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Characterization of quantum 
and classical correlations 
in the Earth’s curved space‑time
Tonghua Liu1, Shuo Cao1* & Shumin Wu2*

The preparation of quantum systems and the execution of quantum information tasks between 
distant users are always affected by gravitational and relativistic effects. In this work, we 
quantitatively analyze how the curved space-time background of the Earth affects the classical and 
quantum correlations between photon pairs that are initially prepared in a two-mode squeezed state. 
More specifically, considering the rotation of the Earth, the space-time around the Earth is described 
by the Kerr metric. Our results show that these state correlations, which initially increase for a specific 
range of satellite’s orbital altitude, will gradually approach a finite value with increasing height of 
satellite’s orbit (when the special relativistic effects become relevant). More importantly, our analysis 
demonstrates that the changes of correlations generated by the total gravitational frequency shift 
could reach the level of < 0.5% within the satellite’s height at geostationary Earth orbits.

As one of the most important developments in modern physics, quantum entanglement – a central characteris-
tics of quantum correlations – has arouse widespread attention in most recent years1,2. However, one interesting 
question which still calls for consideration is, can the separable state (i.e., not entangled) be determined as a 
classically correlated state without quantum correlations? Several recent studies have focused on such issue and 
revealed some signatures of quantumness in separable states, one of which is the so-called quantum discord that 
captures the general quantum correlations even in the absence of entanglement in a quantum state. Following the 
methodology firstly proposed in3–5 and furthermore identified as a resource for computation6, quantum discord 
originates from the discrepancy between two classically equivalent definitions of mutual information, which can 
be derived from the measurement of the total correlations in a quantum state. Note that although the nature of 
quantum discord is still unknown, it is rewarding to investigate its important role played in the realization of 
some quantum information tasks (especially in the absence of quantum entanglement). One should remember 
that certain quantum information processing tasks can also be done efficiently, even without the participation 
of quantum entanglement7,8.

In realistic situation, the preparation of quantum system and the procession of quantum information tasks 
are always accompanied by gravitational and relativistic effects. Considering the fact that the previous works 
have paid more attention to quantum discord without gravitational or relativistic effects, its behaviors in a rela-
tivistic setting or curved space-time background is still an uncharted territory. Fortunately, the quantum field 
theory in curved space-time, which enables one to incorporate relativistic effects into quantum experiments, 
has provided a theoretical framework to carry out the above analysis9,10. Nevertheless, when studying quantum 
resource in relativistic setting, the effects of gravity and motion on the quantum properties and their applica-
tions have always been ignored, which fails to overcome the inherent inconsistency between quantum physics 
and relativity. Such gap was bridged by employing quantum field theory in curved space-time to compute the 
ultimate bounds on ultra-precise measurements of relativistic parameters9,10. More recently, further progress 
in this direction has been achieved by11,12, with two papers discussing quantum discord between relatively 
accelerated observers in de Sitter space. Meanwhile, it is of practical and fundamental importance to study the 
influence of gravitational effects on the quantum resources, especially when the parties involved are of distances 
apart in the curved space-time13. For instance, it was found in14 that there would be inevitable losses of quantum 
resources in the estimation of the Schwarzschild radius. Furthermore, a quantitative investigation of the dynam-
ics of satellite-based quantum steering and coherence has been presented in15,16, given the curved background 
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space-time of the Earth. Nowadays, it is possible to explore those quantum correlations with quantum discord 
acting as a resource in quantum protocols, as well as the correlations related to the practical implementation of 
many quantum information schemes in relativistic quantum systems, such as, quantum key distribution through 
satellite nodes17 and other quantum information tasks18–23.

In this work, we will quantitatively analyze how the curved space-time of the Earth influence the classical 
and quantum correlations (i.e., the losses of correlations), and furthermore discuss their behaviors under the 
Earth’s gravitational effects. The correlated photon pairs are initially prepared in a two-mode squeezed state, 
one of which is located on the Earth’s surface and the other is propagating to a satellite. Note that in the propa-
gating process, the photons’ wave-packet will be deformed by the curved background space-time and a lossy 
quantum channel can be used to model these deformed effects on the quantum state of photons24. The advantage 
of this work is that the Earth’s gravitational field is described by a lossy channel rather than global free models, 
because the latter suffer from the single-mode approximate problem and physically unfeasible detection in the 
full space-time25. Meanwhile, our results could be in principle applied to all types of correlations affected by the 
acceleration physical system, according to the equivalence principle in which the effects of gravity are exactly 
equivalent to those of acceleration.

This paper is organized as follows. Firstly, we describe the quantum field theory of a massless uncharged 
bosonic field propagating from the Earth to a satellite. Secondly, we briefly introduce the definition of the meas-
urements of mutual information, classical correlation, and quantum correlation (or the quantum discord) for 
a bipartite Gaussian state. Thirdly, we show a scheme to test long-distance quantum discord, based on which 
the behaviors of three types of correlations will be studied in the curved space-time. Throughout the paper we 
employ natural units of G = c = � = 1.

Results
Light wave‑packets propagating in the Earth’s space‑time.  In this section, we will give a brief 
introduction to the propagation of photons under the influence of the Earth’s gravitational field. Considering 
the rotation of the Earth, the space-time considered in this analysis can be approximately described by the Kerr 
metric26 and our work will be performed on the equatorial plane for simplicity. Now the Kerr line element in the 
Boyer-Lindquist coordinate (t, r,φ) is reduced to26

where M and r respectively denote the mass and radius of the rotating planet. The Kerr parameter (i.e., normal-
ized angular momentum) can be expressed as a = J

M , a combination of the planet’s angular momentum (J) and 
mass M.

In order to clearly describe the propagation of wave-packets from a source on Earth to a receiver satel-
lite at a fixed distance, two observers called Alice and Bob are respectively prepared as the reference frames. 
More specifically, focusing on a photon sent from Alice at the time of τA , it will arrive at Bob at the time of 
τB = �τ +

√

f (rB)/f (rA)τA , where f(r) is the gravitational frequency shifting factor and the �τ represents the 
propagation time of the light from Alice to Bob. As is well known, photons can be modeled by the wave packet 
of massless bosonic field with a distribution of F(K)�K ,0

 , where �K is the mode frequency peaked at �K ,0
27,28 and 

K = A,B denotes the mode in Alice’s or Bob’s reference frame. For an observer infinitely far away from Alice or 
Bob, the annihilation operator takes the form of

with the frequency distribution of F(K)(�) . Such operator is naturally applied to modeling a wave packet of the 
electromagnetic field located and propagating in the space-time. Note that when the frequency distribution 
F(K)(�) is normalized (i.e., 

∫

�>0 |F(K)(�)|2 = 1 ), the creation â†�K ,0
 and annihilation â�K ,0 operators will satisfy 

the canonical equal time bosonic commutation relations, ( [â�K ,0(t), â
†
�K ,0

(t)] = 1). 
Now let us consider a realistic case in which Alice (located on the surface of the Earth, rA = rE ) prepares 

and sends a wave packet F(A)�A,0
 to Bob (located on a satellite at the altitude of rB ). Given the effects of the Earth’s 

gravitational field, the wave packet received by Bob ( F(B)�B,0
 ) should be modified, following the relation between 

the frequency distributions of two wave packets9,10. Meanwhile, the gravity of the Earth also changes the mode 
frequency �K with the shift of �A =

√

f (rA)/f (rB)�B , where f (rA)/f (rB) represents the shifting function of total 
gravitational frequency (see more details in the text). Therefore, the total modification induced by the Earth’s 
gravitational field can be parameterized as
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One may clearly see that the effect induced by the curved space-time of the Earth cannot be simply corrected 
by a linear shift of frequency, which indicates the difficulty of compensating such transformation in realistic 
implementations.

Fortunately, following the relation between such nonlinear gravitational effect and the fidelity of the quantum 
channel9,10, it is possible to decompose the mode ā′ received by Bob into

in terms of the mode prepared by Alice ( a′ ) and its orthogonal mode â′⊥ (i.e., [â′, â′†⊥] = 0)29. Here � is the wave 
packet overlap between the distributions F(B)�B,0

(�B) and F(A)�A,0
(�B) , which takes the form of

It is easy to see that � = 1 corresponds to a perfect channel, while � < 1 represents a noisy channel under the 
influence of the Earth’s curved space-time. In order to better characterize the frequency distribution of the source, 
we introduce a specific quantity, i.e., fidelity of F = |�|2 in the following analysis and apply a real normalized 
Gaussian wave packet to Alice’s mode

with the wave packet width of σ . We remark here that in the expression of the overlap parameter � (Eq. (6)), 
the integration will be performed over strictly positive frequencies, which is justified by the fact that the peak 
frequency is typically much larger than the spreading of the wave packet (i.e.,�0 ≫ σ ). The combination of Eqs. 
(4) and (7) provides us with

where the new parameter δ is introduced to quantify the shifting effect

Focusing on the equatorial plane of the Earth described by Kerr metric, the parameter of �B
�A

 may be rewritten as30

Here the normalization constant takes the form of C = [1− 2M
rA

(1+ 2aω)+
(

r2A + a2 − 2Ma2

rA

)

ω2]− 1
2 (with the 

Earth’s equatorial angular velocity ω ) and ǫ = ±1 stands for the direction of the corresponding orbit (i.e., the 
satellite co-rotates with the Earth when ǫ = +1).

Now we will expand Eq. (9) by keeping the first order of the perturbation term (rAω)2 , in order to derive the 
explicit expression of the frequency shift ( δ ) for a photon exchanged between Alice and Bob. Considering the 
independency between the perturbative result and the state of the Earth and the satellite (i.e., whether they are 
co-rotating with each other), one can easily obtain the shift parameter with the following expression

where δSch , δrot , and δh respectively denote the first-order Schwarzschild term, rotation term, and higher-order 
correction term. Note that rS = 2M is the Schwarzschild radius of the Earth, while the parameter h = rB − rA 
quantifies the height difference between Bob and Alice. It should be pointed out that when h = rA

2  , the overlap 
parameter � is no longer equal to one due to the effects induced by the rotation of the Earth. However, when 
the satellite moves at the height of h ≃ rA

2  , the combined effects of the Earth’s gravity and Special Relativity (i.e., 
the Doppler effect generated by the motion of the satellite) will compensate each other ( � = 1 ). Therefore, the 
photon received by Bob at this height will not experience any frequency shift, which implies that the clock rate 
of Bob will become equal to that of Alice.

The influence of Earth’s curved space‑time on three types of correlations.  In this section, we 
propose a scheme to test the classical and quantum correlations at long distance, and furthermore quantify the 
effects of the Earth’s curved space-time on such correlations. In the framework of a pair of entangled photons 
initially prepared in a two-mode squeezed state (with the modes of b1 and b2 on the Earth’s surface), we firstly 
send a photon (with the mode b1 ) to Alice, with the other photon (with the mode b2 ) propagating from the 
Earth to the satellite and then received by Bob. Now the wave packet of photons will be deformed by the curved 
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background space-time of the Earth, based on which the total correlation, classical correlation, and quantum 
correlation (quantum discord) of this system will be investigated in the curved space-time.

Considering the fact that the two modes ( b1 and b2 ) will be received by Alice and Bob at different heights (i.e., 
within different satellite orbits), the effects caused by the curved space-time should be taken into account in the 
total process. As was extensively discussed in9,10, such space-time effects on the two-mode squeezed state can 
be modeled by a beam splitter with the orthogonal modes of b1⊥ and b2⊥ . The covariance matrix of the initial 
two-mode squeezed state is given by

where I4 represents the 4× 4 identity matrix and σ̃ (s) denotes the covariance matrix of the two-mode squeezed 
state

with the Pauli matrix σz and squeezing parameter s. Following the recent analysis of9,10, one can use lossy chan-
nels to model such effects and we only consider Bob’s mode sent to the satellite and Alice’s mode sent to the 
ground, which means that Alice will experience a perfect channel ( �1 = 1 ). Therefore, in our scheme one may 
naturally obtain

and such process can be described by a mixed beam splitting of two modes, b1(b2) and b1⊥(b2⊥) . For the entire 
process, the symplectic transformation may be encoded into the Bogoloiubov transformation

based on which the final state after transformation is defined as �b1b2b1⊥b2⊥ = S�
b1b2b1⊥b2⊥
0 ST . Then one could 

trace over the orthogonal modes ( b1⊥, b2⊥ ) and obtain the covariance matrix �b1b2 for the modes ( b1 and b2 ) 
after propagation

In our analysis, Eq. (14) will be used to characterize the final form of the two-mode squeezed state that suffers 
from the influence of the Earth’s gravity. 

Let’s remark here that a lossy quantum channel determined by the wave packet overlap parameter � (which 
contains the parameters of δ , σ and �B,0 ), could fully describe the effect of the Earth’s curved space-time on 
the quantum state. For a typical case that satellites stay within the geosynchronous satellite orbit, one could 
straightforwardly obtain the shift parameter as δ ∼ 2.5× 10−10 , based on the value of the Schwarzschild radius 
of the Earth ( rS = 9 mm). In addition, we also focus on a typical parametric down converter crystal (PDC) 
source42,43 with a wavelength of 598 nm and Gaussian bandwidth of σ = 1MHz (which corresponds to the peak 
frequency of �B,0 = 500 THz). Given the condition of δ ≪ (

�B,0

σ
)2 ≪ 1 , we can expand the wave packet overlap 

� by keeping the second-order term of the shift parameter, i.e., � ∼ 1− δ2�2
B,0

8σ 2  . In order to ensure the validity of 
perturbation expansion for the Matrix element, we furthermore estimate the value of δ

2�2
B,0

8σ 2 ∼ 3.2× 10−8 , based 
on which one may guarantee the validity of the perturbative expansion with the squeezing parameter s ≪ 7.6 
(which corresponds to sinh2(s) ≪ 106 ). For convenience, the peak frequency and the Gaussian bandwidth are 
respectively rescaled to

with �B,0 = 500 THz and σ0 = 1 MHz. In the following analysis, the dimensionless parameters �̃ and σ̃ will be 
abbreviated as � and σ , respectively.

Summarizing, the effects of the Earth’s curved space-time will quantified by three types of correlations, i.e., 
the total correlation I2 , classical correlation J2 and quantum discord D2 between the two modes of b1 and b2 (see 
the Methods for more details). The behaviors of I2 , J2 and D2 are explicitly shown in in Fig. 1, which illustrates 
the three types of correlations as functions of increasing orbit height h. The Gaussian bandwidth, squeezing 
parameter and frequency of mode b2 are respectively fixed at σ = 1 , s = 1 and �B = 1 . One may clearly see that, 
compared with the classical correlation, the quantum discord will be more easily effected by the Earth’s curved 
space-time. Such tendency has been firstly noted and extensively discussed in the previous works44. Moreover, 
the three type of correlations between mode b1 and b2 have exhibited very similar behaviors, i.e., they all ini-
tially increase for a specific range of height parameter h ≃ rA

2  and then gradually approach to a finite value with 
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increasing h. One possible explanation to such findings lies in the different roles played by gravitational frequency 
shift and special relativistic effects, with the increase of the satellite’s height. More specifically, the photon’s fre-
quency received by the satellites at the height of h < rA

2  will experience blueshift (with increasing correlations), 
while the corresponding frequencies received at the height of h > rA

2  will experience redshift (with decreasing 
correlations). Actually, in the framework of three types of correlations between the photon pairs, the peak values 
of all correlations (i.e., the parameter δ = 0 ) have strongly suggested a detectable frequency transformation from 
blueshift to redshift30. It should be pointed out that the total frequency shift generated by both special and general 
relativistic effects should be taken into account (Eq. (9)), when the two parties are located at the same height or 
in the flat space-time ( δ  = 0)30. In addition, when the satellite is moving at the height of h = rA

2  with vanishing 
Schwarzschild term ( δSch ), photons received on the satellite will generate a tiny frequency shift, in the case of 
which the lowest-order rotation term δrot and higher-order correction term δh should be taken into consideration.
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Figure 1.    Three types of correlations ( I2 , J2 and D2 ) as functions of increasing orbit height h. The Gaussian 
bandwidth, squeezing parameter and frequency of mode b2 are fixed at σ = 1 , s = 1 and �B = 1 , respectively.
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In order to better understand the relations between the three different correlations and the initial squeezing 
parameter, in Fig. 2 we also show the evolution of I2 , J2 and D2 with s, with fixed value for the orbit height at 
geostationary Earth orbits ( h = 3.6× 104 km), the frequency of mode ( b2 = 1 ), and the Gaussian bandwidth 
( σ = 1 ). It is apparent that although all of the three type of correlations will increase with the squeezing param-
eter, the mutual information I2 is much more sensitive to the change of squeezing parameter s, compared with 
the classical correlation and the quantum discord. Similarly, considering the degeneracy between the wave 
packet overlap parameter � and the frequency parameter �B , it is also necessary to investigate the change of I2 , 
J2 and D2 with �B . The results are illustrated in Fig. 3. Besides the general tendency that all types of correlations 
will decrease with the frequency parameter, one could also find that the quantum discord D2 is more sensitive 
to the change of frequency parameter �B . Such conclusion strongly implies the future possibility of choosing 
appropriate parameters to realize quantum communications from the Earth to the satellite.

Finally, with the aim of better quantifying the influence of the Earth’s curved space-time, we will define an 
additional quantity to describe the change rate of three types of correlations

where C = I2, J2,D2 and the subscript 0 denotes its corresponding value at the height of the satellite ( h = 0 ). 
In Fig. 4 we plot the change rate of correlation µC as a function of the height parameter h, with fixed Gaussian 
bandwidth σ = 1 and frequency parameter �B = 1 . The behavior of the µ parameter in three types of correla-
tions has clearly demonstrates the effects of blueshift and redshift at the height of h < rA

2  and h > rA
2  . Therefore, 

our analysis has revealed a special height of h = 2rA (which corresponds to δ = − 1 ) at which the blueshift and 
the redshift effects might cancel out with each other. More interestingly, we find that the changes of correlations 
generated by the total gravitational frequency shift could reach the level of < 0.5% within the satellite’s height 
at geostationary Earth orbits.

Discussion
In conclusion, we have studied the influence of the Earth’s curvature on three types of correlations including 
total correlation (mutual information), classical correlation, and quantum correlation (quantum discord) for a 
two-mode Gaussian state, in which one of the modes is propagating from the ground to a satellite. Different from 
the Schwarzschild case (with no rotation) widely discussed in the previous works, our analysis concentrates on 
a general case that the special relativistic effects are involved and the space-time around the Earth is described 
by the Kerr metric (considering the rotation of the Earth). Our results indicate that all of the three types of 
quantum correlations which initially increase for a specific range of satellite’s orbital altitude, will gradually 
approach a finite value with increasing height of satellite’s orbit (when the special relativistic effects become 
relevant). Meanwhile, our quantitative analysis suggests that although all of correlations will increase with the 
squeezing parameter, the mutual information is more sensitive to the squeezing parameter s, compared with the 
classical correlation and quantum discord. Focusing on the degeneracy between the correlations and frequency 
parameter, our analysis demonstrates the inverse relation between the frequency parameter �B and three types 
of correlations, i.e., a lower peak frequency parameter will lead to less loss. However, one could also perceive that 
the quantum discord is more sensitive to the change of frequency parameter �B than the classical correlation. 
Finally, in the framework of a quantity describing the change rate of three types of correlations, we detect a special 
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4 km, �B = 1 and 
σ = 1 , respectively.
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height ( h = 2rA ) at which the blueshift and redshift effects are offset. More importantly, the changes of correla-
tions generated by the total gravitational frequency shift is determined at the level of < 0.5% within the satellite’s 
height at geostationary Earth orbits. Such findings could provide some interesting possibilities to reduce the loss 
of three types of correlations (especially the quantum discord) through the control of the satellite’s orbital height.

Therefore, with the rapid developments in quantum technology and quantum communication, it is quite pos-
sible to implement quantum tasks between the ground and satellites with the three types of correlations studied 
in this work. Our results could also contribute to the future study of multi-particle quantum states, which should 
be taken into account in the realization of quantum information and communication tasks in multi-particle 
systems. More specifically, when the initial state is taken as multi-particle quantum state, the final state after 
propagation also can be obtained by calculating the covariance matrix. As a final remark, considering the fact 
that realistic quantum systems always exhibit gravitational and relativistic features, our analysis in this paper can 
be extended to the investigation of the dynamics of all types of correlation under the influence of acceleration. 
Such conclusion is supported by the equivalence principle in General Relativity, which states that the effects of 
gravity are exactly equivalent to the effects of acceleration.
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Methods
In the framework of a general two-mode Gaussian state ( ρAB ) including two subsystems (A and B)31, the vec-
tor of the field quadratures R̂ = (x̂A, p̂A, x̂B, p̂B)T satisfies the canonical commutation relations [R̂k , R̂l] = i�kl 
with the symplectic form of � =

( 0 1
−1 0

)

⊕

2
 . Note that all of the Gaussian properties can be determined from the 

symplectic form of the covariance matrix (CM) σij = Tr
[

{R̂i , R̂j}+ ρAB
]

32–35, which is transformed into a standard 
form through the diagonal subblocks

with A = aI ,  B = bI ,  and C = diag{c1, c2} .  The symplectic eigenvalues of σAB are given by 
2ν2∓ = �∓

√

�2 − 4 det σAB , with � = detA+ det B+ 2 detC . See34–38 for more details about the structural 
and formal description of the Gaussian quantum states in the phase space. Now we will briefly introduce the 
definition of the mutual information (or total correlation), classical correlation, and quantum correlation (or 
quantum discord) in the continuous variable case3–5.

Total correlation or mutual information. The mutual information, or a measurement of the total correlations 
in a quantum state, is often used to describe the amount of information included in a quantum state. Instead of 
the von Neumann entropy commonly used in the previous studies, in this analysis we will focus on the Rényi 
entropy of order 2 to quantify all of the relevant quantities with clear and detailed expression, which satisfy the 
strong subadditivity inequality for arbitrary Gaussian states39. Now the total correlation between A and B can 
be quantified by the Rényi entropy mutual information

with the Rényi entropy of S2(σ ) = 1
2 ln(det σ) and a given Gaussian state of σAB.

Classical correlation. As is well known, the one-way classical correlation is always obtained by local measure-
ments. Specially, when the most informative local measurement is performed on subsystem B, we can define 
J2(σA|B) to quantify how much the ignorance about the state of subsystem, i.e., A, is reduced when the most 
informative local measurement is performed on subsystem B.

A is reduced. Based on the newly-introduced Gaussian Rényi-2 measurement of the one-way classical cor-
relation, J2(σA|B) could be interpreted as the maximum decrease in the Rényi-2 entropy of subsystem A, given a 

(17)σAB =
(

A C
CT B

)

,

(18)
I2(σAB) = S2(σA)+ S2(σB)− S2(σAB)

= 1

2
ln
(detA det B

det σAB

)

,
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Figure 4.   The change rate of three types of correlation µC in term of the satellite’s orbital height. The other state 
parameters are fixed at s = 1 , σ = 1 and �B = 1.
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Gaussian measurement performed on subsystem B. Note that the maximization is realized by mapping Gaussian 
states to Gaussian state in the continuous variable system, which generates the expression of J2(σA|B) as

Here �B(η) denotes the Gaussian measurement on subsystem B. One could obtain CM σ̃A through the condi-
tional state of subsystem A ( ρA|η ), after a measurement of �B(η) performed on subsystem B with the outcome of η . 
It’s worth noting that the Gaussian measurements used in this analysis denote Gaussian Positive Operator Valued 
Measurements (POVMs), benefit from its extensive applications in linear optics and homodyne detection40. The 
expression of J2(σB|A) could be straightforwardly obtained by swapping the roles of the two subsystems A ↔ B41.

Quantum correlation or quantum discord. The quantum correlation (or quantum discord) is originated from 
the discrepancy between two classically equivalent definitions of mutual information. As a measurement of the 
quantumness of correlations, its definition based on the Rényi-2 entropy can be expressed as

Similarly, the expression of D2(σB|A) could be straightforwardly obtained by swapping the roles of the two sub-
systems A ↔ B . As a final remark, one can clearly see that the quantum correlation could be explained as the 
difference between the total and classical correlation, based on the definitions of the three types of correlations 
shown above.
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