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A general method 
for analyzing arbitrary planar 
negative‑refractive‑index 
multilayer slab optical waveguide 
structures
Yaw‑Dong Wu

In this paper, a general method for analyzing arbitrary planar negative-refractive-index (NRI) 
multilayer slab optical waveguide structures was proposed. Some degenerated examples were 
introduced to prove the accuracy of the proposed method. The analytical and numerical results show 
excellent agreement. The method can also be degenerated to analyze arbitrary planar conventional 
optical waveguide structures. Based on this general method, the analysis and calculation of any kinds 
of planar NRI slab optical waveguide structures and planar conventional optical waveguide structures 
can be achieved easily.

The left-handed material with double-negative media ( ε < 0, µ < 0) is different from the right-handed material 
with double-positive media ( ε > 0, µ > 0 ). It has been proposed theoretically and experimentally by Veselago 
and Shelby et al., respectively1,2. The NRI media possess simultaneously the negative dielectric permittivity 
and permeability3,4. Therefore, the NRI media is different from right-handed material with double-negative 
media. Recently, metamaterial has attracted a lot of attention5–14. Many applications of metamaterial have been 
proposed in various fields, such as antennas, perfect absorber, super lens, invisibility cloaks, optical sensors, 
phase modulators, and phase holography5,15–33. Some numerical and experimental results of metamaterial have 
also been proposed34–40. In the past, all–optical devices based on the conventional nonlinear optical waveguide 
structures have been proposed, since the spatial solitons can propagate a long distance without changing their 
spatial shapes41–46. In the past, most papers just focused on the study of the properties at the interface between 
the right-handed material and the metamaterial47–53. The TE/TM surface polarizations propagating along the 
interface between a linear metamaterial and different types of conventional right-handed material were studied. 
The three-layer metamaterail waveguide with linear cladding and substrate had been discussed54,55. In our pre-
vious work56, we proposed a special case of the NRI multilayer slab optical waveguide structures with only the 
Kerr-type nonlinear cladding. The analyzed processes of the proposed structure are relatively simple compared 
to that of this manuscript. When all layers of the proposed NRI slab optical waveguide structure are the Kerr-
type nonlinear media, the analyses processes will become very complicated and difficult. The difficulty lies in 
the derivation of the mathematical model and the verification of numerical analyses and simulations. To the 
best of my knowledge, a general method for analyzing arbitrary NRI slab optical waveguide structures has not 
been proposed before. This paper gives detailed modal analyses of TE-polarized waves in the NRI multilayer slab 
waveguide structure with all Kerr-type nonlinear layers. The theoretical results and the numerical results show 
excellent agreement. The method can also be used to investigate and to analyze the distribution of TE electrical 
field in the Kerr-type nonlinear NRI multilayer slab optical waveguide structures. To prove the accuracy of the 
proposed general method for analyzing arbitrary NRI multilayer slab optical waveguide structures, a theoreti-
cally degenerated example was introduced. Therefore, the method can provide simultaneously to analyze two 
different kinds of waveguide structures. One is the nonlinear NRI multilayer slab optical waveguide structure 
and the other is the linear NRI multilayer slab optical waveguide structure. Based on this general method, the 
analysis and calculation of any kinds of NRI multilayer slab optical waveguide structures can be achieved easily.
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Analysis
In general, a transfer matrix approach57 can be used to analyze the conventional multilayer slab optical waveguide 
structures. However, it cannot be used to analyze the case of the NRI multilayer slab optical waveguide structure 
with all Kerr-type nonlinear layers, proposed in this manuscript. When all layers of the proposed NRI slab optical 
waveguide structure are the Kerr-type nonlinear media, the analytical solutions are very complicated because they 
contain the Jacobian elliptic functions. It is very difficult to obtain the exact solutions. In this paper, the modal 
theory58 was used to derive the formulae of the electric field distributions of the proposed NRI multilayer slab opti-
cal waveguide structure with all Kerr-type nonlinear layers, as shown in Fig. 1. The multilayer optical waveguide 
structure is composed of the guiding films ((N-1)/layers), the interaction layers ((N − 3)/2layers), the cladding layer, 
and the substrate layer. The total number of layers is N (N = 3, 5, 7,…). The dj and nj are used to denote the width and 
the refractive index of the jth layer, respectively. The nonlinear cladding and substrate layer are assumed to extend 
to infinity in the + x and − x directions, respectively. The major significance of this assumption is that there are no 
reflections in the x direction to be concerned with, expect for those occurring at interfaces. For the simplicity, the 
TE waves are choosing to propagate along the z direction. The wave equation in the j-th layer can be written as:

with the solutions of the form:

where β is the effective refractive index, ω is the angular frequency, and k0 is the wave number in the free space. 
For the Kerr-type nonlinear medium, the square of the refractive index n2j  in the nonlinear NRI slab guiding 
films, nonlinear interaction layer, nonlinear cladding, and nonlinear substrate can be expressed as48:

where εj and µj (j = 1, 3,…, N − 2) are the negative dielectric permittivity and permeability in the nonlinear NRI 
slab guiding layer, respectively, and The rest layers are the positive dielectric permittivity and permeability. The 
αj is the nonlinear coefficient of the j-th layer Kerr-type nonlinear medium. By substituting Eqs. (2) and (3) into 
the wave equation Eq. (1), the transverse electric fields can be solved in each layer. The transverse electric fields 
in each layer can be expressed as:
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Figure 1.   The proposed NRI multilayer slab optical waveguide structure with all Kerr-type nonlinear layers.
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By matching the boundary conditions, the solutions of electric fields in the nonlinear NRI slab guiding films 
and the nonlinear interaction layers can be written as:

The parameters Aj, mj, xj, aj
2, and bj

2 can be expressed as:

where cn is a specific Jacobian elliptic function, mj is the modulus, and xj is the second constants of integration. 
By solving the differential Eqs. (4) and (6), the transverse electric fields in the Kerr-type nonlinear cladding and 
in the Kerr-type nonlinear substrate can be expressed as follows:

where Bc and Bs can be expressed as:

The parameters E1 and EN-1 are the values of the electric fields at the lowest and uppermost boundaries of the 
nonlinear NRI slab guiding films, respectively. By matching the boundary conditions, the dispersion equation 
can be written as:
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Figure 2.   Dispersion curve of the proposed five-layer all Kerr-type nonlinear NRI slab optical waveguide 
structure with constants: df = d1 = d3 = 5 μm and di = d2 = 3 μm.
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Figure 3.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 ; µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point A as shown in Fig. 2.

Figure 4.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 
, d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm   with respect to the pointB as shown in Fig. 2.
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where cn, dn, and sn are the Jacobian elliptic functions. Equations (14)–(20) can be solved numerically on 
a computer. When β and E1 are determined, all the other constants Aj, mj, xj, qj, Qj, aj, and bj are also deter-
mined. The proposed analytic formulas can be used to calculate the transverse electric field function in each 
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Figure 5.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point C as shown in Fig. 2.

Figure 6.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point D as shown in Fig. 2.
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layer of the NRI multilayer slab optical waveguide structures. The general formulas can be simplified to 
analyze five-layer NRI slab optical waveguide structures with all Kerr-type nonlinear layers. Figure 2 shows 
the dispersion curves of the five-layer all Kerr-type nonlinear NRI slab waveguide structure with the con-
stants:α0 = α1 = α2 = α3 = α4 = 6.3786  μm2/V2, µf = µ1 = µ3 = −2 , d1 = d3 = 5 μm, d2 = 3 μm, 
εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and � = 1.3 μm. Since there always exist a for-
bidden region near the effective refractive index β = 1.555 for transverse electric waves in the proposed NRI slab 
waveguide, the points B and C shown in Fig. 2 are not continue. There are five modes in the proposed five layer 
NRI slab optical waveguide structures with all Kerr-type nonlinear layers at df = d1 = d3 = 5 μm and di = d2 = 3 μm. 
When the points on the same dispersion curve, it means that they belong to the same mode, with the same unique 
shapes of each mode. For the conventional linear 5-layer slab waveguide structure, the dispersion curve is linear, 
and no forbidden region exists. When the width of the guiding film increases, the number of the guiding modes 
will also increase. The direction of the guided power in the proposed five-layer NRI slab optical waveguide struc-
tures with all Kerr-type nonlinear layers is opposed to the conventional linear 5-layer slab waveguide structure. 
Figures 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 show the electric field distributions of the proposed five-layer NRI 
slab optical waveguide structures with all Kerr-type nonlinear layers for several points A-L, as shown in Fig. 2. 
Figure 3 shows the electrical field distribution with respect to the point A, as shown in Fig. 2. Figure 4 shows 

Figure 7.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point E as shown in Fig. 2.

Figure 8.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point F as shown in Fig. 2.
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the electrical field distribution with respect to the point B, as shown in Fig. 2. The points A and B on the same 
dispersion curve are mode 1. The numerical results show that when the guided power increases, the electric 
field distributions are gradually narrowed in the Kerr-type nonlinear NRI slab guiding films. The guided power 
will decrease sharply in the region of Kerr-type nonlinear interaction layer. Figure 5 shows the electrical field 
distribution with respect to the point C, as shown in Fig. 2. Figure 6 shows the electrical field distribution with 
respect to the point D, as shown in Fig. 2. Figure 7 shows the electrical field distribution with respect to the point 
E, as shown in Fig. 2. Figure 8 shows the electrical field distribution with respect to the point F, as shown in 
Fig. 2. The points C, D, E, and F on the same dispersion curve are mode 2. The numerical results show that when 
the guided power increases, the electric field distributions are gradually narrowed in the Kerr-type nonlinear 
NRI slab guiding films. The guided power will decrease in the region of Kerr-type nonlinear interaction layer. 
Figure 9 shows the electrical field distribution with respect to the point G, as shown in Fig. 2. Figure 10 shows 
the electrical field distribution with respect to the point H, as shown in Fig. 2. The points G and H on the same 
dispersion curve are mode 3. The numerical results show that when the guided power increases, the electric field 
distributions are gradually narrowed in the Kerr-type nonlinear NRI slab guiding films. The guided power will 
focus in the central region of Kerr-type nonlinear interaction layer. Figure 11 shows the electrical field distribu-
tion with respect to the point I, as shown in Fig. 2. Figure 12 shows the electrical field distribution with respect 
to the point J, as shown in Fig. 2. The points I and J on the same dispersion curve are mode 4. The numerical 

Figure 9.   The electrical field distribution of the five-layer all Kerr-type nonlinear metamaterial waveguide with 
constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , d1 = d3 = 5 µm , d2 = 3 µm , 
εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and � = 1.3 µm with respect to the point G as 
shown in Fig. 2.

Figure 10.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point H as shown in Fig. 2.
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results show that when the guided power increases, the electric field distributions are gradually narrowed in the 
Kerr-type nonlinear NRI slab guiding films. The guided power will increase in the region of Kerr-type nonlinear 
interaction layer. Figure 13 shows the electrical field distribution with respect to the point K, as shown in Fig. 2. 
Figure 14 shows the electrical field distribution with respect to the point L, as shown in Fig. 2. The points K and 
L on the same dispersion curve are mode 5. The numerical results show that when the guided power increases, 
the electric field distributions are gradually narrowed in the Kerr-type nonlinear NRI slab guiding films. The 
guided power will increase sharply in the region of Kerr-type nonlinear interaction layer.

The proposed general method can also be degenerated to study some special cases:
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Figure 11.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point I as shown in Fig. 2.

Figure 12.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point J as shown in Fig. 2.
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For case 3, the parameters αN-1 = 0 and Bc = 1, the electric field in the nonlinear DPS cladding EN-1 can be 
expressed as:

For case 4, the parameters α0 = 0 and Bs = 1, the electric field in nonlinear the substrate Es can be written as:

The Eqs. (21)–(24) can be used to drive some degenerated examples of the NRI multilayer slab optical wave-
guide structures. The numerical results are same to that of the previous papers59,60. It showed that the proposed 
general method can be degenerated into any kind of the NRI multilayer slab optical waveguide structures. The 
relative parameters are shown in Online Appendix I–III.

(22)Ej(x) = bjcn
[

Aj

(

x + xj
)
∣

∣mj

]

= Af ,i cosh(Qj

(

x − xj
)

) for j = 1, 3, 5... N− 2

(23)Ej(x) = Ej
{

cosh[qj(x − xN− 1)
]

+Bc sinh[qj(x − xN−1)
]}−1

= Ac exp(−qjx) for j = N− 1

(24)E0(x) = E1
{

cosh(q0x)− Bs sinh(q0x)
}−1

= As exp(q0x)

Figure 13.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical 
waveguide structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 µm

2/V2 , µf = µ1 = µ3 = −2 , 
d1 = d3 = 5 µm , d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and 
� = 1.3 µm with respect to the point K as shown in Fig. 2.

Figure 14.   The electrical field distribution of the five-layer all Kerr-type nonlinear NRI slab optical waveguide 
structure with constants: α0 = α1 = α2 = α3 = α4 = 6.3786 μm2/V2, µf = µ1 = µ3 = −2 , d1 = d3 = 5 µm , 
d2 = 3 µm , εfµf = ε1µ1 = ε3µ3 = 2.4649 , ε0µ0 = ε2µ2 = ε4µ4 = 2.4025 , and � = 1.3 µm with respect to 
the point L as shown in Fig. 2.
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Conclusions
In this paper, we proposed a general method for analyzing arbitrary NRI multilayer slab optical waveguide struc-
tures. This general method can simultaneously be used to degenerate into different kinds of NRI multilayer slab 
waveguide structures by properly varying the nonlinear coefficient. Some degenerated examples were introduced 
to prove the accuracy of the proposed method. The analytical and numerical results show excellent agreement. 
The method can also be degenerated to analyze arbitrary planar conventional optical waveguide structures. 
Based on this general method, the analysis and calculation of any kinds of NRI multilayer slab optical waveguide 
structures and conventional multilayer slab optical waveguide structures can be achieved easily.
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