Table 3.  Cardiac parameters of HD patients and control subjects. All data are shown as mean ± standard 
deviation. HD hemodialysis, ECV extracellular volume fraction, LAV left atrial volume, LAVI left atrial volume 
index, LVM left ventricular mass, LVMI left ventricular mass index, LVEF left ventricular ejection fraction, 
LVEDV left ventricular end-diastolic volume, LVEDVI left ventricular end-diastolic volume index, LVESV left 
ventricular end-systolic volume, LVESVI left ventricular end-systolic volume index, DLP dose-length product. 
*P < 0.05.

HD (n = 20) Control (n = 20) P value

LVEDV (mL) 105.0 ± 40.6 99.2 ± 19.7 0.74

LVEDVI (mL/m2) 64.6 ± 26.9 59.2 ± 14.4 0.84

LVESV (mL) 48.4 ± 30.6 36.3 ± 11.5 0.55

LVESVI (mL/m2) 29.7 ± 19.9 21.6 ± 7.5 0.55

LVEF (%) 57.1 ± 13.3 64.6 ± 5.7 0.15

LVM* (g) 148.0 ± 45.2 107.1 ± 18.8 < 0.001

LVMI* (g/m2) 90.9 ± 28.9 64.5 ± 11.0 < 0.0001

LAV* (ml) 85.4 ± 41.3 50.7 ± 16.8 < 0.0001

LAVI* (ml/m2) 51.9 ± 22.4 30.2 ± 10.4 < 0.0001
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Histological studies have shown that diffuse (not focal) myocardial fibrosis was found in HD  patients4,31,32. 
Analogous to these previous reports, the greater myocardial ECV of the HD group (33.8 ± 4.7%) in the present 
study would represent a development of myocardial fibrosis, whereas ECV of the controls (26.6 ± 2.9%) is within 
the normal range. Since it is well documented that ECV is elevated in patients with heart failure with reduced 
 EF33 and there were more patients with LVEF < 50% in the HD group than in the control group, we performed a 
subgroup analysis that excluded patients with LVEF < 50% and confirmed that ECV was higher in the HD group. 
Of note, we found a significant correlation between myocardial ECV and LAVI in HD patients. Elevated ECV 
is reported to be a major contributor to the impaired LV relaxation and  stiffness34. With increased LV stiffness, 
left atrial pressure rises to maintain adequate ventricular filling, and the increased atrial wall tension leads to 
subsequent left atrial enlargement. Our results showing the correlation between myocardial ECV and LAVI is 
consistent with this pathophysiological cascade and demonstrates the accuracy for the quantification of ECV 
in our study.

However, several factors potentially affecting myocardial ECV value should be considered when interpret-
ing the results. First, the presence and extent of atherosclerosis in the coronary circulation may be related with 

Table 4.  Correlation of myocardial ECV in HD patients. ECV: extracellular volume fraction; BMI: body mass 
index; SBP: systolic blood pressure; DBP diastolic blood pressure, SSS summed stress score, MBF myocardial 
blood flow, CAD-RADS Coronary Artery Disease-Reporting and Data System, LVEF left ventricular ejection 
fraction, LVEDVI left ventricular end-diastolic volume index, LVESVI left ventricular end-systolic volume 
index, LVMI left ventricular mass index, LAVI left atrial volume index, BW body weight. *P < 0.05.

Parameters

Myocardial 
ECV

r P

Age 0.18 0.44

BMI 0.07 0.76

SBP 0.22 0.35

DBP 0.06 0.81

SSS − 0.36 0.12

MBF 0.12 0.61

CAD-RADS 0.24 0.31

Coronary artery calcium score 0.36 0.23

LVEF − 0.18 0.44

LVEDVI − 0.06 0.81

LVESVI 0.16 0.51

LVMI 0.33 0.16

LAVI* 0.54 0.01

QRS duration − 0.07 0.78

Dialysis vintage 0.06 0.80

Ultrafiltration volume 0.06 0.80

Interdialysis BW gain − 0.17 0.50

Figure 4.  Relationship between extracellular volume (ECV) and left atrial volume index (LAVI) in 
hemodialysis (HD) group and control group.
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increased myocardial ECV in HD patients. Indeed, HD patients exhibited higher calcium scores in the current 
study. However, we found no significant difference in the severity of obstructive CAD or the severity of myocar-
dial ischemia between HD and control patients. While the effect of chronic myocardial ischemia appears limited 
in this study, a large-scale study is warranted to explore the effect of chronic myocardial ischemia.

Second, whether fluid shifts affect myocardial ECV in HD patients remains an issue of concern since this 
is crucial to define the reliability of myocardial ECV as a potential marker of myocardial fibrosis among HD 
patients. However, a recent cardiac MR study by Graham-Brown et al. showed that changes in fluid status among 
HD patients did not affect native T1 signal, which is theoretically more sensitive to fluid status than myocar-
dial  ECV29. In our study, interdialysis body weight gain and ultrafiltration volume, representative of changing 
fluid status, showed no correlations with myocardial ECV. Dialysis vintage also did not show correlation with 
myocardial ECV. In this regard, a potential explanation is that myocardial fibrosis may correlate with duration 
of impaired renal  dysfunction35. However, the accurate determination of the duration of renal dysfunction is 
generally difficult because determining the beginning of renal impairment is impossible.

Limitations. This study has some limitations that require acknowledgement. First, myocardial ECV data in 
our study were derived from a relatively small cohort from a single center. A large-scale study is warranted to 
validate the results of our study. Second, histologic validation was not performed. Subjects in this study were not 
eligible for endomyocardial biopsy. However, a previous study showed myocardial ECV determined by cardiac 
CT correlated with histologic quantification of myocardial  fibrosis15. Moreover, the histological studies have 
demonstrated that HD patients showed a larger extent of diffuse myocardial  fibrosis4,19. Third, although total 
radiation dose (11.3 ± 4.0 mSv) applied in this study was acceptable, combining ECV module and stress dynamic 
CTP with coronary CTA increased the doses of ionizing radiation and contrast agent compared with coronary 
CTA alone. Continuous effort to reduce radiation exposure and contrast agent is required. Forth, scan-rescan 
reproducibility, which is necessary to understand the potential usefulness of ECV in the serial assessment, was 
not evaluated in this study. Although a recent study showed a high repeatability of CT-derived ECV in patients 
with suspected coronary artery disease who underwent serial assessment of ECV with a median interval of 
5.1 months36, future investigation of repeatability of ECV in HD patients is awaited. Finally, this study did not 
address clinical outcomes, further studies are warranted to reveal the relationship between myocardial ECV and 
future cardiac events.

Conclusion
Cardiac CT-based myocardial ECV offers a potential imaging biomarker for myocardial fibrosis in HD patients. 
Further work is warranted regarding the relationship between myocardial ECV and the development of arrhyth-
mia and heart failure in HD patients.
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