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Aging and haptic shape 
discrimination: the effects 
of variations in size
J. farley norman1,2*, Jessica M. Dukes1 & tori n. palmore1

Seventy-two older and younger adults haptically discriminated the solid shape of natural objects 
(bell peppers, Capsicum annuum). Plastic copies of the original-sized fruits were used as experimental 
stimuli, as well as copies that were reduced in size to 1/8th and 1/27th of the original object volumes. 
If haptic object shape is represented in a part-based manner, then haptic shape discrimination 
performance should be at least partly size invariant, since changes only in scale do not affect an 
object’s constituent parts. On any given trial, participants sequentially explored two bell pepper 
replicas and were required to judge whether they possessed the same shape or had different shapes. 
For some participants, the objects to be discriminated possessed the same size, while for others, 
the two objects had different sizes. It was found that variations in scale did significantly reduce the 
participants’ haptic sensitivities to shape. Nevertheless, the discrimination performance obtained for 
large variations in size was no lower than that obtained for smaller variations in size. The results also 
demonstrated that increases in age modestly affect haptic shape discrimination performance: the d′ 
values of the older participants were 15.5% lower than those of the younger participants.

Almost 60 years ago, James  Gibson1,2 developed a set of solid objects (sculptures referred to as “feelies”; also see 
Norman et al.3) to be used in investigations of haptic shape discrimination and matching. The quantitative data 
from the resulting haptic shape discrimination experiments (conducted by Gibson’s graduate student James 
Caviness) appeared several years  later4. Following a hiatus, interest and research in haptic shape discrimination 
continued over the subsequent  decades3,5–13. In our own laboratory’s  research3,7,8,11–13 on shape discrimination, 
we have often used sets of naturally-shaped objects (bell peppers, Capsicum annuum). One good reason to use 
such objects is that many (but not all) pairs of these bell peppers are confusable to human participants and 
those systematic confusions are informative; they help us to identify the object features that confusable objects 
possess in common. Consider Fig. 1, which illustrates a confusion matrix obtained from participants in Experi-
ment 1 of Norman et al.7; responses along the diagonal indicate correct judgments, while off-diagonal responses 
indicate mistakes. Notice that when human participants are presented with bell pepper #1, they often respond 
(i.e., believe) that it is object 3; conversely, when participants are presented with bell pepper #3, they frequently 
believe it to be object 1. Since objects 1 and 3 are reciprocally confusable with each other, they presumably share 
featural similarities that are important (and salient) to human perceptual systems. It is important to note that 
while objects 1 and 3 are confusable with each other (and also with objects 7 and 8), neither of these objects are 
confused with object 5. Objects 1, 3, and 5 (top, middle, and bottom, respectively) are illustrated in Fig. 2. Over 
the years across a variety of  studies3,7,8,11–13, some of our participants have spontaneously noted that objects 1 
and 3 both possess a “forehead” and a “chin”, while object 5 looks like a clenched “fist” (containing multiple 
“fingers”). In other words, our participants often spontaneously indicate that these naturally-shaped objects 
possess parts that are distinctive to them; they confuse objects that have similar parts (and don’t confuse objects 
possessing different parts).

In his investigations with the feelies,  Gibson14 found that in making their haptic judgments, participants 
gravitated towards concavities and troughs in the solid object surfaces. In particular, he said (p. 125) “when an 
observer is given one of these shapes to feel with his hands behind a curtain, he typically does the following 
things. (1) He curves his fingers around its face, using all fingers and fitting them into the cavities. (2) He moves 
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his fingers in a way that can only be called exploratory, since the movements do not seem to become stereotyped, 
or to occur in any fixed sequence”. Our own  experiences3,7,8,11–13 are consistent with Gibson’s observation. When 
handed one of our bell pepper stimuli (without vision), our participants also actively manipulate the stimulus 
objects; when they encounter a trough, groove, or other depression, they immediately stick their fingers into 
the concavity to explore its length, breadth, and shape. These observations are important, because they suggest 
that there is a critical similarity between vision and haptics in terms of how solid object shape is perceived and 
 represented15,16. In 1984, Hoffman and  Richards17 developed a theory of visual object recognition in which object 
shapes are represented in terms of parts (also see Singh and  Hoffman18). Object surfaces are decomposed into 
parts wherever troughs occur; in particular, according to Hoffman and  Richards17 the division into parts occurs 
(p. 74) “where, locally, the surface has greatest negative curvature”. Where do such surface locations exist for our 
bell pepper stimuli? Consider the right column of Fig. 2. The red surface areas indicate Hoffman and Richards’17 
areas of maximal negative curvature (i.e., troughs), which separate the object surfaces into parts (we calculated 
the differential geometry and local surface curvatures for all regions on our object surfaces; areas of lesser mean 
curvature are colored blue and green, while higher local curvature magnitudes are colored yellow, orange, and 
red). One can see that, indeed, the troughs (red areas) do separate the “forehead” and “chin” parts of objects 
1 and 3 and the “fingers” of the object (object 5) that our participants often call a clenched “fist”. The fact that 
our participants, in haptic experiments, often spontaneously refer to the parts of our objects in a manner that 
is consistent with Hoffman and Richards theory of visual perception and recognition is striking and suggests 
that perhaps haptic object perception (discrimination and recognition) is also based (at least partly) upon rep-
resentations of parts. A significant body of evidence has accumulated to show that the theory of Hoffman and 
Richards has validity for  vision19,20. Since visual and haptic information about objects is combined within the 
central nervous  system21,22, if visual mechanisms are sensitive to discrete object parts, it would not be surprising 
if haptic mechanisms are also sensitive to parts.

If the haptic perception of shape, like that of vision, is based upon a part-based representation of objects 
(where the parts are separated by local minima, i.e., troughs), then perceived shape should remain essentially 
invariant with (reasonable) changes in object  size23, since a change only in scale will not affect the parts (for 
example, see Fig. 3). One purpose of the current study was to examine this issue and determine whether and 
to what extent the haptic discriminability of solid object shape is actually affected by changes in scale. Previous 
research by Craddock and  Lawson10 that utilized manmade objects and animal figurines (e.g., chairs, sinks, and 
bathtubs; horses and giraffes) suggests that shape discrimination will be substantially affected. However, other 
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Figure 1.  The confusion matrix of participant responses obtained from Experiment 1 of Norman et al.7. For 
each of the 12 stimulus objects (Bell peppers, Capsicum annuum) are plotted the frequencies of the 12 possible 
responses. Correct responses (e.g., stimulus 1 was identified as object 1; stimulus 12 was identified as object 12) 
are located along the diagonal. Cells colored dark blue indicate a frequency of zero for those stimulus–response 
pairs, while light blue, light cyan, yellow, orange, and red indicate higher and higher response frequencies. The 
off-diagonal light blue and cyan colored cells indicate participant confusions (note, for example, that when 
participants haptically explored stimulus object 1, they often believed it to be either object 3, object 7, or object 
8; stimulus object 2 was often confused with objects 6, 9, and 11, etc.).
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results (e.g., results of a visual study by Norman et al.24) have demonstrated a large degree of scale invariance. In 
a recent review provided by Lacey and  Sathian15, while discussing the findings of Craddock and  Lawson10, these 
authors (p. 6) pointed out “that haptic … and cross-modal … recognition are apparently size-dependent and this 
merits further investigation. Further research should address whether… object constancy can be achieved across 
size changes in unfamiliar objects.” We agree with Lacey and Sathian that further research is needed concerning 
how the haptic shape perception of unfamiliar objects is affected by variations in scale. An additional second 
purpose of the current study is to determine whether the effects of size manipulation documented by Craddock 
and Lawson generalize and extend to unfamiliar object stimuli (such as our individually-shaped bell peppers).

A third purpose of the current study was to evaluate potential effects of aging. Even if the haptic shape judg-
ments (for unfamiliar objects) of younger adults are adversely affected by changes in object size, it is possible that 
the haptic judgments of older adults might be even more negatively affected because of age-related reductions in 
manual dexterity. In the current study, the full-sized natural objects (plastic replicas of bell peppers, C. annuum, 
see Fig. 4) were scaled down to one-eighth and one-twenty-seventh of their original size (see Fig. 5). Because 
older adults have poorer manual  dexterity25,26 than younger adults, changes in size (especially reductions, like 
those employed in the current study) may have more detrimental effects upon their haptic performance.

Figure 2.  Photographs of stimulus objects 1, 3, and 5 are presented in the left panel (top, middle, and bottom, 
respectively). Plots of mean surface curvature for those same objects are presented in the right panel. Areas of 
lower mean curvature are colored blue and green, while higher local curvature magnitudes are colored yellow, 
orange, and red. The red surface regions indicate Hoffman and Richards’17 areas of maximal negative curvature 
(i.e., troughs), which separate the continuous object surfaces into parts. These photographs were taken by the 
first author, J. Farley Norman.
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Figure 3.  A photograph of a set of 12 wooden dolls. One can readily see that while the dolls vary widely in size, 
they all nevertheless possess the same shape. According to the minima rule of Hoffman and  Richards17, all of 
these objects, regardless of their scale, possess two distinct parts (i.e., the “head” and the “body” are separated 
by a saddle-shaped trough; the single largest doll in this figure has an extra part, a supporting base). This 
photograph was taken by the first author, J. Farley Norman.

Figure 4.  A photograph of the eight bell pepper (Capsicum annuum) replicas used as experimental stimuli. 
From upper-left to bottom-right, the objects are 1, 2, 3, 5, 7, 8, 11, and 12. The six different object pairs used 
in the current experiment (objects 1 and 3, objects 1 and 7, objects 2 and 11, objects 3 and 7, objects 3 and 8, 
and objects 5 and 12) represent the most confusable object pairs, as found by Norman, Norman, et al.7. This 
photograph was taken by the first author, J. Farley Norman.
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Methods
Apparatus. The medium (one-eighth volume) and small (one-twenty-seventh volume) sets of bell pepper 
replicas were printed in PLA plastic (polylactic acid) using a Bits From Bytes 3D Touch printer following Laser 
Scanning (NextEngine Laser Scanner) of the full-sized objects (see “Experimental stimuli” section). An Apple 
MacBook computer was used to randomly order the presentation of the experimental stimuli and record the 
participants’ responses.

Experimental stimuli. The full-sized stimulus objects (exact plastic copies of 8 natural bell peppers, C. 
annuum) were a subset (objects 1, 2, 3, 5, 7, 8, 11, and 12) of those used in previous  research3,7,8.

Procedure. The basic procedures for the shape discrimination task were similar to those used by Experi-
ment 2 of Norman et al.7, Experiment 1 of Norman et al.8 and Norman et al.3. On each trial, participants reached 
behind an occluding curtain to haptically explore two stimulus objects sequentially (presented for 3 s each, sepa-
rated by a 3-s interstimulus interval, ISI). The objects were presented in a random orientation each time, and the 
participants used both hands to actively explore each object’s shape. After both objects had been presented, the 
participants’ task was to indicate whether the objects possessed the same shape or had different shapes (regard-
less of size). Each participant made a total of 96 shape discrimination judgments (48 same trials, and 48 different 
trials), where the order of the same and different pairs of objects was determined randomly. As in some of our 
previous  investigations11,12, only the most difficult (i.e., most confusable, see Fig. 1) object pairs (objects 1 and 
3, objects 1 and 7, objects 2 and 11, objects 3 and 7, objects 3 and 8, and objects 5 and 12) were presented to the 
participants during different trials (each of these 6 different object pairs was presented 8 times throughout the 
entire block of 96 trials; during each of the 48 same trials, one of the 8 stimulus objects was randomly selected 
and presented twice).

There were three between-subjects’ conditions. For some participants, the two objects to be discriminated 
on each trial possessed the same size (both were of the medium size). For two other groups of participants, they 
had to discriminate object shape irrespective of differences in size: one group judged objects that differed in size 
by one step (either medium and large or small and medium) while another group judged objects that differed 
in size by two steps (small and large objects). For the groups that judged pairs of objects that differed in size, the 
larger of the two objects (e.g., medium size for people who judged small and medium objects) was sometimes 
presented first (with 50% probability) and sometimes presented second (also with 50% probability).

In addition to object shape discrimination, we evaluated the participants’ manual dexterities using a modified 
version of the Moberg pick-up  test8,25–29. For this task, the younger and older participants picked up 12 small 
metal objects (e.g., nail, paperclip, coins, flat-head screw, a key, a wing nut, etc.) and placed them one at a time 
into a container as fast as possible; the total time required to place the objects in the container was recorded. 
The participants performed this test both with and without vision. The participants’ dexterity was assessed twice 
(twice with vision and twice without); their best performance (i.e., fastest times) was included in the analysis.

participants. Seventy-two younger and older adults participated in the experiment (24 for each of the three 
between-subjects’ size conditions described earlier). Thirty-six of the participants were older (M = 73.5 years of 
age, SD = 4.9, range = 65 to 82 years) and 36 were younger (M = 21.5 years of age, SD = 2.5, range = 18 to 32 years). 
All participants were naive regarding the purpose of the experiment. The study was approved by the Institutional 
Review Board of Western Kentucky University, and each participant signed an informed consent document 
prior to testing. Our research was carried out in accordance with the Code of Ethics of the World Medical Asso-
ciation (Declaration of Helsinki).

Figure 5.  A photograph of bell pepper 3 reproduced at three sizes; from left to right are indicated the original 
(large) size, the medium size (1/8th of the original volume), and the small size (1/27th of the original volume). 
This photograph was taken by the first author, J. Farley Norman.
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Results
The results (d′ values, see Macmillan and  Creelman30) for the younger and older participants are shown in Fig. 6. 
As is clearly evident from the figure, changes in size did indeed reduce shape discrimination performance when 
compared to the performance obtained for same-size objects (F(2, 66) = 12.4, p < 0.0001; η2

p = 0.27) as indicated 
by a 2-way between subjects analysis of variance (ANOVA). A Tukey HSD post-hoc test indicated that perfor-
mance in the same-size condition was significantly different from that obtained in the one-step and two-step 
size change conditions. The magnitude of size change, however, did not matter: the performances obtained in 
the one-step and two-step size change conditions did not differ from each other (the performance obtained for 
small-large object pairs was no worse than that obtained for small-medium or medium-large object pairs). As 
is also evident from an examination of Fig. 6, there was a significant main effect of age (F(1, 66) = 4.9, p = 0.03; 
η2

p = 0.07); the younger participants’ shape discrimination performance was 18.4% higher than that exhibited 
by the older participants. The effect of the size change was similar for both age groups, however, as indicated by 
the lack of a significant interaction between age and size condition (F(2, 66) < 1.0, p = 0.52).

The participants’ hit rates (proportion of differently-shaped object pairs judged as different) and false alarm 
rates (proportion of same-shaped object pairs judged as different) are presented in Fig. 7 (the two different-size 
conditions, one-step and two-steps, have been combined, because there was no difference between them, see 
Fig. 6); the participants’ receiver operating characteristic (ROC) curves are plotted for each age group. The par-
ticipants’ hit- and false alarm rates were subjected to two-way between-subjects’ ANOVAs. As can be seen from an 
inspection of Fig. 7, there was a significant effect of size condition upon the participants’ hit rates (F(2, 66) = 9.9, 
p < 0.0002; η2

p = 0.23), such that the hit rates were significantly higher in the same size condition. Therefore, any 
variation in size made it more difficult for participants to detect that two objects differed in shape (when in fact 
they did differ in shape). Interestingly, there were no significant effects of age upon either hit or false alarm rates 
(e.g., no main effects of age; hit rate: F(1, 66) = 1.09, p = 0.30; false alarm rate: F(1, 66) = 0.80, p = 0.38).

The results of the pick-up test of manual dexterity are shown in Fig. 8. As can clearly be seen in the figure, 
there were significant effects of both age and the presence/absence of vision (age: F(1, 70) = 7.5, p < 0.01, η2

p = 0.10; 
vision/no-vision: F(1, 70) = 68.8, p < 0.000001, η2

p = 0.50). The older participants were less dexterous than the 
younger participants (i.e., their pick-up times were 46.3% higher). Given that the outcome of the haptic shape 
discrimination and dexterity tests were similar (e.g., adverse effect of age for both tasks), it is interesting that 
there was no significant relationship between these tasks (e.g., the Pearson r correlation coefficients between 
d′ and the no-vision [i.e., haptic only condition] pick-up times were − 0.224 and − 0.086 for the same and dif-
ferent object size conditions, respectively). Even if these correlations had been statistically significant (p values 
were 0.29 and 0.56 for the same and different object size conditions, respectively), variations in our participants’ 
manual dexterity would have accounted for only 5.0 (0.2242) and 0.74 (0.0862) percent of the variance in their 
haptic shape sensitivities (i.e., d′ values).
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Discussion
In previous research involving visual solid shape discrimination, there were only very small effects of size change 
(i.e., scale) upon performance (e.g., see Norman et al.24). In contrast, Craddock and  Lawson10 found substantial 
effects of size change upon the haptic discrimination of manmade objects and animal figurines. Our current 
results are similar to those of Craddock and Lawson and demonstrate that their finding extends to the haptic 
discrimination of a quite different and unfamiliar set of solid objects. It is interesting, however, that while some 
size-change hurts shape discrimination performance (see Fig. 6), having additional amounts of size-change 
does not result in further deteriorations in performance (e.g., in our study, the performance for comparisons 
of small and large objects was no worse than the performances obtained for small and medium or medium and 
large objects).

In an absolute sense, our older participants did well; they do possess effective haptic shape discrimination 
abilities: their d’ values were 84.5% of those of the younger participants (overall d′ values were 1.278 and 1.513 
for the older and younger participants, respectively). Nevertheless, our study does reveal that there is a significant 
adverse effect of age upon haptic shape sensitivity (i.e., d′ values). In contrast, we found no systematic effects of 
age with regards to either hit- or false-alarm rates. This is an interesting outcome (that there was a significant 
effect of age upon d′, but not upon hit- or false-alarm rates). For any given older adult, therefore, they were less 
sensitive to differences in shape than a typical younger adult, but that reduced performance was due to either a 
lower hit rate or a higher false-alarm rate (which differed across older individuals).

The pattern that was obtained in the current experiment (that the older adults’ haptic shape discrimination 
performance was qualitatively similar to that exhibited by the younger adults, but they nevertheless possessed 
lower sensitivity) has been observed before for other haptic tasks. In 2016, Cheeseman et al.26 determined cur-
vature discrimination thresholds for older and younger adults. In this study, there was always relative movement 
between the participants’ index finger and a curved (convex or concave curvatures) cylindrical block. In one 
condition (active), the participants actively felt the curved surface of the stimulus blocks; in the other condi-
tion (passive), the curved block translated underneath the participants’ fingertip. Thus, the tactile stimulation 
at the fingertip was similar (and dynamic) for both active and passive conditions. Cheeseman et al. found that 
the resulting curvature discrimination thresholds were superior for the passive condition. What is important to 
note for the present purposes is that the older adults in the Cheeseman et al. study showed the same qualitative 
pattern of results (see their Fig. 3) as the younger adults, despite possessing a lower overall sensitivity to curva-
ture. Multiple studies with quite different tactile/haptic stimuli have now demonstrated that older adults, while 
possessing less overall sensitivity to curvature and shape, nevertheless produce results that are qualitatively the 
same as those of younger adults.

Conclusion
Despite exhibiting modest declines in solid shape discrimination performance, older adults nevertheless retain 
effective haptic abilities.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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