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A data‑driven medication score 
predicts 10‑year mortality 
among aging adults
Paavo Häppölä1, Aki S. Havulinna1,2, tõnis tasa3, nina Mars1, Markus Perola2, 
Mikko Kallela4, Lili Milani5, Seppo Koskinen2, Veikko Salomaa2, Benjamin M. Neale6,10,11, 
Aarno Palotie1,6,7,8,9,10,11, Mark Daly1,6,10,11 & Samuli Ripatti1,11,12*

Health differences among the elderly and the role of medical treatments are topical issues in aging 
societies. We demonstrate the use of modern statistical learning methods to develop a data‑
driven health measure based on 21 years of pharmacy purchase and mortality data of 12,047 aging 
individuals. The resulting score was validated with 33,616 individuals from two fully independent 
datasets and it is strongly associated with all‑cause mortality (HR 1.18 per point increase in score; 
95% CI 1.14–1.22; p = 2.25e−16). When combined with Charlson comorbidity index, individuals with 
elevated medication score and comorbidity index had over six times higher risk (HR 6.30; 95% CI 
3.84–10.3; AUC = 0.802) compared to individuals with a protective score profile. Alone, the medication 
score performs similarly to the Charlson comorbidity index and is associated with polygenic risk for 
coronary heart disease and type 2 diabetes.

Health differences among the elderly and the role of medical treatments are topical issues in many aging socie-
ties. Older people suffer from  multimorbidity1, presence of multiple chronic conditions and are susceptible to 
 polypharmacy2, use of numerous potentially interacting medications. Both may lead to a severe medication 
cascade which, in effect, can cause severe adverse drug reactions, decrease quality of life, and even lead to pre-
mature death.

Considerable imbalance exists in the number of hospital visits and general medication use among the elderly 
which manifests in an uneven distribution of health care  costs3. Understanding these differences better would 
help target resources and interventions more effectively to those at risk. Increasingly abundant digital health 
data and modern statistical tools have the potential to facilitate the development of novel ways to measure health 
differences in the aging population.

Several instruments have been developed to summarize disease diagnoses and exposure to medications into 
numeric scores using information from hospital databases and medication administration records, e.g. Charlson 
Comorbidity Index (CI)4, Elixhauser Index (EI)5, Rx-Risk-V6, Medication-Based Disease Burden  Index7, and 
Chronic Disease Score (CDS)8. These instruments customarily consider a limited number of predefined severe 
health conditions and consider typically short time windows of a few years, depicting primarily acute changes in 
health. Given many of these measures are originally derived in hospitalized or institutionalized patient popula-
tions and they focus mainly on a priori defined set of severe  diseases9,10, they could be strengthened by involving 
long-term prescription medication usage that can capture numerous chronic but less-acute health conditions in 
the general non-institutionalized population.
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The objective of this study is to demonstrate novel data-driven ways to construct health measure from large-
scale longitudinal health data and investigate how such score performs and could complement existing classic 
measures in predicting long-term mortality. In this paper, we derive a new score to measure chronic health 
differences in an aging population empirically with modern statistical learning methods using 21 years of Finn-
ish pharmacy purchase and death data obtained from high-quality nationwide registries. We demonstrate the 
applicability of the resulting score in two fully independent prospective cohorts and investigate its relationship 
to known genetic predictors of late-onset diseases and diagnosis-based comorbidity index.

Results
We trained 28 medication score candidates (Supplementary Table S1) in the National FINRISK  study11 where we 
included a subset of 20,078 participants who were alive and at least 46 years old at the beginning of 2006 (median 
age 60, IQR 53–67). We followed their mortality 10 years (2006–2015). To train the models with medication data, 
this mortality was contrasted against purchases 10 years prior to follow-up (1995–2004), with 1 year wash-out 
in-between (2005). Out of this sample, 15,995 (79.7%) had imputed whole genome genotypes available at the 
time of the study resulting in 15 million genetic variants per individual.

The study was conducted in four consecutive parts as described in Fig. 1. The included participants of the 
primary cohort (FINRISK) were randomly assigned into three non-overlapping groups: First, we separated a 
training set to derive candidate medication scores statistically in relation to all-cause mortality (12,047 indi-
viduals, 60%). Second, we extracted an independent validation set to compare the predictive performance of 
alternative medication scores (4,014 individuals, 20%) and two commonly used diagnosis-based comorbidity 
indices. Third, we evaluated the complement performance of best medication and comorbidity indices together 
in the testing hold-out set (4,017 individuals, 20%).

Finally, we carried out external validation of the medication scores in two independent cohorts. For Finn-
ish external validation, we used the Health 2000 Survey (H2000)12 where we included 5,410 participants who 
fulfilled the same inclusion criteria as the FINRISK sample. We only had access to the medication data for the 
H2000, and the cohort was therefore used solely for the validation and comparison of medication scores. Second 
external validation was conducted in the Estonian Biobank  cohort13, using data on 28,206 aging individuals.

All included three cohorts were nationwide population studies with no substantial selection or sampling 
considerations. Cohorts are summarized in the Table 1.

Performance of medication scores. A score derived with elastic net regularization and dichotomous 
medication use indicator (i.e. purchased medicine ever) provided the best overall prediction performance. The 
result was consistent across all derivation methods: using continuous usage duration or dichotomous “used over 
1 year” never improved the performance.

A score consisting of 166 medications hand-picked by an expert consensus panel of three medical doctors 
expectedly predicted mortality better than the simple baseline model (age and sex) alone (C-index 0.766 vs. 
0.779, p = 1.83e−7). However, the expert score was inferior to all data-driven statistical approaches including 
the shotgun stochastic search that included only eight medications (C-index 0.785, p = 0.04) and it performed 
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Figure 1.  Analysis workflow and FINRISK sample split.

Table 1.  Description of study cohorts, only aging population. Data are n (%) or median (IQR).

Name Data source/owner

Original 
collection criteria 
(nationality)

Total included 
sample size (% 
women)

Death events in the 
follow-up period

Age at the 
beginning of 
10-year mortality 
follow-up Cohort description Purpose

National FINRISK 
study THL Biobank Random population 

sample (FIN) 20,078 (52%) 2,389 (12%) 60 (53–67) Borodulin et al.11 Primary derivation 
and evaluation set

Health 2000 study THL Biobank Random population 
sample (FIN) 5,410 (55%) 1,082 (20%) 61 (54–72) Heistaro et al.12

External validation 
(different subset of 
medications)

Estonian biobank University of Tartu Random population 
sample (EST) 28,206 (68%) 2,517 (8.9%) 61 (53–71) Leitsalu et al.13 External validation 

(different timeframe)
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only marginally better than the classic polypharmacy measure of simply counting the number of distinct medi-
cations administered (C-index 0.777, p = 0.06). In our study setup, all statistical learning approaches seemed to 
outperform the Chronic Disease Score. Scores were built and tested by adjusting for age and sex. Performance 
of all scores is elaborated in the Supplementary Table S1 and the most interesting scores are illustrated in Fig. 2.

Interestingly, a score involving only non-zero coefficient signs (− 1 and 1) of the Cox LASSO performed nearly 
as well as the actual Cox LASSO coefficient values (C-index 0.791 for both, p = 0.41, 65 medications). Performance 
was comparable to binomial LASSO model that included twice as many medications (C-index 0.793, p = 0.14). 
When comparing it to the best performing elastic net method that employs over 200 medications, the difference 
in performance seems to be marginal (C-index 0.794, p = 0.05).

After qualitatively considering trade-off between prediction performance, number of medications included, 
and general parsimony, the Cox LASSO signs-only score was chosen for further analyses. With comparable 
performance, it considers only a fraction of medications of marginally better performing alternatives. Further-
more, involving coefficient signs only makes the score easily deployable and robust to variance in different data 
sources and application domains. The resulting integer score is easily interpretable and intuitive without any 
transformations. The score distribution across the aging population of the whole FINRISK cohort is illustrated 
in Supplementary Fig. S1 and included medications are listed in Supplementary Table S2. We should note that 
the shotgun stochastic search score with eight medications could be also an attractive alternative if we preferred 
extreme parsimony, and it seems to be a direct subset of the 65 medications in the main score.

In order to confirm the result, we took some of the interesting score weights for evaluation to the two external 
validation cohorts. The results were highly concordant with the FINRISK findings, as summarized in Table 2. 
Only notable exception is the decreased performance of the elastic net score in the Estonian cohort. It may have 
an overfitting tendency to Finnish patterns given the large number of medications included. The systematically 
better absolute performance of all scores in the H2000 cohort can likely be explained with a higher number of 
mortality events and older age distribution.

ATC hierarchies seem to perform comparably when we considered higher level categories, apart from the 
highest investigated level, therapeutic subgroup, that fared systematically worse (Supplementary Fig. S2). In 

Figure 2.  Discriminative performance of the score versus parsimony in the FINRISK validation subset. All 
based on the “purchased ever” indicator.
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this study we decided to concentrate on the full ATC code (i.e. chemical substance) as it gives most transpar-
ency to the score, is the easiest to apply based on e.g. interview, and the final number of codes included is not 

substantially higher.

Performance of comorbidity indices. In addition to medication scores, we compared two commonly 
used comorbidity indices using inpatient hospital admissions in the validation subset of the FINRISK and all 
diagnoses in the Estonian Biobank cohort. Although the more complex Elixhauser index has been argued to be 
superior specifically in hospital  settings14, Charlson comorbidity index seems to be a better predictor of 10-year 
mortality in both cohorts (Supplementary Table S3).

Genetic risk factors. To investigate the genetic component of the score, we took polygenic risk scores of 
five major conditions that together account for over 60% of causes of death among the  elderly15,16. Since genetic 
risk factors do not cause death directly but through increased disease risk, these polygenic disease risks were 
combined into a multivariable model to account for any shared genetic etiology and to adjust for age and sex. 
Together these scores seem to account for only 0.4% of the variance in the score, driven by coronary heart dis-
ease and type 2 diabetes (Fig. 3). This is expected given cardiometabolic conditions account for majority of early 
deaths among the aging and have a strong heritable component.

Table 2.  Best performing medication scores evaluated in three separate validation datasets by C-index and 
Negelkerke  R2. H2000 does not include all the ATC codes of the derivation set.

Score derivation method
Number of medications 
included

Main cohort
FINRISK validation subset

Replication cohorts

R2
C-index
∆C baseline

R2
C-index (95% CI)
∆C baseline (95% CI) H2000 Estonia H2000 Estonia

Baseline model (age and sex) – 0.134 0.766 (0.745–0.788) 0.309 0.098 0.823 0.775

Expert consensus panel 166 0.149 0.779 (0.758–0.800)
 + 0.013 (0.006–0.019) 0.316 0.107 0.827

 + 0.004
0.786
 + 0.011

Number of medications 301 0.148 0.777 (0.756–0.798)
 + 0.011 (0.005–0.017) 0.317 0.104 0.828

 + 0.005
0.785
 + 0.010

Shotgun stochastic search 8 0.158 0.785 (0.764–0.806)
 + 0.019 (0.01–0.027) 0.317 0.102 0.827

 + 0.004
0.781
 + 0.006

Cox LASSO 65 0.164 0.791 (0.771–0.812)
 + 0.025 (0.017–0.033) 0.324 0.109 0.830

 + 0.007
0.793
 + 0.018

Cox LASSO signs only 65 0.162 0.791 (0.770–0.811)
 + 0.025 (0.017–0.032) 0.320 0.110 0.829

 + 0.006
0.791
 + 0.016

Ridge regression 301 0.164 0.793 (0.772–0.813)
 + 0.026 (0.018–0.034) 0.322 0.113 0.830

 + 0.007
0.795
 + 0.020

Elastic net 214 0.166 0.794 (0.773–0.814)
 + 0.028 (0.019–0.036) 0.324 0.108 0.830

 + 0.007
0.784
 + 0.009

Figure 3.  Linear associations of polygenic risk scores with the Cox LASSO signs-only medication score, 
adjusted with age and sex, within the whole aging population of the FINRISK study (***p < 0.001; **p < 0.01; 
*p < 0.05).
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Combining medication score, comorbidity index, and genetic risks. When the best medication 
score and comorbidity index (Cox LASSO signs and CI) were combined additively into one model in the FIN-
RISK hold-out testing subset, measures seemed to complement each other well. Medication score appears to be 
rather independent of the comorbidity index and adds orthogonal information in relation to the risk of all-cause 
mortality (Table 3). The CI is only weakly correlated with the medication score (Spearman ρ = 0.233; p < 2.2e−16; 
Supplementary Fig. S3). Inclusion of five polygenic risks to this model did not seem to increase model perfor-
mance but neither weakened the estimated effect of the two measures.

We can see a clear difference between mortality rates when we stratify both measures into low and high bins 
(CI ≥ 2 and MED ≥ 3). Notably, a negative medication score associates with lower risk of mortality compared 
to individuals with low or zero score (Fig. 4) suggesting a real protective correlation of the negatively weighted 
medications.

Discussion
We demonstrated how modern data-driven approaches and longitudinal secondary health data can be used to 
construct a novel measure of health differences from pharmacy purchases. We tested its association to mortal-
ity and inspected relationship to existing comorbidity indices and known genetic risk factors for late-onset 
diseases. We show that the resulting score is strongly associated with mortality in three datasets independent 
of the derivation set. When combined with an established comorbidity index, individuals with both elevated 
medication score and comorbidity index were at over six times higher risk compared to individuals with pro-
tective medication profile. The medication score was also associated with genetic risk scores for coronary heart 
disease and type 2 diabetes.

These findings allow us to draw several conclusions. First, classic indices can be effectively complemented 
with modern methods by mining large-scale secondary health data such as medication purchase histories. When 
such data-driven medication score is used alone, it performs similarly as a classic comorbidity index in predicting 
10-year mortality in the general aging population. In contrast to most existing comorbidity and polypharmacy 
measures, our approach poses no presumptions of relevant medication indications and is based purely on an 
empirical analysis of the register data. Second, now derived medication score could be used as a tool for future 
population health and genetic research. It can indicate persons among large aging populations in need of a more 
detailed attention due to their potentially reduced health status and polypharmacy risk. As the score requires no 
new measurements from the individual and can be applied without complex algorithms on top of existing drug 
purchase or use databases, it scales effectively to larger populations.

Third, our medication score is a readout of the medication history over the last 10 years. Therefore, the method 
could be implemented in various health care environments having medication usage records. The resulting score 
is extremely simple to apply:

(1) Identify prescription drugs one has used during the last 10 years (by medical substance, e.g. ibuprofen)
(2) Count how many of these drugs are on the left-hand side of Supplementary Table S2 (associated with 

increased risk). From this number, subtract the count of drugs on the right-hand side of the same table 
(associated with decreased risk). This gives the medication score where each additional point has a HR 1.18 
(95% CI 1.14–1.22).

Table 3.  Cox proportional hazards model estimates in the genotyped FINRISK testing subset and Estonian 
validation cohort in relation to all-cause mortality. BL baseline (age and sex covariates), M medication score, 
CI Charlson Comorbidity Index, PRS polygenic risk scores. Confidence intervals (95%) for estimates provided 
where applicable.

Model FINRISK (testing subset with genotypes) Estonian Biobank

Components Medications Comorbidities
Polygenic 
risk scores HRMed HRComorb C-index

p-value 
(removed 
variables) HRMed HRComorb C-index

p-value 
(removed 
variables)

BL
0.779 
(0.757–
0.801)

0.775 
(0.767–
0.784)

BL + CI ✓ 1.76 
(1.56–1.98)

0.794 
(0.773–
0.815)

2.80e−16 
(CI)

1.15 
(1.13–1.17)

0.790 
(0.782–
0.798)

2.16e−49 
(CI)

BL + M ✓ 1.18 
(1.14–1.22)

0.794 
(0.773–
0.815)

2.25e−16 
(M)

1.19 
(1.17–1.22)

0.791 
(0.783–
0.799)

3.82e−69 
(M)

BL + M + CI ✓ ✓ 1.13 
(1.08–1.17)

1.50 
(1.31–1.70)

0.802 
(0.781–
0.822)

2.49e−8 (M)
3.15e−8 (CI)

1.15 
(1.12–1.17)

1.09 
(1.06–1.11)

0.796 
(0.788–
0.804)

1.13e−46 
(M)
8.13e−17 
(CI)

BL + M + CI + PRS ✓ ✓ ✓ 1.13 
(1.08–1.17)

1.50 
(1.31–1.70)

0.803 
(0.782–
0.823)

0.69 (PRS)
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Based on our replication results, the approach seems to generalize to another health care system and behaves 
robustly in a cohort where information of some of the included medications is missing.

Built from a predictive perspective, the score associations should not be considered as causal relationships 
between individual medications and mortality. They rather reflect complex correlations that can be harnessed into 
a practical measure to indicate aging individuals with an increased risk of long-term mortality and potentially 
diminished health status. The score associates specifically with life-years gained and does not value the subjective 
life-quality of prolonged survival in different chronic states. The score is primarily a surrogate for population 
level health differences, not a substitute for clinical assessment of geriatric frailty or functional impairment.

The methodology was based on fixed-time intervals and did not consider temporal aspects such as changes 
in medication prescription guidelines or introduction of new medications. The learning method itself could be 
implemented continuously in any health informatics setting that involves ATC coding and large enough training 
sample sizes to increase the adaptiveness of the score. In addition, the time windows and wash-out period dura-
tions were fixed in our study but could be considered as tunable parameters that could be similarly optimized 
from the data to maximize prediction power. This could be interesting future research question especially due 
to potential reverse-causation effect where some medications may end up being prescribed at the point when 
the lethal disease has already progressed for some time.

We also acknowledge the role of left-truncation and subsequent possible immortal time bias in model esti-
mates. This, however, should not be a major concern when aiming to prediction in similar aging populations and 
ruling out any profound inferential conclusions about individual medications. Apart from potential left-trunca-
tion, the data is derived from nationwide registries that record all deaths, with loss of follow-up occurring only 
due to moving abroad which we cannot account for. The medication register includes all reimbursed prescription 
pharmacy purchases and thus excludes medications administered in institutions and over-the-counter medica-
tions. Such medications are out of scope of this study whose specific aim was to investigate predictive power of 
prescription pharmacy purchases in the general non-institutionalized population related to chronic diseases. The 
Charlson Comorbidity Index was based on standard Quan adaptations of Deyo–Charlson Comorbidity Index 
and could get marginal benefit from mapping to national Finnish ICD-10 adaptation.

As the aim of the study was to explore empirically the power of modern statistical methods to derive easily 
applicable measures from a secondary health data, we did not aim to model non-linear medication interactions 
or individual medication use patterns to the highest detail.

Moreover, our study did not address the role of sociodemographic factors in medication and healthcare 
usage which could confound some of the results. The Finnish healthcare is strongly based on public funding and 
medications are publicly subsidized which should mitigate considerably the effect of demographic differences.
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Figure 4.  Survival rates in the FINRISK testing dataset and a 10 year follow-up window, stratified by the 
medication index and Charlson Comorbidity Index. Both based on preceding ten years of medication and 
hospital data.
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Conclusion
Our study suggests that long-term and large-scale health data can be distilled into a composite measure to infer 
health differences in the general aging population. Together with Charlson comorbidity index, our novel poly-
pharmacy score identifies 1.2% of elderly population with over six times higher risk of mortality compared to 
the individuals with a protective medication profile.

Given increasing availability of large-scale health data, statistical learning methods, and abundant computa-
tional power, scores aiming for health prediction could be more directly, yet transparently, mined from empirical 
health data to complement classic measures that are commonly founded on a priori expert opinion. The clinical 
utility of the newly developed score and relationship to the subjective life quality warrants further studies.

Materials and methods
To inspect medication usage, morbidity history, and death information in two Finnish cohorts, we used the 
Register for prescribed medication purchases, the Finnish Hospital Discharge Register, and the National Causes 
of Death  Register17. In absence of longitudinal explicit health-related quality of life indicators, we measured 
health effects as gained life-years by modeling survival. To inspect our endpoint of interest, all-cause mortality, 
we derived data from the national causes of death register that includes all deaths in the study cohort, times-
tamps, and relevant diagnosis codes for major, acute, and contributory causes. Validity of the register has been 
demonstrated by e.g.  Rapola18.

The Finnish medicine expenses register covers all pharmacy prescription drug purchases since 1995, pur-
chase timestamps, and respective Anatomical Therapeutic Chemical Classification System codes (ATC). The full 
FINRISK study medication database constituted of 3.4 million medication purchase events in total. Hospital 
discharge register covers virtually all inpatient hospital visits in Finland since 1969 and has a demonstrated valid-
ity for  discharges19. The register includes a timestamp of hospital stay and relevant diagnoses under the Finnish 
variant of the International Statistical Classification of Diseases and Related Health Problems scheme (ICD). 
The full FINRISK hospital discharge register covers nearly 300,000 hospital visits. In this study, we included only 
hospital visits registered with 10th revision of ICD between years 1996–2015 as ICD-10 was formally taken into 
use at the beginning of 1996 in Finland.

The Estonian cohort was comprised of participants of the Estonian  biobank13, and the analyzed data combined 
time of death from the Estonian Causes of Death Registry and medication prescription information from the 
Estonian Health Insurance Fund. Diagnosis codes for comorbidity indices were derived from the databases of the 
Estonian National Health Information System, the Estonian Health Insurance Fund, Tartu University Hospital, 
North Estonia Medical Centre, and the Estonian Cancer  Registry20.

In FINRISK, 11.9% of the included individuals deceased within the follow-up period, whereas the number 
was 20.0% in the H2000 and 8.9% in the Estonian Biobank cohort. The difference can be largely explained by 
the varying age distributions among the studies.

Analysis of the time‑series register data. In both Finnish cohorts, we split our study time frame identi-
cally into three parts (Fig. 5): (i) a 10 year medication purchase and hospital visit exposure window (1995–2004), 
(ii) a 1-year washout period (2005) to mitigate the effect of palliative care and medications prescribed to ter-
minally ill patients, and (iii) a 10 year follow-up window for all-cause mortality (2006–2015). In the Estonian 
Biobank cohort, we considered shorter windows: 7 years for exposure (2004–2010) and six years for mortality 
follow-up (2012–2017) with 1-year washout period in-between (2011). 

Longitudinal medication purchases were converted into cross-sectional data points by first generating three 
alternative indicators for each ATC code: (i) a dichotomous indicator for at least one purchase event within the 
exposure window, (ii) a dichotomous indicator for at least two purchases 1 year apart, and (iii) a continuous 
indicator for years between the last and first purchase, a rough proxy for treatment duration. If subject had at 
least one purchase event for a medication, a generic three-month constant was added to the continuous indi-
cator to account for the duration of the last purchase and to cover single purchase scenarios. Given the ATC 
classification is a hierarchical coding system, we additionally explored how second, third and fourth levels of 
codes (i.e. therapeutic, pharmacological, and chemical subgroups) would work with used methods. We did not 
involve exhaustive register analysis frameworks, as we prioritized parsimony and application simplicity over 
marginal increases in accuracy.

Exposure window Washout Mortality follow-up

1995 - 2004
2005

2006 - 2015

Medica�on purchases and hospitaliza�ons

Alive and age above 46

Mortality

Subject 1

Subject 2

Subject 3

Figure 5.  Exposure window and follow-up window illustrated in Finnish cohorts.
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Derivation of candidate medication scores and comorbidity indices. Candidate medication 
scores were derived with high-dimensional multivariable regression methods in the FINRISK training subset as 
described below. We aimed for a linear additive score that could be calculated effortlessly by taking a weighted 
sum over different medications. All models were adjusted for age and sex during the training.

First, univariate logistic regressions were run for all individual medications, imposing Firth’s penalty for bias 
reduction to address separation in rare  cases21. We used resulting raw univariate regression coefficients as weights 
for the first score candidate. To find sparse combinations, univariate regression coefficients and medication cor-
relations were also subject to shotgun stochastic search to identify the sparse linear configuration of associated 
medications with the highest posterior  probability22.

As a direct multivariable approach, we examined the performance of classical regularized statistical learning 
methods (L1- and L2-regularization and combination of thereof, i.e. LASSO, ridge regression, and elastic net) and 
smoothly clipped absolute deviation (SCAD) that has an oracle property of asymptotically finding the true subset 
of variables under certain  assumptions23,24. In addition to the above-mentioned methods that all were extensions 
of a binomial logistic regression, a L1-penalized (LASSO) Cox proportional hazards model was also tested.

As a reference point, we inspected the performance of a conventional score building scheme by including 
166 aging-related drugs a priori selected by a consensus panel of three medical doctors from a list of the most 
commonly used medications in the FINRISK cohort. We further included a common polypharmacy surrogate 
that simply counts the number of distinct medications used. These two scores imposed equal weights for all 
included medications.

Two alternative diagnosis-based comorbidity indices evaluated were based on Quan adaptations of Deyo-
Charlson Comorbidity Index and Elixhauser-van Walraven Comorbidity  Index25,26. Comorbidity indices were 
constructed using the R-3.5.2 package icd and medication scores with glmnet and ncvreg27–30. Chronic disease 
score was calculated based on methodology of Lix et al.31.

Comparing medication score and comorbidity index performance. Each score candidate was 
evaluated in the non-overlapping FINRISK validation subset as a continuous variable in a Cox model using 
death as an endpoint and follow-up time as the time scale. Models were adjusted with age at the beginning of the 
follow-up and sex. Model fit was compared using Nagelkerke  R2 and discriminative performance with C-index, 
a generalized area under the ROC curve  measure32,33. We also included a reference baseline model that consisted 
of age and sex only.

Based on numerical validation results and qualitative assessment of score parsimony, we selected the best 
candidates amidst medication scores and comorbidity indices. These two were then further combined addi-
tively into a single Cox model to compare their complementary performance and to evaluate effect estimates in 
the FINRISK hold-out subsample (testing dataset) together with five genetic risk factors. The proportionality 
assumption was tested using Schoenfeld residuals and linearity assumption using penalized smoothing splines.

External validation. Medication score performance was evaluated within the H2000 and Estonian Biobank 
Cohort to test the robustness and generalizability of our medication score to different follow-up lengths, diverse 
medication category coverages, and sensitivity to differences in data sources. FINRISK and H2000 cohorts 
derive their data from the same national register resources and have the same temporal coverage, but medica-
tion categories are only partly intersecting (Supplementary Table S4). Estonian cohort, on the other hand, covers 
virtually all medications sold in Estonia but uses fundamentally different sources for medication information 
and has a shorter time window. We should also assume that medication prescription patterns differ between 
these two countries in general.

Genetic risk factors. To evaluate the relationship of medication score to genetic risk factors, we investigated 
the association of the best medication score with polygenic risk scores (PRS) based on six million genetic vari-
ants. The whole aging genotyped subset of the FINRISK cohort data was used to infer the correlation between 
best performing medication score and PRS scores. All were pre-adjusted for 10 first principal components and 
genotyping batch prior to analyses.

Ethical approval. The study was conducted in accordance with the principles of the Helsinki declaration. 
Written informed consent was obtained from all the study participants. FINRISK and Health 2000 cohorts 
were based on study specific consents and later transferred to the THL Biobank after approval by the National 
Supervisory Authority for Welfare and Health (Valvira). Recruitment protocols followed the biobank protocols 
approved by Valvira. All participants of the Estonian biobank have signed a broad informed consent that allows 
follow-up linkage of their electronic health records (EHR), thereby providing a longitudinal collection of phe-
notypic information for research.

The transfer of the FINRISK and Health 2000 sample collections to the THL biobank has been approved by 
the Coordinating Ethics Committee of Helsinki University Hospital on 10 October 2014 and by the Ministry 
of Social Affairs and Health on 9 March 2015. This study was conducted under the THL biobank permissions 
BB2015_31.1 (FINRISK), BB2017_100 (Health 2000), and the approval of the Research Ethics Committee of the 
University of Tartu 234/T-12 (Estonian biobank). All DNA samples and data in this study were pseudonymized.

Data availability
The National FINRISK and Health 2000 studies can be applied from the THL Biobank. Access to the Estonian 
Genome Center Biobank Cohort can be requested from the Institute of Genomics, University of Tartu (https ://

https://genomics.ut.ee/en/biobank.ee/data-access
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genom ics.ut.ee/en/bioba nk.ee/data-acces s). A detailed description of the analytical workflow can be requested 
from the authors.
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