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Beta oscillations 
following performance feedback 
predict subsequent recall 
of task‑relevant information
Azadeh HajiHosseini1,5*, Cendri A. Hutcherson2,3 & Clay B. Holroyd1,4

Reward delivery in reinforcement learning tasks elicits increased beta power in the human eeG over 
frontal areas of the scalp but it is unclear whether these 20–30 Hz oscillations directly facilitate reward 
learning. We previously proposed that frontal beta is not specific to reward processing but rather 
reflects the role of prefrontal cortex in maintaining and transferring task-related information to other 
brain areas. To test this proposal, we had subjects perform a reinforcement learning task followed 
by a memory recall task in which subjects were asked to recall stimuli associated either with reward 
feedback (Reward Recall condition) or error feedback (Error Recall condition). We trained a classifier on 
post‑feedback beta power in the Reward Recall condition to discriminate trials associated with reward 
feedback from those associated with error feedback and then tested the classifier on post-feedback 
beta power in the Error Recall condition. Crucially, the model classified error-related beta in the Error 
Recall condition as reward-related. The model also predicted stimulus recall from post-feedback beta 
power irrespective of feedback valence and task condition. These results indicate that post-feedback 
beta power is not specific to reward processing but rather reflects a more general task-related process.

Neural oscillations associated with prefrontal cortex (PFC) function have been proposed to reflect neurocognitive 
processes related to learning, working memory, and cognitive  control1–4. Several theoretical accounts hold that 
these control processes are governed by principles of reinforcement  learning5–7. Consistent with this possibility, 
electroencephalogram (EEG) studies have revealed an increase in beta oscillatory power over frontal areas of the 
scalp that peaks around 350 ms following the delivery of reward-related feedback stimuli in a variety of reinforce-
ment learning  tasks8–11. These findings have raised the question of whether beta oscillations have an active role 
in reinforcement  learning12 by indexing a signal that is specific to rewards. For example, some researchers have 
suggested that learning from feedback is driven by an oscillatory mechanism that depends on the valence of the 
eliciting feedback; on this view, beta oscillations facilitate learning from reward feedback by synchronizing the 
activity of multiple brain areas such as the dorsolateral PFC (DLPFC), frontopolar cortex, and motor  cortex13. 
A different account suggests that frontal beta oscillations govern the execution of cognitive processes related to 
motivation, attention, and memory that are specifically elicited by positive performance  feedback14. However, 
these proposals await empirical verification.

By contrast to the above accounts, we have recently proposed that frontal beta is not related to reward per 
se, but rather is related to adaptive task performance based on relevant information received from feedback, 
irrespective of its valence. According to this proposal, DLPFC-mediated beta reflects a working memory process 
involved in the activation of neural ensembles that encode task-related  information15. On this view, frontal beta 
power is not specifically related to rewards but rather is elicited by feedback stimuli in accord with their task 
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relevance. The task-related information is then communicated to other brain areas responsible for task execution, 
including posterior cortical areas and the hippocampus, in order to facilitate behavioral adaptation.

Here we tested this hypothesis by experimentally manipulating the task-relevance of reward feedback using 
a dual-task paradigm. In a “No Recall” (NR) condition, which served as a control, participants engaged in a 
relatively standard reinforcement learning task where subjects selected decks of cards over multiple trials with the 
goal of making money. We predicted that beta power in this condition would track reward feedback rather than 
error feedback as observed previously. Further, in a “Reward Recall” (RR) condition participants were required 
to do the same task as in the NR condition while also remembering the choices that led to reward feedback, to be 
recalled later at the end of each block of trials. We predicted that because the demands of the working memory 
task were congruent with the demands of the reinforcement learning task in this condition, beta power would 
similarly track reward feedback rather than error feedback. Crucially, in an “Error Recall” (ER) condition, par-
ticipants were instructed to remember the choices that led to error feedback and to recall those choices at the end 
of each block of trials. We predicted that these task demands would reverse the association between outcomes 
and beta oscillations such that beta power would track error feedback more than reward feedback.

We verified these predictions using a classification approach based on linear discriminant analysis. In contrast 
to more standard approaches that are based on inferential statistics, this approach provided a means to test how 
similarly post-feedback beta power over frontal and posterior brain areas behaved on trials in which the stimuli 
were rewarded with trials in which the stimuli were to be remembered. In other words, this approach enabled us 
to assess the similarity of beta power across the different conditions. By contrast, application of null hypothesis 
significance tests would indicate whether conditions are statistically different from each other rather than their 
similarity. In this way, we sought to verify whether post-feedback beta power over frontal and posterior brain 
areas is sensitive to task-relevance as opposed to rewards per se.

Materials and methods
Participants. Thirty undergraduate students (9 male, 20.0 ± 1.6 years old) at the University of Victoria par-
ticipated in the experiment. Subjects acquired extra course credits for their participation and were also paid a 
monetary bonus for their performance. The study was conducted in accordance with the ethical standards pre-
scribed in the Declaration of Helsinki and was approved by the human subjects review board at the University of 
Victoria. Informed written consent was obtained from participants prior to the experiment.

Paradigm. Task. We used a paradigm wherein we could manipulate the relevance of reward and error 
feedback for optimal task performance. This paradigm consisted of a reinforcement learning task presented to 
subjects as a card choice task that they played for monetary reward, followed by a recall task. In the No Recall 
(NR) condition, subjects only performed the reinforcement learning task. In the Reward Recall (RR) condition, 
we asked them to remember the stimuli associated with reward feedback for subsequent recall. In the Error Re-
call (ER) condition, we asked them to remember the stimuli associated with error feedback for subsequent recall. 
We coded the paradigm with the Matlab Psychophysics Toolbox  extensions16. Each of the NR, RR, and ER con-
ditions were separated into 20 blocks of 10 trials each. During an initial choice phase in each block, participants 
were instructed to select 10 cards sequentially by trial and error from 12 decks presented on the computer screen, 
with the goal of maximizing their rewards (Fig. 1, top row). For the RR and ER conditions only, the choice phase 
in each block was followed by a recall phase, during which subjects were required to recall the decks correspond-
ing to the feedback type as indicated by the condition instructions (Fig. 1, bottom). At the beginning of the RR 
and ER conditions subjects were given instructions to remember either the rewarded decks or the decks followed 
by error-feedback, respectively, for later report in the recall phase. No recall instructions were provided in the 
NR condition. Participants did one block of practice trials (including both phases for the RR and ER conditions) 
prior to performing the task in each memory condition. See supplementary online methods for further details 
of the paradigm.

Data acquisition. The EEG was recorded from 53 electrode locations, 23 frontal, 9 central, 16 posterior, 2 mas-
toid, and 3 ocular channels using BrainVision Recorder software (Brainproducts, Munich, Germany). Electrodes 
were arranged according to the standard 10–20  layout17 and were referenced online to the average voltage across 
the channels. Vertical and horizontal ocular movements were recorded by an electrode placed under the right 
eye (re-referenced offline to FP2), and two on the outer canthi of the right and left eyes (re-referenced offline to 
each other) respectively. Electrode impedances were kept under 20 kΩ. Data were sampled at 500 Hz and high 
pass filtered by the amplifiers at 0.017 Hz.

Data analysis. Pre‑processing. Data pre-processing was performed in BrainVision Analyzer 2. A band-
pass filter (0.1–100 Hz) was applied to the EEG data and epochs of EEG activity were selected from 1 s before 
to 1 s after the onset of feedback stimuli. Data were subsequently re-referenced to the average mastoids. Ocular 
artefacts were corrected by an  algorithm18 implemented in the Analyzer software. Feedback segments were base-
line-corrected by subtracting, for each channel, subject, and trial, the average voltage values during the 100 ms 
prior to the feedback stimulus, from the subsequent voltages in the epoch. EEG artifacts were identified and 
rejected according to the following criteria: (1) any abrupt change of voltage greater than 35 µV from one time 
sample to the next, (2) any difference between the negative and positive peaks in a 200 ms interval that exceeded 
150 µV, (3) any activity that was consistently smaller than 0.5 µV in a 100 ms interval. Segments meeting these 
criteria were rejected for all channels. Nearest neighborhood channel interpolation (Hjorth algorithm embed-
ded in BrainVision analyzer) was used for channels that caused more than a 15% trial rejection rate for each con-
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dition. After interpolation, 7% of trials were rejected on average across all recordings for all subjects. Data were 
exported to MATLAB for the time–frequency analyses. Topographical scalp maps were plotted with  EEGLAB19.

Time–frequency analysis. To extract time–frequency information, the two-second epoch centered on the onset 
of feedback presentation was convolved with a seven-cycle complex Morlet wavelet that was linearly scaled based 
on the frequency range of 1–100 Hz. The time–frequency power was extracted relative to a 100 ms baseline 
before the feedback on each trial as 10 * log10 (trial power/average baseline power). Raw beta power values for 
every subject and condition were calculated as the average power in a the frequency of interest (20–30 Hz) for 
the first 500 ms following the presentation of  feedback15,20. Here we included a larger time window (as opposed 
to 250–450 ms) to capture variability across single trial data. Then, to reduce the spatial dimensionality of the 
data, principal component analysis (PCA) was applied to extract components that accounted for the greatest 
spatial covariance in the data. See supplementary online methods for details of the PCA.

Classification. We tested our hypotheses about beta using multivariate pattern analysis, a common method 
where a model (classifier) is trained to distinguish between patterns of neural activity associated with two or 
more brain  states21. Our hypothesis predicts a role for beta in communication across areas, particularly between 
frontal and posterior cortical sites; therefore we selected the 2 spatial PCA components that each explained 
greater than 10% of the total variance in beta power as features for the classification analysis (see supplementary 
online methods). This threshold was set to ensure that we included more than only the frontal component of 
beta power while limiting the components to only those that significantly contributed to the total variance. We 
trained the classifier on these 2 components of beta power elicited by reward and error feedback and then tested 
our predictions using this model. To be specific, we performed the following three steps to test our hypothesis 
that beta power is sensitive to task-related information irrespective of valence. First, we tested whether we could 
train a classifier on post-feedback beta power in the NR and RR conditions (which we expected would elicit 
similar patterns of beta power) to discriminate trials with reward feedback, which were task-relevant in these 
conditions (Class TR), from trials with error feedback, which were task-irrelevant in these conditions (Class TI). 
This analysis verifies whether beta power discriminates between reward and error trials in a typical reinforce-
ment learning task, both when there is no secondary task (NR condition) and when rewards signal the impor-
tance of the preceding stimulus in relation to an upcoming recall task (RR condition). Second, we tested if this 
model would classify trials with reward feedback and trials with error feedback in the ER condition as Class TI 
and Class TR, respectively, in essence reversing the classes for reward and error trials as identified in the NR and 
RR conditions. Successful performance of the model on this test—which was trained on the NR and RR condi-
tions but tested on the ER condition—indicates that the model is sensitive to task-related information (here 
what participants are told to remember) rather than to the valence of the feedback (reward vs. error). Third, we 
tested if this model could also classify trials in which the stimuli were later recalled versus trials in which the 
stimuli were not recalled into Class TR and Class TI, respectively, regardless of feedback valence and condition. 

Figure 1.  Task timeline. A choice phase on each block consisted of 10 trials where on each trial subjects 
selected a deck of cards. Twelve abstract stimuli representing decks were presented at the same locations on 
each trial throughout the block. Each deck could be selected only once in 10 trials; on each trial the previously 
selected decks on that block were marked with a small gray square in the corner of the image (top row, far 
left). In the RR and ER conditions only, a recall phase occurred after the completion of each block of 10 trials. 
Participants were given 6 s to recall the previous sequence of choices and outcomes on that block, and were then, 
following the brief presentation of a fixation stimulus, shown the 12 stimuli in the same locations. They were 
instructed to select the target decks (reward in the RR and error in the ER conditions); upon selecting all of the 
targets or after 10 s elapsed, whichever came first, the number of correct recall responses were presented on the 
screen.
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Successful performance on this test for a model that was trained only to discriminate reward trials from error 
trials would indicate that post-feedback beta power predicts whether the preceding stimulus was later recalled, 
irrespective of whether the feedback indicated an error or a reward.

Note that, crucially, the model was trained only on trials in the NR and RR conditions, in which the reward 
feedback was task-relevant. Once trained, this model was then tested on the independent trials of the ER condi-
tion to verify whether it would classify beta power elicited by error feedback as task-relevant when the role of the 
feedback was reversed. Last, we tested the same model on post-feedback beta power irrespective of the valence 
of the feedback and of the recall condition, in order to verify whether it would classify the recalled stimuli as 
being more task-relevant than the non-recalled stimuli. See supplementary online methods for details of train-
ing and testing the model.

Behavior. Reaction times for all trials in the choice task (200 trials minus an average of 3 missed trials per 
subject) were averaged and compared using a repeated-measures ANOVA with the NR, RR, and ER conditions 
as within-subject factors. For the recall task, the reaction times for all recalled responses (on average 76 trials per 
subject) were averaged and compared using a repeated measures ANOVA with recall conditions (RR, ER) and 
recall accuracy (correctly recalled, incorrectly recalled) as within-subjects factors. Post-hoc paired t-tests were 
used where applicable. Statistics on variables with more than two levels were corrected using the Greenhouse–
Geisser correction for sphericity.

Results
Behavioral analysis. Average reaction times across subjects during the choice phase were not significantly 
different across conditions (p > 0.05) (491 ± 160  ms in the NR condition, 533 ± 145  ms in the RR condition, 
and 531 ± 161  ms in the ER condition) suggesting that the memory instructions for the recall phase in the 
two recall conditions did not affect choice performance. A 2 × 2 ANOVA on reaction time with recall condi-
tion (RR, ER) and recall accuracy (correctly recalled, incorrectly recalled) revealed a significant main effect of 
recall accuracy (F(1,29) = 954.2, p < 0.001) and a significant interaction between accuracy and memory condi-
tion (F(1,29) = 19.7, p < 0.001) (Fig. 2). Post-hoc paired t-tests revealed that in the RR condition subjects were 
significantly faster when correctly reporting the decks associated with reward-feedback (571 ± 44 ms) compared 
to incorrectly reporting decks that were not associated with reward-feedback (1674 ± 179 ms) (t(29) = −40.5, 
p < 0.001). Likewise, in the ER condition participants were significantly faster when correctly reporting the decks 
associated with error-feedback (631 ± 88 ms) compared to incorrectly reporting the decks that were not associ-
ated with error-feedback (1558 ± 314  ms) (t(29) = −19.7, p < 0.001). Further, correct recalls were significantly 
faster in the RR condition compared to the ER condition (t(29) = −5.2, p < 0.001) and incorrect recalls were 
significantly slower in the RR condition compared to the ER condition (t(29) = 2.5, p = 0.019).

Recall accuracy was calculated as the percentage of correct recalls in each block averaged across the 20 blocks 
for the RR and ER conditions separately. Average recall accuracy was slightly but significantly higher in the RR 
condition (95.2 ± 4%) compared to the ER condition (90.7 ± 9%), (t(29) = 3.3, p = 0.003), indicating that par-
ticipants were more accurate in recalling decks associated with reward-feedback compared to decks associated 
with error-feedback. We thus tested the model on recalled versus not recalled stimuli separately for the RR and 
ER conditions to account for the difference in accuracy across the conditions. Note that in order to equalize the 
task difficulty across the reinforcement learning (choice phase) and working memory (recall phase) tasks, the 

Figure 2.  Reaction times during the recall phase. Correct and incorrect recalls in the Reward Recall (RR) and 
Error Recall (ER) conditions are illustrated. Error bars indicate standard errors.
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deck locations remained constant on the screen throughout both phases in each block, which possibly explains 
the relatively high recall accuracy in both conditions.

Beta power. We selected the 2 spatial PCA components (frontal and occipital) that each explained greater 
than 10% of the total variance in beta power as features for the classification analysis (Fig. 3a; see “Materials and 
methods” section). We investigated whether beta power, as represented in a 2-dimensional space described by 
these two components, provides sufficient information to classify correctly the task-relevant (Class TR) versus 
task-irrelevant (Class TI) stimuli. When we trained the classifier on post-feedback beta power associated with 
the NR and RR conditions to discriminate the reward trials (Class TR) from the error trials (Class TI) (see 
Methods for details), the classification accuracy was 98% (zperm = 10.5, pperm < 0.01), which confirms that beta 
power differentiates between these stimulus conditions (Fig. 3b), as expected. Then we tested the model on post-
feedback beta power associated with the ER condition to see whether the classifier is sensitive to task-related 
information as opposed to valence per se. To be specific, if the classifier is sensitive to task-related information 
then in the ER condition it should classify rewards as belonging to Class TI and errors as belonging to Class TR, 
i.e., the reverse classification of the RR condition. Consistent with this prediction, rewards and errors were clas-
sified as Class TI and Class TR, respectively, in 80% of the observations (zperm = 4.8, pperm < 0.01). This indicates 
that a model trained to distinguish reward versus error trials in one data set (the RR condition) can correctly 
classify trials in a different data set (the ER condition) according to their task relevance (i.e., what participants 
are instructed to remember) as opposed to their valence (reward vs. error) (Fig. 3b; Table 1, ER). 

We thus set out to test the final prediction: that beta oscillations reflect the maintenance of information that 
supports task performance, which in the present case entails recalling the target stimulus (stimuli associated 
with reward in the RR condition and stimuli associated with errors in the ER condition) in the recall phase. 
Therefore, we predicted that stimuli that were subsequently recalled should evidence beta-related encoding 
during the choice phase that is similar to Class TR, irrespective of whether the recall was correct or incorrect. 
To test this, we averaged post-feedback beta power components according to whether the stimuli associated 
with feedback on that trial were recalled or not in the recall phase, separately for the RR and ER conditions and 
regardless of whether the recalls were correct or incorrect. Then, we tested whether the model that was trained 
based on feedback valence could also distinguish recalled versus not-recalled stimuli. In line with this prediction, 

Figure 3.  Discrimination of post-feedback beta power according to task demands. (a) Principal components 
derived from single-trial beta power in all conditions (RR, ER, and NR) that explained at least 10% of the 
variance. (b) Discriminant line represents the model that was trained by beta elicited to reward and error 
feedback in the NR (square) and RR (circle) conditions to classify rewards (gray) into task-relevant class (Class 
TR) and errors (red) into task-irrelevant class (Class TI). In the ER condition (triangle), this model could 
successfully discriminate errors (gray-Class TR) from rewards (red-Class TI), therefore reversing the assignment 
of reward and error trials, (c) Same discriminant model in (b) classified post-feedback beta associated to stimuli 
that were recalled (gray) versus those that were not recalled (red) into Class TR and Class TI respectively, 
regardless of valence and memory condition.
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when collapsing across the RR and ER conditions the discriminant model classified the recalled stimuli as Class 
TR and the not-recalled stimuli as Class TI with 82% accuracy (zperm = 7.1, pperm < 0.01) (Fig. 3c; Table 1). The 
accuracy was 92% in the RR condition and 72% in the ER conditions separately. The high accuracy of the model 
in the RR condition is not surprising as the overlap of rewarded stimuli (on which the model was trained) and 
recalled stimuli (on which the model was tested) was high. However, the high accuracy of the model in the ER 
condition, in which stimuli associated with error feedback were recalled, supports our hypothesis that beta 
power is not specific to rewards but rather reflects the task requirements. In other words, this test demonstrates 
that post-feedback beta power distinguishes between trials in which stimuli were recalled versus trials in which 
stimuli were not recalled, regardless of feedback valence and memory condition.

Post-feedback beta power averaged across feedback type was not correlated with subjects’ overall recall 
accuracy in either of the memory conditions (p > 0.05), perhaps because of a ceiling effect in accuracy levels 
(see above).

Discussion
Previous studies have observed an increase in beta power over frontal areas of the scalp around 250–450 ms 
following the delivery of reward-related feedback  stimuli10,11,22. Current proposals associate this oscillatory activ-
ity with learning from  rewards13 through an interplay between neurocognitive processes related to motivation, 
attention and  memory14. Previously, we localized the source of this signal to DLPFC and proposed that it relates 
to the maintenance and transfer of recently reinforced stimulus–response rules to brain areas that are responsible 
for task execution, thereby facilitating behavioral adaptation on subsequent  trials15. On this view, reward feedback 
boosts the active representation (i.e., memory) of the immediately preceding action sequence. In contrast, error 
feedback does not elicit as much frontal beta power because error-related information in these tasks is less help-
ful for improving task performance. This view also suggests that beta power over posterior regions may reflect 
the transfer of that information to the neural areas responsible for task execution.

Here, we provide evidence for this proposal by showing that reward-related beta power is not specific to 
reward feedback per se but rather depends on the informative value of the feedback stimuli for task performance. 
In a control condition, subjects were asked to perform a relatively typical reinforcement learning card choice task 
(NR), and in two other conditions, the task demands were modified by asking subjects to remember choices that 
were followed by either reward (RR) or error (ER) feedback for later recall. In particular, the first two principal 
components of beta power successfully discriminated reward feedback (Class TR) from error feedback (Class 
TI) in the NR condition (Fig. 3a,b). This is consistent with previous studies that found higher frontal beta power 
elicited to reward compared to error  feedback9–11,22. Further, although this pattern was unchanged by the instruc-
tion to remember rewards (Fig. 3b-RR), it was reversed by the instruction to remember errors, such that the 
model classified rewards to Class TI and errors to Class TR in the ER condition (Fig. 3b-ER). Finally, beta elicited 
to feedback following recalled stimuli was classified into Class TR whereas beta elicited to feedback following 
stimuli that were not recalled was classified into Class TI, irrespective of whether the feedback in fact indicated 
rewards or errors (Fig. 3c). This indicates that the beta signal following the feedback is associated with stimulus 
recall as per the task instructions, providing evidence for a broader function of beta oscillations beyond reward 
processing in particular.

We interpret these results in the context of evidence from non-human primate studies suggesting that beta 
oscillations in the PFC support the active maintenance of task representations by sending “top-down” control 
signals that regulate the function of other brain  areas23. Local field potentials recorded from the principle sulci of 
monkeys, which are a homolog of human  DLPFC24, show that beta oscillations reflect the activity of task-specific 
neural  ensembles25, and that DLPFC neurons synchronize with striatal and hippocampal neurons when learning 
novel stimulus categories and  associations26–28. Recent primate work also suggests that frontal beta oscillations 
track attentional effort, a process associated with maintaining good task performance despite  fatigue29.

Human work paints a similar picture as work in animals. For example, joint analysis of EEG and func-
tional magnetic resonance imaging in a gambling task has revealed an association between beta power and the 
BOLD response in the striatum, hippocampus, and  DLPFC30, similar to the network of regions implicated in 
 monkeys26,27. Frontal beta power has also been seen to increase during the maintenance period of a working 
memory task when performance is rewarded compared to when it is  not31. Furthermore, similar to the animal 
work relating beta power to effort, evidence also indicates that frontal beta power in humans increases with 
memory  load32, and that the theta-to-beta (low-gamma) frequency ratio is associated with working memory 
 load33 and working memory  capacity34. Interestingly, a recent study showed that post-feedback beta power differ-
ence between positive and negative feedback is attenuated by increasing the delay between the time of response 

Table 1.  Confusion matrix showing the number of correct and incorrect classifications by the model in each 
condition. Number of correct classifications in each column is presented in italics.

ER (60 
observations)

Recall-RR (60 
observations)

Recall-ER (60 
observations)

Reward Error Recalled Not-recalled Recalled Not-recalled

Class TR 2 20 27 2 18 5

Class TI 28 10 3 28 12 25
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and feedback  presentation35, supporting the hypothesis that beta plays a role in maintaining and communicating 
information about preceding actions.

The 2-component classifier that we tested in the current study suggests that both frontal and posterior beta 
may be critical for this function. In line with the non-human animal literature, where the interaction between 
the PFC and hippocampus is found to be driven in part by synchrony in beta oscillations across the  regions27,36, 
we speculate that in the current task, frontal post-feedback beta oscillations reflect a boost in the currently 
online memory of the preceding deck stimulus that facilitates the transfer of this information to hippocampal 
regions. By contrast, the posterior beta component may reflect the role of the occipital cortex in working memory 
 processes37,38. This possibility is supported by evidence that occipital cortex activation is sensitive to task-related 
features of objects in visual working  memory39 and that synchrony across occipital and frontal cortex predicts 
performance in visual working memory  processes40. Further, beta oscillations could underlie a top-down mecha-
nism of neural communication that facilitates encoding of stimulus properties across different  regions41,42. Given 
the visual content of our paradigm, future research can verify our hypothesis about the posterior component 
of beta. Taken together with our previous  findings15, this points to a role for beta in facilitating communication 
between the PFC and other brain regions according to task  demands43.

In summary, we propose that frontal beta power reflects a neurocognitive mechanism mediated by the DLPFC 
that (1) signals the need for activating the memory of recent actions based on the desired task performance, 
and (2) facilitates the communication of this information to other brain regions for future task execution. In 
conventional reinforcement learning paradigms, such as in the NR condition here, beta power elicited by feed-
back discriminates reward and error stimuli (Fig. 3a,b) because rewards convey relatively more information 
for optimizing task performance. However, this process can be reversed by explicit memory instructions that 
increase the utility of error feedback relative to reward feedback.
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