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prospective associations 
of the infant gut microbiome 
and microbial function with social 
behaviors related to autism at age 
3 years
Hannah e. Laue1*, Susan A. Korrick2,3, Emily R. Baker4, Margaret R. Karagas1 & 
Juliette c. Madan1,5,6

The hypothesized link between gut bacteria and autism spectrum disorder (ASD) has been explored 
through animal models and human studies with microbiome assessment after ASD presentation. 
We aimed to prospectively characterize the association between the infant/toddler gut microbiome 
and ASD-related social behaviors at age 3 years. As part of an ongoing birth cohort gut bacterial 
diversity, structure, taxa, and function at 6 weeks (n = 166), 1 year (n = 158), 2 years (n = 129), and 3 
years (n = 140) were quantified with 16S rRNA gene and shotgun metagenomic sequencing (n = 101 
six weeks, n = 103 one year). ASD-related social behavior was assessed at age 3 years using Social 
Responsiveness Scale (SRS-2) T-scores. Covariate-adjusted linear and permutation-based models 
were implemented. Microbiome structure at 1 year was associated with SRS-2 total T-scores (p = 0.01). 
Several taxa at 1, 2, and 3 years were associated with SRS-2 performance, including many in the 
Lachnospiraceae family. Higher relative abundance of Adlercreutzia equolifaciens and Ruminococcus 
torques at 1 year related to poorer SRS-2 performance. Two functional pathways, l-ornithine and 
vitamin B6 biosynthesis, were associated with better social skills at 3 years. Our results support 
potential associations between early-childhood gut microbiome and social behaviors. Future 
mechanistic studies are warranted to pinpoint sensitive targets for intervention.

Autism spectrum disorder (ASD), a combination of disordered social behaviors and repetitive or restricted 
interests, affects one in 34 boys and one in 145 girls in the United States, with altered behaviors presenting in 
some children as early as 18 months of age or  younger1, but most children are not diagnosed until after age 
 three2–8. Early symptoms of ASD include poor eye contact, problems with social behaviors (difficulty with joint 
attention, no response to their name, poor nonverbal communication), and poor imitation skills; many children 
are not evaluated until families identify a delay in verbal  communication9. Diagnosing ASD as early as infancy 
and resultant early intervention has been shown to improve neurodevelopmental outcomes, highlighting the 
importance of identifying potential biomarkers for early  detection10–12. Even among neurotypical children a 
spectrum of behaviors  exists13, some of which may create challenges in personal relationships and learning and 
professional environments. While several risk factors for ASD have been identified or hypothesized including 
 genetics14, maternal infection during  pregnancy15–17, and environmental  exposures18, the etiologies are not well 
understood, leading to treatments targeting symptoms rather than underlying  causes19. As a result, therapies, 
apart from early-life behavioral interventions, are often minimally  effective20,21.
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Recently, the interrelationship between the gastrointestinal tract and its microbiome (the compilation of 
microorganisms in the intestines) and the brain, known as the gut-brain axis, has been proposed as a potential 
cause or modifier of ASD  behaviors22–24. Specifically, a recent mechanistic study found that mice transfected 
with the stool of ASD patients began displaying ASD behaviors, which were then modified by a correction of the 
imbalance in bacterial metabolites brought on by  transfection25. Several case–control studies have compared the 
gut microbiome in children diagnosed with ASD to neurotypical siblings or community controls and observed 
notable  differences26–33. However, these studies are subject to reverse causation, have been small, and have pro-
duced inconsistent results. To date, no epidemiological studies have examined the microbiome at multiple early-
life ages to elucidate when in the lifespan it is most relevant to neurodevelopment, particularly autism-related 
social behaviors. Further, no prospective cohort study has employed metagenomic sequencing and examined 
bacterial function in relation to social behaviors to better understand how gut bacteria may affect the brain.

Our study aimed to address these gaps by examining the infant/toddler microbiome at four early-life time 
points, beginning at 6 weeks postpartum, in relation to a continuous measure of social behavior at 3 years of 
age. In addition to investigating bacterial diversity, structure, and specific taxa, we inferred gene function from 
metagenomic sequences to identify pathways associated with essential features of ASD.

Results
population characteristics. Study populations were similar across the four time points; most mothers 
reported not smoking during pregnancy (> 95%) and approximately half were parous (Table 1). Most parents 
were not of advanced age (average maternal age at delivery 32.3 ± 4.6  years, average paternal age at delivery 
33.6 ± 5.8 years). SRS-2 total T-scores were lower (better) and had a narrower distribution than the normative 
population (a nationally representative sample of 474 ratings of 247  children34) to which the test is standardized 
(i.e., approximate mean ± SD: 44 ± 5 in each study population compared to 50 ± 10 in the normative sample). 
As expected, within subject diversity increased as the microbiome sample age increased [mean ± SD Shannon 
Indices: 1.66 ± 0.49, 2.89 ± 0.56, 3.57 ± 0.46, and 3.83 ± 0.48 at 6 weeks, 1 year, 2 years, and 3 years, respectively; 
Table 1].

Within-subject  diversity.  At most time points, increased within-subject diversity was correlated with 
improved SRS-2 total T-scores [βSix-week Shannon = − 0.19 (− 0.92, 0.54), p = 0.62; βOne-year Shannon = 0.07 (− 0.60, 0.74), 
p = 0.83; βTwo-year Shannon = − 0.04 (− 0.79, 0.72), p = 0.93; βThree-year Shannon =  − 0.49 (− 1.25, 0.27), p = 0.21 in basic 
models], although the relationships were not statistically significant (Fig. 1, Supplementary Table S1). Estimates 
were similar between basic and full models, but within-subject diversity at 6 weeks appeared to be more strongly 
correlated with SRS-2 total T-scores in the full model. Sensitivity analyses did not alter the conclusions (Sup-
plementary Tables S2–S7). Using metagenomics data, all metrics of within-subject diversity at 1 year related to 
improved social behaviors. However, at 6 weeks higher Shannon and Simpson Indices were associated with bet-
ter social behaviors, but higher taxa count related with worse social behavior (Supplementary Table S8). None of 
the estimates for metagenomic within-subject diversity reached statistical significance.

Microbial community structure.  Community structure of the gut microbiome at 1 year was associated 
with total SRS-2T-scores at 3  years, particularly in the basic model (p = 0.01, 0.06 in basic and full models, 
respectively; Fig. 2, Supplementary Table S9). The p values were similar between the basic and full models, except 
for 2-year community structure, where birth mode and peripartum antibiotic exposure explained significant 
portions of the variability in the full model (data not shown). Similar results were obtained in sensitivity analyses 
(Supplementary Table S10).

Individual taxa.  The relative abundance of specific taxa at 1 year, 2 years, and 3 years were associated with 
social behaviors (Table 2). Higher relative abundance of two ASVs in the Lachnospiraceae (Blautia producta 
and an unknown taxon) at 1 year were associated with worse social behavior at 3 years [e.g., βB.producta-full = 0.29 
(0.15, 0.42), q = 0.017]. Similarly, higher relative abundances of Coprococcus and Bifidobacterium at 2 years were 
associated with poorer social behaviors in both basic and full models. Two additional taxa (Ruminococcus gnavus 
and Sutterella) were associated with SRS-2 total T-scores in only the basic and full models, respectively [e.g., 
βR.gnavus-basic = 0.17 (0.08, 0.26), q = 0.069]. At 3 years, higher relative abundance of Butyricicoccus pullicaecorum 
was associated with worse social behavior in both basic and full models. In general, associations were modest, 
and the relative abundances of associated taxa were low (Table 2). Most of the statistically significantly associated 
taxa were in the Lachnospiraceae family (e.g., Blautia producta, Coprococcus), or more broadly in the Clostridi-
ales order in the Firmicutes phylum (e.g., Butyricicoccus pullicaecorum), which was also true of the taxa with 
a nominal p value < 0.05 (Supplementary Table S11). Sensitivity and supplemental analysis results were similar 
(Supplementary Tables S12,S13).

Metagenomic data provided deeper insight into the taxa whose relative abundance at 6 weeks and 1 year were 
associated with SRS-2 total T-scores (Table 2). At 6 weeks, a taxon identified as Flavonifactor plautii was associated 
with worse total T-scores on the SRS-2. Similarly, at 1 year greater relative abundance of four taxa were associated 
with poorer social behavior, namely Adlercreutzia equolfaciens, Ruminococcus torques, Eubacterium dolichum, and 
a bacterium in the Lachnospiraceae, [e.g., βA.equolifaciens-full = 0.002 (0.001, 0.002), q = 0.001]. Associations between 
taxa and SRS-2 total T-scores reaching a nominal p value of 0.05 were largely in the Actinobacteria (class) and 
Clostridiales (Supplementary Table S14).

Bacterial  functional pathways.  Increased relative abundance of two functional pathways, l-ornithine 
de novo biosynthesis and the superpathway of pyridoxal 5′-phosphate biosynthesis and salvage, at both 6 weeks 
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and 1 year were associated with better social behavior at 3 years [e.g., βl-ornithine-6W-basic = − 2.4E−5 (− 4.2E−5, 
− 6.8E−6), p = 0.008; Fig. 3, Supplementary Figure S1, Supplementary Table S15]. An additional three pathways 
(the superpathway of l-aspartate and l-asparagine synthesis, O-antigen building blocks biosynthesis—Escheri-
chia coli, and pentose phosphate pathway) had highly significant associations (p < 0.001) at 1 year in either basic 
or full models (Fig. 3, Supplementary Figure S1). Several associated pathways (p < 0.05) are involved in the urea 
cycle (involving aspartate, asparagine, or ornithine), pyridoxal 5′-phosphate (highly bioavailable vitamin B6) 
synthesis, or menaquinol biosynthesis (Supplementary Table S15).

Table 1.  Characteristics of New Hampshire Birth Cohort Study (NHBCS) subjects followed to age 3 years 
compared to those in each microbiome analytical cohort [N (%) or mean (± SD)]. a Subjects followed to 3 years 
with complete covariate information (273 have microbiome sequenced in at least one stool sample). b Overlap 
occurs between cohorts. c Statistically different from complete cases not included in the analysis (p < 0.05). 
d Social Responsiveness Scale, 2nd edition.

NHBCS subjects 
followed to age 3 years 
(n = 386)a

Six-week  Cohortb 
(n = 166)

One-year  Cohortb 
(n = 158)

Two-year  Cohortb 
(n = 129)

Three-year  Cohortb 
(n = 140)

Microbiome samples 
at all ages (n = 21)

Parental characteristics

Parity

 Nulliparous 172 (44.6) 83 (50)d 77 (49) 64 (50) 61 (44) 12 (57)

 Parous 214 (55.4) 83 (50)d 81 (51) 65 (50) 79 (56) 9 (43)

Maternal education

 College graduate or less 251 (65) 93 (56) 92 (58) 79 (61) 86 (61) 12 (57)

 Any post-graduate 
education 135 (35) 73 (44) 66 (42) 50 (39) 54 (39) 9 (43)

Relationship status

 Married 355 (92) 156 (94) 150 (95) 120 (93) 132 (94) 19 (91)

 Never married or 
separated 31 (8) 10 (6) 8 (5) 9 (7) 8 (6) 2 (9)

Maternal smoking during pregnancy

 No 372 (96.4) 160 (96) 154 (97) 126 (98) 135 (96) 20 (95)

 Yes 14 (3.6) 6 (4) 4 (3) 3 (2) 5 (4) 1 (5)

Maternal age at delivery 32.3 (± 4.6) 32.3 (± 4.6) 32.4 (± 4.4) 32.6 (± 4.3) 32.7 (± 4.3) 32.6 (± 3.8)

Paternal age at delivery 33. 6 (± 5.8) 33.6 (± 5.9) 33.5 (± 5.7) 33.5 (± 5.4) 34.1 (± 5.7) 34.1 (± 3.9)

Delivery characteristics

Delivery mode

 Vaginal 271 (70.2) 111 (67) 108 (68) 86 (67) 94 (67) 14 (67)

 Caesarean 115 (29.8) 55 (33) 50 (32) 43 (33) 46 (33) 7 (33)

Peripartum antibiotic exposure

 Any 176 (45.6) 94 (57)d 81 (51)d 67 (52) 65 (46) 12 (57)

 None 210 (54.4) 72 (43)d 77 (49)d 62 (48) 75 (54) 9 (43)

Gestational age (weeks) 39.5 (± 1.7) 39.4 (± 1.8) 39.5 (± 1.7) 39.5 (± 1.7) 39.5 (± 1.6) 39.9 (± 0.9)

Birth weight (g) 3,424 (± 539) 3,396 (± 546) 3,458 (± 569) 3,470 (± 572) 3,445 (± 503) 3,494 (± 391)

Child characteristics

Feeding mode at 6 weeks

 Exclusively breast fed 206 (53.4) 90 (54) 84 (53) 71 (55) 79 (56) 10 (48)

 Formula fed or mixed 
fed 180 (46.6) 76 (46) 74 (47) 58 (45) 61 (44) 11 (52)

Infant sex

 Male 199 (51.6) 86 (52) 90 (57) 79 (61)d 66 (47) 13 (62)

 Female 187 (48.4) 80 (48) 68 (43) 50 (39)d 74 (53) 8 (38)

Age at SRS-2d follow-up 
(years) 3.1 (± 0.2) 3.1 (± 0.3) 3.1 (± 0.3) 3.1 (± 0.3) 3.1 (± 0.2) 3.1 (± 0.3)

SRS-2d total T-Score 
(unitless) 43.7 (± 4.7) 43.5 (± 4.6) 43.2 (± 4.5) 43.6 (± 4.4) 43.9 (± 4.5) 43.3 (± 4.3)

Microbial diversity

 Shannon Index (unit-
less) – 1.66 (± 0.49) 2.89 (± 0.56) 3.57 (± 0.46) 3.83 (± 0.48) –

 Simpson Index (unit-
less) – 0.68 (± 0.16) 0.88 (± 0.09) 0.94 (± 0.04) 0.95 (± 0.03) –

 Taxa count (#) – 33.1 (± 11.8) 90.1 (± 35.1) 166.2 (± 45.1) 208.2 (± 67.6) –
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Discussion
Our analysis uncovered the potential for several novel, time-dependent associations between the early-life gut 
microbiome and child social behaviors at age three. Specifically, we found suggestive evidence of better social 
behaviors with increased within-subject microbial diversity during infancy and early childhood as well as an 
association with bacterial community structure at 1 year of life. Many of the taxa associated with relative dec-
rements in social behaviors were in the Lachnospiraceae family. Metagenomic sequencing data from 6-week 
and 1-year fecal samples complemented our 16S rRNA findings and demonstrated several associations, includ-
ing with Adlercreutzia equolifaciens and Ruminococcus torques. By classifying our metagenomic sequences into 
functional pathways, we also identified several promising pathways through which the microbiome may act on 
autism-related social behaviors.

Studies of within-subject diversity and health outcomes including attention deficit hyperactivity  disorder35 and 
gastrointestinal  disorders36, both common ASD  comorbidities37,38, generally have found a beneficial association 
with increased microbial diversity. Our limited evidence of an association between within-subject diversity and 
social behaviors supports the potential for the microbiome to interact with the brain and behavior at a differ-
ent level (e.g., the taxon level). The direction of the effect estimates in our study was somewhat sensitive to the 
metric used, with the Simpson Index (a measure of evenness) providing consistent evidence of potential benefi-
cial impacts across time points and the Shannon Index (a measure of richness and evenness) and taxa count (a 
measure of richness) indicating a potential adverse association between increased diversity and social behaviors 
at 1 and 2 years39. However, the lack of statistical significance implies our findings should be interpreted carefully.

The association with bacterial community structure was strongest when measured at 1 year, when the bacte-
rial community is more established (as compared to 6 weeks) but more malleable than an adult  microbiome40. 
However, because not all subjects appear in each analysis any time-specific effects may be artifacts of the specific 
population. Similar to the within-subject diversity analysis, the association between bacterial community struc-
ture and social behaviors did not appear to differ with the addition of autism risk factors for which community 
structure may act as a mediator.

Several taxa at 1, 2, and 3 years were associated with poorer social behaviors, primarily in the Lachnospiraceae 
family, one of the most abundant in the gut. While the family was altered in several case–control investigations 
of ASD, the direction is not consistent across  studies27–29, and is not present in  others30,31. A prospective study 
examining the gut microbiome at six months and scores on the Ages and Stages Questionnaire (ASQ) at 3 years 
in the Vitamin D Antenatal Asthma Reduction Trial (n = 309 primarily neurotypical children) found an adverse 
association between Ruminococcus, a genus in the Lachnospiraceae that was also identified in our analyses, and 
both total ASQ score and personal/social  development41. We observed an association between a low-abundance 
Bifidobacterium taxon at two years and worse social behaviors. Bifidobacterium species are generally considered 

Figure 1.  Associations of within-subject diversity with total T-scores on the Social Responsiveness Scale-2 
(SRS-2) at 3 years of age. Basic models adjust for age at SRS-2, maternal education, marital status, maternal 
age, paternal age, child sex. Full models adjust for all covariates in the basic model and maternal self-reported 
smoking during pregnancy, early exclusive breastfeeding, delivery mode, peripartum antibiotics, and gestational 
age.
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to be beneficial with respect to their psychoactive properties, especially in infants and  children42–45. Because 
this finding was not consistent across time points or in our more probing shotgun metagenomics analyses it 
may be the result of chance. In our analysis using metagenomic data, which allows more precise identification 
of bacterial species and strain, we identified an adverse association between Ruminococcus torques, previously 
found to be increased in ASD cases with gastrointestinal symptoms (n = 54), and SRS-2  performance46. We also 
found an association between Adlercreutzia equolifaciens and poorer social behaviors. Although this taxon has 
not been detected in other ASD studies, its primary product, a phytoestrogen called equol, may interfere with 
normal microglial  function47, including essential early-life synaptic pruning, a deficit of which is a putative 
mechanism for  ASD48,49. Indeed, one recent study found increased genistein and daidzein (two other phytoes-
trogens dependent on gut microbial production) in mice colonized with ASD-patient microbiomes compared 
to  controls25. Importantly, ASD phenotypes, including altered social behaviors, were reduced after restoring gut 
microbiome metabolomic balance.

In addition to more precisely identifying associations with select taxa, the use of metagenomic data allowed 
us to infer functional pathways the enrichment or depletion of which was associated with worse social behaviors. 
Two pathways were less abundant in children with better social behaviors in nearly all models: the l-ornithine 
de novo biosynthesis pathway and the superpathway of pyridoxal 5′-phosphate biosynthesis and salvage. In 

Figure 2.  Generalized Unifrac distance principal component (PC) plots. Each point represents a subject 
and lines indicate distance to median centroids for subjects with Social Responsiveness Scale-2 (SRS-2) total 
T-scores above and below 50. Some points were removed for visual clarity (4 at one year and 1 at three years) 
but contributed to centroid calculation. Associations with continuous SRS-2 scores were statistically significant 
at 1 year (p = 0.01, 0.06 in basic and full Models, respectively). Principal components are time point specific. The 
contribution of each principal component to overall variability in community structure is found along the axis 
(%).
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Table 2.  Taxa associated with Social Responsiveness Scale-2 (SRS-2) total T-scores at 3 years (q < 0.25). 
a MaAsLin models the microbiome as the outcome. Thus, estimate is increase in % relative abundance per 
point increase on SRS-2 total T-score. b Mean relative abundance of specific amplicon sequence variant given 
microbiome age. c Empty estimate cell indicates that the estimate was not significant (q < 0.25) in the given 
model.

Sequencing method Microbiome age Family Genus Species
Estimate (q) in basic 
 modela

Estimate (q) in full 
 modela

Average relative 
abundance (%)b

16S rRNA

Six weeks NA

One year
Lachnospiraceae Blautia producta 0.34 (0.01) 0.29 (0.017) 0.1

Lachnospiraceae 0.01 (0.201) –c 0.01

Two years

Lachnospiraceae Coprococcus 0.07 (0.03) 0.06 (0.146) 0.05

Lachnospiraceae [Ruminococcus] gnavus 0.17 (0.069) –c 0.2

Bifidobacteriaceae Bifidobacterium 0.06 (0.03) 0.05 (0.148) 0.03

Alcaligenaceae Sutterella –c 0.01 (0.211) 0.01

Three years Ruminococcaceae Butyricicoccus pullicaecorum 0.01 (0.072) 0.01 (0.066) 0.02

Metagenomics

Six weeks Ruminococcaceae Flavonifactor plautii 0.002 (0.052) –c 0.11

One year

Coriobacteriaceae Adlercreutzia equolifaciens 0.002 (0.004) 0.002 (0.001) 0.07

Lachnospiraceae [Ruminococcus] torques 0.01 (0.01) 0.01 (0.042) 1.13

Lachnospiraceae bacterium_6_1_63FAA 0.001 (0.01) 0.001 (0.067) 0.04

Erysipelotrichaceae Eubacterium dolichum 0.0003 (0.038) –c 0.02

Figure 3.  Associations of bacterial functional pathways and Social Responsiveness Scale-2 (SRS-2) total 
T-scores. Volcano plots of associations between metagenomically identified functional pathways and SRS-2 
total T-scores in full models (adjusting for age at SRS-2, maternal education, marital status, maternal age, 
paternal age, child sex, maternal self-reported smoking during pregnancy, early exclusive breastfeeding, delivery 
mode, peripartum antibiotics, and gestational age). Points representing unmapped or unintegrated pathways 
have been removed for visual clarity (2 points per plot). Dashed blue line indicates p = 0.05, dotted orange line 
indicates p = 0.001. ARGININE-SYN4-PWY: l-ornithine de novo biosynthesis; ASPASN-PWY: superpathway 
of l-aspartate and l-asparagine synthesis; OANTINGEN-PWY: O-antigen building blocks biosynthesis 
(Escherichia coli); PENTOSE-P-PWY: pentose phosphate pathway; PWY0-845: superpathway of pyridoxal 
5′-phosphate biosynthesis and salvage.
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humans, ornithine is essential for the detoxification of ammonia, a neurotoxin, to  urea50–52. Our findings are 
supported by a case–control study of ASD that found decreased urinary ornithine among cases provided that less 
excretion is an indication of increased  salvage53. Although the authors of this study aspired to identify predictive 
biomarkers of ASD, their biospecimens, collected at an average of 5 years, were subject to reverse causation (i.e., 
autistic behaviors, with onset by 18 months3–5, may impact diet or exposures, thus altering urinary amino acid 
concentrations). In contrast, our study indicates that as early as 6 weeks of life alterations in gut bacterial ornith-
ine production are associated with social behaviors in childhood. The relative abundance of another amino acid 
synthesis pathway (superpathway of l-aspartate and l-asparagine synthesis) at 1 year was also associated with 
SRS-2 performance. Asparagine is essential to brain development and  function54. Thus, further investigation of 
this pathway in ASD may be informative.

Our findings regarding the superpathway of pyridoxal 5′-phosphate (highly available vitamin B6) biosynthesis 
and salvage are relevant to clinical trials examining the effectiveness of high-dose vitamin B6 and magnesium 
supplementation in reducing autistic symptoms. While most of these studies have been small, and with con-
flicting  results55–59, a more recent study suggests that a certain phenotypic subset of autistic subjects respond 
to B6 and magnesium  supplementation60. Further research is needed to clarify whether/what gut microbial 
functions can identify responders so that treatment can be more successfully targeted. At 1 year we also found 
associations with O-antigen building blocks biosynthesis and pentose phosphate pathway. O-antigens are a vital 
component of lipopolysaccharides, which are hypothesized contributors to ASD, and demonstrated effectors of 
autism  phenotypes61–63. The implications of the observed association with the pentose phosphate pathway, which 
is essential to glucose metabolism, are less clear. By generating nicotinamide adenine dinucleotide phosphate 
(NADPH) this pathway may contribute to the detoxification of reactive oxygen species, but this hypothesis must 
be robustly tested with in vitro models before any conclusion can be  reached64.

Although this study suggests potential windows of microbial development that are sensitive for the develop-
ment of social behaviors, our findings could have been population-specific rather than true effects because the 
populations comprise different individuals at each time point. In addition, despite our adjustment for numerous 
important confounders, we were not able to account for others including genetics. We chose not to include later 
antibiotic exposure in our models due to its lack of association with SRS-2 scores. However, this may have resulted 
in nondifferential exposure misclassification, adding imprecision to our estimates, but not biasing them. Further, 
due to limitations of statistical methods available for microbiome analysis (e.g., treating the microbiome as the 
dependent variable when it is the hypothesized exposure) and the constraints of observational data our find-
ings cannot be interpreted as causal. However, as the first analysis to prospectively examine the microbiome at 
multiple time points early in life in relation to social development we have identified several important potential 
associations that should be explored further in mechanistic models.

The strengths of our study include careful adjustment for a range of variables that may confound the associa-
tion between the microbiome and SRS-2 total T-scores or predict autism-like behavior. Further, by considering 
a model including variables for which the microbiome may act as a mediator we found that the association of 
the microbiome with social behaviors was largely independent of potential risk factors for autism (i.e., variables 
in the full model). Other variables—such as dietary factors and probiotics—were considered, but ultimately 
rejected, for model inclusion because of the likelihood of reverse causation (i.e., autism-related behaviors are 
known to affect food selectivity)65. Ours is among one of the largest studies to date to consider the microbiome 
and autism-related behaviors, particularly in a prospective cohort setting . Our finding of differences as early 
as 6 weeks of life highlights opportunities for interventions that have been shown to change the direction of 
neurodevelopment in murine  models25. Additionally, our findings in a pregnancy cohort are generalizable to non-
clinical populations while still informing autism research. Specifically, because our cohort comprises primarily 
neurotypical children we expect stronger associations in a more neurodiverse population.

In summary, our findings suggest an association of the infant/toddler gut microbiome with social behaviors 
in a US population sample. Further research is warranted to elucidate mechanisms, and to determine whether 
features of the gut microbiome can be used to identify ASD during a vulnerable window during which time 
interventions can optimize neurodevelopmental outcomes.

Methods and materials
Study cohort.  The New Hampshire Birth Cohort Study, an ongoing prospective pregnancy cohort, recruited 
pregnant women (ages 18–45) as previously described (Supplementary Methods)66. This analysis is based on a 
subset of children who provided a stool sample at 6 weeks, 1 year, 2 years, or 3 years and completed a social 
behavioral assessment at 3 years (n = 273, Supplementary Figure S2, Supplementary Table S16). Although sub-
jects overlapped in each of the populations, few (n = 21) had microbiome sequencing data at all four time points. 
Parents of participants provided written informed consent. Study protocols were reviewed and approved by the 
Center for the Protection of Human Subjects at Dartmouth, and all methods were carried out in accordance with 
relevant guidelines and regulations.

Stool sample collection and microbial sequencing.  Stools were collected from infants/toddlers at 6 
weeks, 1 year, 2 years, and 3 years postpartum. If the child was using diapers, the sample was collected by parents 
from a study-provided diaper, as previously  described67. If the child was no longer using diapers, parents were 
provided an acid-washed receptacle that fit into the toilet to collect a urine-free stool sample (Supplementary 
Methods). Established protocols were followed for 16S rRNA gene sequencing and data processing (Supplemen-
tary Methods)67–72. A subset of DNA samples (from 6-week and 1-year stools) also underwent metagenomic 
sequencing at Marine Biological Laboratory as previously described (Supplementary Methods)73–75.
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Assessment of social behaviors. Approximately 3  years postpartum, parents were asked to complete 
the Social Responsiveness Scale, 2nd edition, preschool form (SRS-2), which asks about their child’s usual 
 behavior34,76. The SRS-2 is a standardized, validated instrument designed to assess social behavioral deficits 
and autistic traits as reflected in five components of social behavior (awareness, cognition, communication, 
motivation, and restricted interests/repetitive behavior) on a continuous  scale77. SRS-2 provides raw and age-
standardized T-scores for each subscale as well as an overall total score. The T-scores are standardized to a mean 
(SD) of 50 (10) with higher scores indicating poorer social behavioral skills. For some visual representations of 
results scores were dichotomized at 50 points (approximately 1 SD above our population mean, 5–10% of each 
study population above), but continuous total T-scores were used for all primary analyses. In clinical settings a 
more stringent cut off of 60 points is applied to identify individuals with mild social impairment.

Statistical  analysis.  Preliminary analyses identified factors associated with SRS-2 total T-scores in the 
study population and covariates were then selected if they were associated with SRS-2 scores (and in some cases 
the microbiome), but unlikely to be a factor for which the microbiome acts as a mediator. These included child 
age at follow-up, maternal education, maternal marital status, parity, maternal and paternal age at delivery, and 
child sex—the basic model. Additional models were run including autism risk factors for which the microbiome 
may act as a partial mediator (basic model variables and maternal smoking during  pregnancy78, early postnatal 
exclusive  breastfeeding79–81, delivery  mode82, perinatal antibiotic  exposure83, and continuous gestational age at 
 delivery84—the full model).

Shannon and Simpson Indices and taxa count were linearly regressed against SRS-2 total T-scores adjusting 
for covariates included in the basic and full models. The Shannon Index is reported as the primary within-subject 
diversity metric because it accounts for both richness and evenness of  species85. Bacterial community structure 
was contrasted between subjects with generalized UniFrac (GUniFrac)  distances86. To assess the significance of 
the relation between bacterial community structure and SRS-2 total T-scores we employed the adonis2 function 
in the “vegan” package with 10,000  permutations87. Multivariate Association with Linear Models (MaAsLin2) 
was used to determine the association between individual amplicon sequence variants (ASVs) and total SRS-2T-
scores88,89. We restricted our analyses to ASVs with at least 0.001% relative abundance in at least 10% of subjects 
to reduce multiple testing. Any taxon-level association with an FDR-corrected q-value < 0.25 was considered 
statistically significant, which is the MaAsLin default and is commonly used in microbiome studies where further 
investigation and validation of results is  necessary90,91. A complementary analysis using diversities and taxon 
relative abundances derived from metagenomic data was conducted at 6 weeks and 1 year. Pathway relative 
abundances associated with SRS-2 total T-scores were determined with MaAsLin2, restricting to pathways with 
at least 0.0001% in at least 10% of samples. Due to the exploratory nature of this analysis, all pathways with a 
nominal p value < 0.05 were deemed of interest. Sensitivity analyses are described in Supplementary Methods.

Data availability
The 16S rRNA gene sequencing and shotgun metagenomic data used in this study are available through the 
National Center for Biotechnology Information (NCBI) Sequence Read Archive: https ://ncbi.nlm.nih.gov/sra 
under accession number PRJNA296814.
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