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Identification of miRNA signatures 
for kidney renal clear cell carcinoma 
using the tensor‑decomposition 
method
Ka‑Lok Ng1,2 & Y.‑H. Taguchi3*

Cancer is a highly complex disease caused by multiple genetic factors. MicroRNA (miRNA) and mRNA 
expression profiles are useful for identifying prognostic biomarkers for cancer. Kidney renal clear 
cell carcinoma (KIRC), which accounts for more than 70% of all renal malignant tumour cases, was 
selected for our analysis. Traditional methods of identifying cancer prognostic markers may not be 
accurate. Tensor decomposition (TD) is a useful method uncovering the underlying low-dimensional 
structures in the tensor. The TD-based unsupervised feature extraction method was applied to analyse 
mRNA and miRNA expression profiles. Biological annotations of the prognostic miRNAs and mRNAs 
were examined utilizing the pathway and oncogenic signature databases DIANA-miRPath and 
MSigDB. TD identified the miRNA signatures and the associated genes. These genes were found to 
be involved in cancer-related pathways, and 23 genes were significantly correlated with the survival 
of KIRC patients. We demonstrated that the results are robust and not highly dependent upon the 
databases we selected. Compared with traditional supervised methods tested, TD achieves much 
better performance in selecting prognostic miRNAs and mRNAs. These results suggest that integrated 
analysis using the TD-based unsupervised feature extraction technique is an effective strategy for 
identifying prognostic signatures in cancer studies.

Cancer is a highly complicated and heterogeneous disease. It is the result of a loss of cell cycle control1, which is 
due to accumulation of genetic mutations, gene duplication2, and aberrant epigenetic regulation3,4.Genetic muta-
tions involving activation of proto-oncogenes to oncogenes (OCG) and inactivation of tumor-suppressing genes 
(TSG) may cause cancer by alternating transcription factors (TF), such as the p53 and ras oncoproteins, which in 
turn control the expression of other genes. Gene duplication causes an elevated level of its protein product and 
thus favor the proliferation of cancer cells. MicroRNAs (miRNAs) are a class of small non-coding RNAs that bind 
to the messenger RNA (mRNA) and induce either its cleavage or impede translation repression. Several studies 
have indicated that abnormal miRNA expression is associated with carcinogenesis5. miRNAs induce cancers by 
acting as OCG and TSG. An miRNA that targets the mRNA of a TSG would induce loss of the protective effect 
of the TSG5,6. Although there have been many advancements in cancer therapy and diagnosis, many patients 
are unable to recover or experience recurrence after treatment. Accordingly, miRNA expression profiles are 
useful for identifying prognostic biomarkers for cancer diagnosis. For instance, dysregulated miRNAs were 
identified in urothelial carcinoma of the bladder7. Recent studies also suggested that miRNAs could be used as a 
prognostic biomarker for patients with pancreatic adenocarcinoma8,9. Furthermore, by utilizing meta-analysis, 
it was reported that a panel of eight-miRNA signatures could serve as an effective marker for predicting overall 
survival in bladder cancer patients10. In this study, we selected kidney renal clear cell carcinoma (KIRC) for our 
analysis. KIRC is the most common cancer subtype of all renal malignant tumors, accounting for more than 
70% of the cases (Zhang et al. 2013). Several studies have identified a few miRNA signatures that are associated 
with the overall survival of KIRC patients11–13.

Typical data structures in bioinformatics are difficult to analyze because of the small number of samples with 
many features. However, supervised feature extraction are effective methods for reducing the number of features. 
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If supervised learning is applied, overfitting can occur. For example, suppose that we are seeking genes associated 
with aberrant expression that a disease causes. If some of those genes are also associated with gender-dependent 
expression while others are not, the former might be identified as less coincident with disease progression than 
the latter. Although gender-dependent expression is biologically acceptable, it is practically difficult to take into 
consideration in advance. Overlooking genes that are simultaneously associated with disease-causing aberrant 
expression and gender-dependent expression is possible if we do not intentionally consider gender dependence. 
Considering labelling strictly often causes this kind of biologically unnecessary screening of genes. In contrast, 
unsupervised feature extraction, which is a data-driven strategy, allows us to recognize genes associated with 
gender-dependent aberrant expression if they are dominant, since we do not have to assume what specifically 
we would like to find in advance. At the same time, regularization (sparse modeling) attempts to minimize the 
number of features by restricting the sum of coefficients attributed to features and penalizes the use of additional 
features. The disadvantage of regularization is that we must select the values of parameters that balance the 
prediction accuracy and the number of features.

There are two major issues with supervised feature extraction methods: (i) class labels may not always be 
true, and (ii) there may be more class labels present in the dataset. As for (i), it is usual for a medical doctor to 
label samples by visual investigation. This sometimes results in errors, as some tumour samples can accidentally 
be classified as normal tissues. As for (ii), many diseases are often associated with several subclasses, e.g. cancer 
subtypes or different stages of disease progression. Thus, it is possible to have insufficient samples to cover all of 
these known subclasses. This problem that the number of features are more than that of samples can be resolved 
by employing unsupervised methods; such as principal component analysis (PCA), because they are often used 
to generate a smaller number of latent variables than samples through the linear combination of original features.

Unsupervised methods are able to identify the underlying structures in the unlabeled dataset. As for (i), 
because of the unsupervised nature as described above, mislabelling cannot generate incorrect linear combina-
tions, since labels are used only to validate generated features, not to generate features themselves. As for (ii), 
again, because of the unsupervised nature, subclasses will be automatically reflected in generated features. Thus, 
even if we do not have enough samples to attribute to all known subclasses, features generated naturally can take 
these subclasses into account.

The problem with the unsupervised approach is that the linear combination of many features often prevents 
us from interpreting the newly generated latent variables. An unsupervised methodology that is suitable for the 
dimension reduction problems is PCA or tensor decomposition (TD)-based unsupervised feature extraction 
(FE)14–27. This method allows selection of a smaller number of features effectively and stably. As can be seen in 
below, using this approach, at first the latent variables that are associated with samples and are coincident with 
the desired property, e.g., the distinction between patients and healthy controls, are selected. The latent variables 
that are attributed to features and corresponds to the selected latent variables attributed to samples are used for 
selecting limited number of features. Thus, we can have a limited number of features, which allows us to interpret 
the meaning of the results more easily, since we do not have to deal with all features included in the latent vari-
able. These limited number of features cannot be obtained by simply performing PCA and TD on a given data 
set and can be obtained only using our approaches described below.

In this paper, tensors specifically refer to mathematical objects having three or more suffices, while matri-
ces refer to tensors with exactly two suffices. PCA is a kind of matrix factorization, while TD is a factorization 
method applied to a tensor. The advantages of TD over PCA is that TD needs fewer latent variables to factorize. 
For example, suppose that we have 1,000 features that are formatted as either a 10 × 100 matrix or a 10 × 10 × 10 
tensor. PCA applied to a matrix results in two vectors that have 10 and 100 latent variables, respectively; thus, 
PCA needs in total 110 latent variables to represent 1,000 features. In contrast, TD applied to a tensor results in 
three vectors, each of which has 10 latent variables. Thus, in total, TD needs only 30 latent variables to represent 
1,000 features Fewer latent variables allow TD to capture features in a more efficient manner, and the results are 
free from overfitting the expression of 1,000 features, unlike with PCA.

Results
Figure 1 shows the flowchart of analyses and results in this study. We applied TD-based unsupervised FE to the 
KIRC dataset retrieved from TCGA. It was found that umRNA

l1j
 and umiRNA

l3j
 ( l1 = l3 = 2 ) varied between the nor-

mal and tumor samples. The t-test derived P-values were 7.10× 10−39 for mRNA and 2.13× 10−71 for miRNA, 
respectively. In order to see if umRNA

2j  and umiRNA
2j  are significantly correlated, we computed the PCC between them, 

which was 0.905 ( P = 1.63× 10−121 ), indicating that they are highly correlated (Fig. 2). 
The results of the miRNA signatures and their significant correlated genes are shown in Table 1. A total of 11 

miRNAs and 72 genes were identified. To determine if these miRNAs and mRNAs are significantly correlated, 
we computed the PCC for all 11× 72 = 792 pairs. Among them, 353 pairs were positively correlated, and 358 
pairs were negatively correlated (P-values were less than 0.01 after correcting with the BH criterion). Therefore, 
90% of pairs are significantly correlated. Moreover, we could successfully identify significantly correlated pairs 
of miRNAs and mRNAs. We noted that, among the predicted 11 miRNAs, one miRNA (miR-155) matched the 
result reported by Lokeshwar et al. 11.

Enrichment analysis.  Next, in order to evaluate the biological significance of selected mRNAs, we deter-
mined the top 10 oncogenic signatures of the 72 genes reported by MSigDB (Fig. 3, see also Table S1). The results 
of the top 10 REACTOME pathways reported by MSigDB are summarized in Fig. 4 (see also Table S2). These 
results suggest that the selected 72 mRNAs are likely related to oncogenesis. In order to further confirm if these 
72 mRNAs are related to kidney cancer, we checked if these genes were linked to survival rates (Fig. 5, see also 
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Table S3). Among 72 mRNAs, 23 were significantly correlated with the survival of kidney cancer patients. This 
also highlights the effectiveness of our analysis. We also evaluated the identified 11 miRNAs by DIANA-mirpath. 
Figure 6 (see also Table S4) shows the enriched disease-related KEGG pathways (P-value < 0.05). The renal cell 
carcinoma pathway is identified with a significant P-value equal to 0.01613.   

The top signature in Table S1 [Fig. 3(I)] is related to the cAMP signaling pathway. Targeting the cAMP path-
way is an effective treatment for kidney cancer28,29. The second signature in Table S1 [Fig. 3(II)] is the Snf5 gene 
expression profile of a murine model (Mouse Embryonic Fibroblast (MEF) cells) that closely resembles that of 
human SNF5-deficient rhabdoid tumors (pediatric soft tissue sarcoma that arises in the kidney, the liver, and the 
peripheral nerves)30. Impairment of the SWI/SNF chromatin remodeling complex plays an important role in the 
development and aggressiveness of clear cell renal cell carcinoma31. The sixth signature in Table S1 [Fig. 3 (VI)] 
comes from a study of the effects of knockdown of the gene family of eukaryotic translation initiation factors 
(EIF) by RNAi in MCF10A cells. EIF3b is a promising prognostic biomarker and a potential therapeutic target 
for patients with clear cell renal cell carcinoma32, and EIF4GI is a target for cancer therapeutics33.

The top pathway in Table S2 [Fig. 4(I)] is the ‘Pathway of regulation of IGF activity by IGFBP’. Studies show 
that insulin-like growth factors (IGFs) and insulin play a stimulatory role for renal cancer cells34,35. Patients with 
IGF-1 receptor overexpression have a 70% increased risk of death36. Moreover, this overexpression has been 
shown to increase kidney cancer risk in middle-aged male smokers37. The second pathway in Table S2 [Fig. 4(II)] 

Figure 1.   Flowchart illustrating analyses performed and the results obtained in this study. “Failed” means no 
successful selections from reduced number of top-ranked miRNAs or mRNAs because of assignments of P = 0 to 
too many miRNAs or mRNAs by the specified methods (for more details, see text).

Figure 2.   Scatter plot between umRNA
l1j

 (vertical axis) and umiRNA
l3j

 (horizontal axis). Black (red) open circle 
corresponds to normal (tumor) tissue. The analysis was conducted using R49.
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is ‘Cytokine Signaling in Immune system’. Cytokines are important biomolecules that play essential roles in 
tumor formation38, and they are therapeutic targets39,40. The IL-6 cytokine family can serve as useful diagnostic 
and prognostic biomarkers. In fact, IL-6 is a potential target in cancer therapy41,42. Ishibashi et al. reported that 
IL-6 suppresses the expression of the cytokine signaling-3 (SOCS3) gene and is associated with poor prognosis 
of kidney cancer patients43.

Survival analysis and miRNA‑regulated pathway study.  Table S3 (Fig. 5) shows the significant rela-
tionships between the predicted 23 mRNAs and the patients’ survival rates. For some of the 23 genes, patients 
cannot be divided equally based on expression of considered genes in order to get significant P-values for the 
Kaplan–Meier plots. A majority of the mRNAs (15 out of 23) are associated with P-values less than 0.05, with 
50/50 divisions based on the level of gene expression. Among the 16 KEGG pathways predicted by DIANA-
mirpath (Table S4 and Fig. 6), 14 are directly related to cancers, except for Hepatitis B and Hepatitis C. Therefore, 
we correctly identified miRNA signatures that are cancer-related.

Table 1.   The results of the miRNA signatures and genes of KIRC patients based on the TD analysis.

miRNA ID

hsa-mir-210 hsa-mir-891a hsa-mir-155 hsa-mir-200c hsa-mir-141 hsa-mir-508

hsa-mir-122 hsa-mir-514-3 hsa-mir-514-1 hsa-mir-514-2 hsa-mir-184

Gene symbol

ACTG1 ADAM6 AIF1L ALDOA ALDOB ANGPTL4

APLP2 APP AQP1 AQP2 ASS1 ATP1A1

ATP1B1 ATP5A1 ATP5B B2M C3 C4A

C7 CA12 CCND1 CD74 CDH16 COL4A1

COL4A2 CP CYFIP2 ENO1 FN1 FTL

GAPDH GATM GNB2L1 GPX3 HLA-A HLA-B

HLA-C HLA-DRA HSD11B2 HSP90AA1 HSPA8 IGFBP3

IGFBP5 ITM2B KNG1 LDHA LDHB LOC96610

NDRG1 NDUFA4L2 NNMT P4HB PCK1 PEBP1

PLIN2 PLVAP PODXL RGS5 SERPINA1 SLC12A1

SLC12A3 SOD2 SPARC​ SPP1 TGFBI TMBIM6

TMSB10 UBC UMOD VEGFA VIM VWF

Figure 3.   Enrichment analysis of oncogenic category in MSigDB. (I) CAMP_UP.V1_UP (II) SNF5_DN.V1_
DN (III) ESC_V6.5_UP_LATE.V1_UP (IV) ESC_V6.5_UP_EARLY.V1_DN (V) ESC_J1_UP_LATE.V1_UP 
(VI) SIRNA_EIF4GI_UP(VII) P53_DN.V1_DN (VIII) MEL18_DN.V1_UP (IX) LTE2_UP.V1_UP (X) 
RPS14_DN.V1_UP. Vertical axis is the negative normal logarithmic-adjusted P-values. The radii of open red 
and blue circles show the normal logarithmic values of the number of genes in each category and those of genes 
included in both the category and the selected genes shown in Table 1. See Table S1 for numerical data and full 
descriptions. The analysis was conducted using R49.
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Validation of findings using the TCGA and GEO databases.  In order to validate the robustness of 
our findings, we employed an independent dataset to confirm that our results are independent of datasets to 
some extent. The alternative dataset was downloaded from GEO (GSE16441). The procedures applied to analyze 
the GEO dataset are similar to those applied to the dataset obtained from TCGA. The only difference is the 
number of samples, miRNAs, and mRNAs. After repeating the same procedures, we realized that umRNA

l1j
 and 

umiRNA
l3j

 ( l1 = l3 = 2) also varied between normal and tumor samples (Fig. 1). P-values computed by the t-test 

Figure 4.   Enrichment analysis of REACTOME category in MSigDB. (I) REACTOME_regulation of 
insulin-like growth factor (IGF) transport and uptake by IGF binding proteins IGFBPS (II) REACTOME_
cytokine signalling in immune system (III) REACTOME response to elevated platelet cytosolic CA2+ (IV) 
REACTOME_signalling by interleukins (V) REACTOME_innate immune system (VI) REACTOME_platelet 
activation, signalling, and aggregation (VII) REACTOME_endosomal vacuolar pathway (VIII) REACTOME_
gloconeogenesis (IX) REACTOME_post-translational protein modification (X) REACTOME_disease. The 
radii of open red and blue circles show the normal logarithmic values of the number of genes in each category 
and those of genes included in both the categories and the selected genes shown in Table 1. See Table S2 for 
numerical data and full descriptions. The analysis was conducted using R49.

Figure 5.   Survival analysis of 24 genes from Table 1 that significantly contribute to patients’ survival. Vertical 
axis: negative normal logarithmic values of P-values computed by Kaplan plot. Horizontal axis: negative normal 
logarithmic values of adjusted P-values computed by Cox analysis. Red open circles indicate lower expression 
percentile of patient groups. Only when they are not 50%, upper expression percentiles are displayed with blue 
circles. See Table S3 for numerical data and full descriptions. The analysis was conducted using R49.
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were 6.74× 10−22 for mRNA and 2.54× 10−18 for miRNA. In order to ascertain whether umRNA
2j  and umiRNA

2j  
are significantly correlated, we calculated the PCC between them, which was 0. 931 (P-value = 1.58× 10−15 ), 
indicating that they are highly correlated.

Next, we checked if the selected miRNAs and mRNAs were common between the TCGA and GEO datasets. 
We identified three miRNAs—hsa-miR-141, hsa-miR-210, and hsa-miR-200c, which are listed in Table 1. On 
the other hand, 209 genes were identified. After restricting genes included in both TCGA and GEO datasets, we 
evaluated the overlap as the confusion matrix (Table 2).

The P-value determined using the Fisher exact test was 8.97× 10−11 and the odds ratio was 19.7. Therefore, 
the coincidence between selected genes in the TCGA and GEO datasets is significant, and the results obtained 
for TCGA are robust and not highly dependent upon specific samples.

Superiority of TD over t‑test, SAM and limma.  To test the superiority over the conventional methods, 
we applied the t-test, SAM44, and limma45 to the TCGA and GEO datasets, respectively. After applying these 
statistical methods, P-values were calculated and adjusted based on the BH criterion. Then, 13,895 genes and 399 
miRNAs for TCGA and 12,152 genes and 78 miRNAs for GEO were associated with adjusted P-values less than 
0.01 by t-test. At the same time, by SAM, 14,485 genes and 441 miRNAs for TCGA and 16,336 genes and 108 
miRNAs for GEO were selected. Finally, limma selected 18,225 genes and 662 miRNAs for TCGA and 28,524 
genes and 319 miRNAs for GEO. Relative to the TD method, the t-test, SAM, and limma identified a larger num-
ber of genes and miRNAs using the P-values as criteria. If the top ranked (small enough or restricted) number of 
genes and miRNAs was selected by the t-test, SAM and limma, the coincidence between TCGA and GEO might 
be compatible. Therefore, we selected the same number of genes and miRNAs by the t-test, SAM and limma 
as those selected by TD. Only one miRNA and no genes were common between the TCGA and GEO datasets 
for t-test. We could not reduce the number of genes and miRNAs selected by SAM, since it attributed P = 0 to 
more genes and miRNAs than those selected by TD for both TCGA and GEO, as did limma for miRNA. Limma 
could select a reduced number of genes for TCGA and GEO, while no common genes were selected between 
them. Therefore, we determined that the t-test, SAM, and limma could identify less coincident sets of genes and 

Figure 6.   Enrichment analysis of KEGG pathway provided by DIANA-mirpath to which miRNAs in Table 1 
were uploaded. Vertical axis: negative normal logarithmic values of adjusted P-values. (I) Chronic myeloid 
leukemia (II) Proteoglycans in cancer (III) Prostate cancer (IV) Pathways in cancer (V) Pancreatic cancer (VI) 
Glioma (VII) Hepatitis B (VIII) Small cell lung cancer (IX) Non-small cell lung cancer (X) Colorectal cancer 
(XI) Endometrial cancer (XII) Viral carcinogenesis (XIII) Bladder cancer (XIV) Melanoma (XV) Renal cell 
carcinoma (XVI) Hepatitis C. The radii of red open circles indicate the normal logarithmic values of the number 
of genes in each category targeted by miRNAs in Table 1 whose normal logarithmic numbers are proportional to 
the radii of blue open circles. See Table S4 for numerical values and full description. The analysis was conducted 
using R49.

Table 2.   Confusion matrix between genes selected in TCGA and GEO dataset.

GEO

Not selected Selected

TCGA​
Not selected 17,209 160

Selected 60 11
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miRNAs between TCGA and GEO. In conclusion, this strongly suggests that the proposed method is superior 
to the t-test, SAM, and limma.

Although we cannot deny the possibility that more advanced or sophisticated methods can compete with 
TD-based unsupervised FE, since this method was fast, simple, and robust and gave us a biologically reasonable 
set of genes and miRNAs, we believe that the present results are worth publishing, even without more compre-
hensive comparisons with methods other than limma, SAM, and t-test.

Discussions
In addition to compare with the supervised methods; i.e. t-test, SAM and limma, we benchmarked the TD 
approach with the unsupervised method, PCA. We did not apply PCA to miRNAs and mRNAs separately and 
instead applied TD to a tensor that was generated by merging these two. To demonstrate this point, we applied 
PCA to miRNAs and mRNAs retrieved from TCGA. We noticed that the second PC loading attributed to miRNA 
and mRNA samples, v(mRNA)

2j  and v(miRNA)
2j  , were not only mutually correlated but also distinct between tumours 

and normal tissues; the PCC between them, which was 0.839 (P-value = 2.74× 10−87 ), was less significant than 
that when TD was employed (0.905, P = 1.63× 10−121 ). T-test applied to v(mRNA)

2j  and v(miRNA)
2j  to evaluate signifi-

cant distinctions between tumours and normal tissues gave us P = 2.33× 10−36 for mRNA and P = 2.39× 10−77 
for miRNA, which are at best comparable ( P = 7.10× 10−39 for mRNA and P = 2.13× 10−71 for miRNA when 
TD was employed). To evaluate if PCA could select common genes and miRNAs between TCGA and GEO, we 
also applied PCA to the GEO dataset and selected 10 miRNAs and 70 mRNAs for TCGA and three miRNAs 
and 131 mRNAs for GEO. Since three miRNAs selected for GEO were also included in 10 miRNA selected for 
TCGA, coincidence between GEO and TCGA is the same for miRNAs between TD and PCA. Conversely, since 
we could find only six genes in common between TCGA and GEO, coincidence for mRNAs is less than with TD, 
which identified 11 genes in common. In conclusion, although miRNAs and mRNAs can also be successfully 
identified separately by PCA, the integrated analysis of TD has some advantages over PCA.

Conclusions
In this study, we applied the TD-based unsupervised FE method to the KIRC miRNA expression and gene 
expression data. The TD-based method can identify miRNA signatures with differential expression between 
normal tissues and tumors as well as significant correlations between the gene expression data. Selected mRNAs 
and miRNAs are not only mutually correlated but are also significantly related to various aspects of cancers. This 
suggests that integrated analysis performed by TD-based unsupervised FE is an effective strategy; it can identify 
biologically significant pairs of miRNAs and mRNAs despite its simplicity, which is not easy by other strategies.

Materials and methods
Tensors and tensor decomposition (TD).  Tensor17 is a mathematical structure for storing datasets asso-
ciated with more than two properties. If we measure miRNA and mRNA expression for the samples, we cannot 
avoid storing these two measurements into two separate matrices. However, by using tensor we can store these 
two datasets into a tensor, because tensors can have more than two suffixes, which matrices do not have.

TD17 is a mathematical trick that can approximate tensors as the summation of series whose terms are 
expressed via the outer product of vectors, each of which represent individual property (in this specific example, 
these vectors correspond to mRNAs, miRNAs, and samples).

Tensor decomposition methods.  Figure 7 shows how TD and PCA were applied to miRNA and mRNA 
expression to select critical miRNAs and mRNAs for KIRC. The miRNAseq and mRNAseq expression data for 
KIRC were retrieved from the TCGA Data Portal Research Network (https​://gdcpo​rtal.nci.nih.gov/).

TD is a natural extension of matrix factorization and is regarded as a generalization of the singular value 
decomposition (SVD) method. It is a useful technique uncovering the underlying low-dimensional structures 
in the tensor. There are two popular tensor decomposition algorithms: canonical polyadic decomposition (CPD) 
and Tucker decomposition46. The rank decomposition method, CPD, is to express a tensor as the sum of a finite 
number of rank-one tensors. The Tucker decomposition decomposes a tensor into a so-called core tensor and 
multiple matrices.

TD-based unsupervised FE was applied to analyze mRNA and miRNA expression profiles. Let xij
(mRNA) denote 

the expression profiles of the ith mRNA (i = 1, …N) of the jth sample ( j = 1, … M), whereas xkj
(miRNA) denotes the 

expression profiles of the kth miRNA ( k = 1, …K) of the jth sample ( j = 1, … M). Next, we generated a tensor 
(the rationale for this can be found in17), that is

xijk is subjected to Tucker decomposition as follows:

where G ∈ RN×M×K is the core tensor and ul1i ∈ RN×N , ul2j ∈ RM×M and  ul3k ∈ RK×K  are singular value 
matrices that are orthogonal. The three matrices can be interpreted of as the principle components for the 
three modes (properties). The core tensor describes the degree of interaction between the three components47. 
Because Tucker decomposition is not unique, we have to specify how Tucker decomposition was derived. In 
particular, we chose higher-order singular value decomposition (HOSVD). Given that xijk ∈ RN×M×K is too large 

(1)xijk = x
(mRNA)
ij × x

(miRNA)
kj

(2)xijk =

N
∑

l1=1

M
∑

l2=1

K
∑

l3=1

G(l1, l2, l3)ul1iul2jul3k

https://gdcportal.nci.nih.gov/
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( N ×M × K = 19536× 324× 825 ∼= 5.22× 109; for actual numbers of N, M, and K, see below ) to apply TD, 
we generated a matrix, which is given by:

By applying SVD, we can get ul1i and ul3k as

Then, we can also obtain two ul2j that correspond to miRNA and mRNA expression:

Selection of genes can be determined using the following quantities,

where Pχ2 [> x] is the cumulative probability that the argument is greater than x in a χ2distribution.σl1 and 
σl3 denote the standard deviations for ul1i and ul3k , respectively. After the P-values are adjusted by means of 
the Benjamini–Hochberg (BH) criterion, miRNAs and mRNAs that are associated with adjusted P-values less 
than 0.01 are selected as those showing differences in expression between controls (normal tissues) and treated 
samples (tumors).

Although the reason CPD was not employed is fully described in my recent book17, I briefly describe it here. 
First of all, CPD cannot give us unique solutions, only initial value-dependent solutions that prevent us from 
interpreting the results uniquely. Another disadvantage of CPD compared with HOSVD is computation time: 
CPD is ten times slower than HOSVD19. Thus, there is no reason to employ CPD over HOSVD.

Although many other algorithms can compute Tucker decomposition, to our knowledge, HOSVD is the fastest 
method. In addition, since it works well applied to various problems17 as well as in the present study, there is no 
need to employ other algorithms besides HOSVD.

(3)xik =

M
∑

j=1

xijk

(4)xik =

min(N,K)
∑

l=l1=l3=1

�lul1iul3k

(5)umRNA
l1j

=

N
∑

i=1

xijul1i , u
miRNA
l3j

=

K
∑

k=1

xkjul3k ,

(6)Pi = Pχ2

[

>

(

ul1i

σl1

)2
]

, Pk = Pχ2

[

>

(

ul3k

σl3

)2
]

Figure 7.   Illustration of TD and PCA application to mRNAs and miRNAs expression, respectively. TD 
workflow (solid line): mRNA and miRNA expression provided as matrices (middle upper) were multiplied to 
generate a tensor (right upper), which was converted to a matrix with summation sample suffix (lower right). 
The tensor was decomposed into a product of miRNA and mRNA singular value matrices (middle lower), which 
was converted to miRNA sample and mRNA sample singular value vectors (left). PCA workflow (broken lines): 
PCA directly decomposed miRNA and mRNA expression matrices into a product of PC loading attributed to 
samples and PC scores attributed to miRNA or mRNA.
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Principal component analysis methods.  Similar to TD, PCA can also be applied to miRNA and miRNA 
expression, although separately rather than in an integrated manner. xij

(mRNA) and xkj
(miRNA) are normalized such 

that 
∑

ix
(mRNA)
ij =

∑

kx
(miRNA)
kj = 0 and 

∑

i

(

x
(mRNA)
ij

)2

= N , 
∑

k

(

x
(miRNA)
kj

)2

= K . The lth PC score u(mRNA)
li  , 

attributed to ith mRNA, can be obtained as the eigenvector of the gram matrix, 
∑

i′
∑

jx
(mRNA)
ij x

(mRNA)
i′j u

(mRNA)
li′ = �lu

(mRNA)
li  , where �l is the eigenvalue. The lth PC loading, v(mRNA)

lj  , attributed 

to the jth sample, can be obtained by v(mRNA)
lj =

∑

ixiju
(mRNA)
li . The exact same procedure was applied to 

x
(miRNA)
kj  , resulting in u(miRNA)

lk  and v(miRNA)
lj  . After identifying that v(mRNA)

lj  and v(miRNA)
lj  were mutually correlated 

as well as distinct between tumour and normal tissues, corresponding u(mRNA)
li  and u(mRNA)

lk  were used to attribute 
P-values to ith mRNAs and kth miRNAs, respectively, with distribution as was done with TD. Finally, mRNAs 
and miRNAs associated with adjusted P-values of less than 0.01 were selected.

mRNA and miRNA expression.  Expression profiles of the mRNA and miRNA were retrieved from the 
Firebrowse database (https​://fireb​rowse​.org/). The samples consisted of 253 kidney tumors and 71 normal kid-
ney tissues (M = 324). The number of mRNAs measured was N = 19,536, and the number of measured miRNAs 
was K = 825. Another dataset was downloaded from the GEO database (https​://www.ncbi.nlm.nih.gov/geo/) 
with GEO ID GSE16441, and two files, GSE16441-GPL6480_series_matrix.txt.gz (for mRNA) and SE16441-
GPL8659_series_matrix.txt.gz (for miRNA), were used. A total of N = 33,698 mRNAs and K = 319 miRNAs were 
measured for 17 patients and 17 healthy controls (M = 34).

Analysis of the correlation between miRNA and gene expression.  Correlations between umRNA
l1j

 
and umiRNA

l3j
 ( l1 = l3 = 2) as well as v(mRNA)

lj  and v(miRNA)
lj (l = 2) were quantified by the Pearson’s correlation coef-

ficient (PCC). The PCC and P-values were calculated using the corr function and cor.test function in the R soft-
ware, respectively.

Biological function analysis.  We evaluated the biological significance of the set of differentially expressed 
miRNAs and their correlated mRNAs. Biological annotations of the prognostic miRNAs and mRNAs were 
examined by employing the DIANA-miRPath47 and MSigDB48 databases, respectively.

Supplementary materials.  Supplementary figures. The results of the Kaplan–Meier plots of the 23 KIRC 
survival-associated genes by using OncoLnc31. Supplementary Tables S1 to S4 that include numerical data as well 
as detailed descriptions that correspond to Figs. 3 to 6.

Data availability
All the raw data were publicly available, which were obtained from the Firebrowse database (https​://fireb​rowse​
.org/) and the GEO database (https​://www.ncbi.nlm.nih.gov/geo/).
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