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Effect of heterogeneity on failure 
of natural rock samples
Taqi Alzaki, Saud Al‑Dughaimi, Arqam Muqtadir, Mohamed E. Kandil & Jack Dvorkin*

A carbonate sample extracted from the depth of about 10 kft was subjected to uniaxial loading while 
the confining stress remained constant. Post-experiment inspection of the sample showed an inclined 
crack at an angle less than 20° to the horizontal. This subhorizontal crack orientation was contrary 
to the expected 45° inclination, the plane of the maximum shear stress. Coincidentally, as shown 
by CT-scan prior to loading, there was a boundary between two layers of different density inside 
the sample located almost exactly where the crack appeared. This density difference has arguably 
translated into the contrast in the elastic properties at the boundary. The hypothesis is that because of 
this elastic heterogeneity, an incipient crack developed at the boundary due to the unavoidable tensile 
stressing of the sample as it was brought to the benchtop from its original state of high confining 
stress at depth. Controlled uniaxial compression made the sample slip along this crack, which then 
developed into a prominent feature. This assumption was corroborated by a numerical experiment 
showing a strong von Mises stress concentration at the elastic contrast boundary during hydrostatic 
tensile loading. Another sample, from the same formation, but without strong density heterogeneity, 
exhibited a classic 45° crack after uniaxial loading. These results provide a novel and important insight 
into the mechanics, breakage, and strength of natural rock.

The predominant mode of the failure of natural rock is fracturing. The amount of past work on this topic is 
massive. Classic papers and monographs1–4 have been followed by a plethora of recent publications describing 
experimental results, both physical and computational. Experiments on artificial layered rock samples5 indicate 
that failure cracks often appear along layer interfaces. Similar results are reported for slate samples6.

A “single plane of weakness” rock failure theory7 based on earlier observations8 refers to an isotropic and 
homogeneous material cut through by a plane with reduced shear strength. Failure under axial load occurs on 
this plane. Later papers, such as9, invoke this theory as well.

By and large, the abovementioned references, together with other numerous publications, experimental 
and theoretical, link rock failure to the presence of meso-scale anisotropy and inhomogeneity in rock samples.

In contrast, for an isotropic and homogeneous rock, classic strength of materials theory gives the following 
expression for the shear stress τ along the plane inclined at angle θ to the horizontal under uniaxial loading where 
the principal vertical stress σ3 exceeds the two equal horizontal stresses σ1 = σ2:

a formula conveniently visualized by the Mohr circle (Fig. 1).
According to Eq. (1), the maximum shear stress occurs on the plane cutting the sample at 45° to the horizon-

tal. However, a carbonate sample under examination subjected to uniaxial loading developed a subhorizontal 
crack inclined at about 20° (Fig. 1c). What could have caused such a counterintuitive behavior?

Tests and results.  Carbonate samples C23 and C8 extracted from a well drilled in a Saudi oil field were 
cleaned and dried in the laboratory. Their dynamic Poisson’s ratio ν and Young’s modulus E were computed from 
the bulk density ρb and the P- and S-wave velocities, Vp and Vs , measured at 30 MPa hydrostatic stress as

and are listed, together with the depth of their original location, in Table 1. 
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Both samples were first hydrostatically loaded to 30 MPa. Afterwards, the vertical stress was gradually 
increased until failure, with the confining stress remaining constant. Finally, after a period of post-failure defor-
mation, the samples were axially unloaded to the initial hydrostatic stress 30 MPa. All tests were performed using 
a load-frame Autolab-1500 supplied by New England Research. The elastic-wave velocities were measured on 
room-dry samples using ultrasonic transducers with 750 kHz central frequency. The axial and radial deformations 
were measured by linear variable differential transformers (LVDT). The results of these tests are shown in Fig. 2.

In both tests, observed was a textbook behavior with almost linearly elastic deformation followed by failure, 
plastic deformation, and elastic unloading. The unloading curves essentially parallel the loading curves. The 
post-yield flow time for C23 was 30 min, while it was 8 min for C8. This explains why the post-yield deformation 
in C23 was about three times that in C8.

First sample: post‑test and pre‑test images.  Post-test CT-scan images (vertical slices of the original 
3D images taken along the central axis) for sample C23 are shown in Fig. 3. The major crack in the lower half 
of the sample is inclined at about 20° to the horizontal and surrounded by minor cracks at the circumference of 
the sample.

Figure 1.   (a) Mohr circle for shear stress τ at an angle θ to the horizontal during vertical loading σ3 with equal 
lateral stresses σ1 = σ2. (b) A schema of uniaxial loading. The arrows show the stress boundary conditions: the 
lateral (confining) stress as denoted by the horizontal arrows is smaller than the axial stress as denoted by the 
vertical arrows. (c) Carbonate sample post uniaxial loading with the subhorizontal crack (black), a 2D vertical 
section taken along the central axis of the 3D CT-scan volume.

Table 1.   Properties of carbonate samples under examination.

Sample Depth (ft) Porosity Permeability (mD) ρb (g/cc) E (GPa) ν

C23 10,179.0 0.1867 3.210 2.220 26.340 0.196

C8 10,118.2 0.1247 0.664 2.363 49.586 0.274

Figure 2.   Stress versus axial deformation for Samples C23 (a) and C8 (b). The radial deformation (dash-dotted 
curves) is negative (thickening), while the axial deformation (solid curves) is positive (shortening).
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The pre-test image (also a vertical slice of the original 3D image taken along the central axis) shown in the 
same figure, exhibits a clear CT-value contrast at the position where the crack later developed. These CT values 
indicate a density and, hence, porosity contrast and, as a result, the elastic moduli contrast with the stiffer part 
of the sample located above its softer part.

Methods
The hypothesis is that an incipient subtle crack developed at the boundary as the sample was brought from its 
natural depth of about 10 kft to the ambient conditions at the benchtop. This crack became the “plane of weak-
ness” along which the sample failed during the experiment.

Indeed, the original confining stress at depth was on the order of 30 to 40 MPa. Upon its extraction, the 
sample was inadvertently subjected to tensile hydrostatic stress as the stress was reduced from its original value 
to zero. As a result, an incipient crack appeared at the boundary inside the sample and then developed into a 
major fracture during the uniaxial loading.

To test this hypothesis, a digital cylindrical sample with a plane boundary cutting it at about 20° to the 
horizontal was created. The Young’s moduli E above and below this discontinuity were assigned 56 and 36 GPa, 
respectively, while the Poisson’s ratio ν was the same 0.3.

The density distribution inside the model was assigned based on the CT-value contrast shown in Fig. 3. The 
total porosity was computed from density and using the mass-balance law by assuming that the mineral is pure 
calcite with density 2.71 g/cc. Finally, this porosity contrast was translated into the elastic-moduli contrast by 
assuming the stiff-rock effective-medium model described in, e.g.,10. This model accurately describes the veloc-
ity–porosity wireline data from the well where the samples were extracted from (see11).

Uniform hydrostatic tension of 30 MPa was applied to this digital object and the von Mises stress

was computed using the finite elements method (FEM). These computations were done using a commercial FEM 
package COMSOL, where the digital model was meshed by triangular elements fine enough to delineate the 
boundary of the elastic contrast and resolve the ensuing stress concentration at this boundary.

The results shown in Fig. 4 indicate a sharp σVM concentration at the boundary between the two domains 
with varying E . This is where the initial crack arguably developed as the sample was lifted from its original depth. 
Notice also the von Mises stress concentration at the circumference of the elastic discontinuity. Their location 
is where the minor cracks surrounding the main crack developed.

The stresses shown in Fig. 4 are in MPa, although any units could be used with the respective stress boundary 
conditions since the simulations were conducted under a linear elasticity assumption.

Of course, the same stresses but with the opposite sign would develop under hydrostatic compression. How-
ever, because rocks are weaker in tension than they are in compression (e.g.,12), still valid is the hypothesis that the 
“plane of weakness” in this sample developed during its extraction from depth, prior to laboratory experiments.

Second sample: post‑test and pre‑test images.  The post- and pre-test images for sample C8 are 
shown in Fig. 5. It also fractured, but unlike in the first sample, the crack is inclined at the textbook 45° to the 
horizontal.

There are also high-porosity darker strips visible in the pre-test image. However, unlike in C23, they are 
oriented at approximately 45° to the horizontal. Once again, an incipient crack might have developed along 
one of these discontinuities during sample recovery. Numerical tests, same as shown in Fig. 4, indicate that no 
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Figure 3.   Vertical slices along the central axis of a 3D CT scan of C23 after the loading experiment shown at 
different image orientations (first two frames) and a pre-test vertical slice of a 3D CT scan of the same sample 
(third frame). The sample is 1 inch in diameter and 2 inches long.
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matter how an elastic property discontinuity is oriented, sharp stress concentration appears along its trajectory 
under hydrostatic tension.

Third sample: post‑test and pre‑test images.  The hypothesis put forward here is further supported 
by the testing and respective pre- and post CT-scan images of the third carbonate sample. During the test, this 
sample’s behavior was qualitatively the same as that of the first two samples as shown in Fig. 2. A 3D CT-scan 
image taken after the test exhibited massive fracturing as shown in a 2D axial slice of the image in Fig. 6 (right). 
The locations of these fractures coincided with CT-intensity heterogeneity apparent in the pre-test image (Fig. 6, 
left). As in the first two samples, this intensity heterogeneity translated into density and elastic moduli heteroge-
neity, hence resulting in von Mises stress concentrations during tensile unloading of the core as it was evacuated 
from its original depth.

Discussion and Conclusion
The effect of structural heterogeneity on crack initiation was discussed in13, where numerical modeling showed 
that the micro-heterogeneity played an important role in controlling both the micromechanical behavior and 
the macroscopic response when subjected to uniaxial compression loading. The crack-initiation stress was found 
to be controlled primarily by the micro-scale geometric heterogeneity. Earlier experimental results (e.g.14) also 
showed that microstructural heterogeneity plays a key role in creating local stress concentrations. Recently15, 

Figure 4.   Von Mises stress distribution inside a digital object created to simulate the carbonate sample with the 
elastic property contrast. Left: 3D display of the stress distribution. Right: a 2D axial slice of the 3D model taken 
along the central axis. The boundary condition at the surface of the sample is uniform (hydrostatic) tension of 
30 MPa.

Figure 5.   CT scan of C8 post-loading (first two images) and pre-loading (third image). The display is the same 
as in Fig. 3. The sample size is also the same as that of C23.
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showed that grain boundary sliding can induce strain and rotation at the respective interfaces. In the new work 
reported here, a sample failure is observed as well, arguably due to tension-induced stress concentration along 
a structural heterogeneity.

It is evident from the CT-scan images in Figs. 3, 5, and 6 that the samples under examination contain relatively 
large vugs. A question arises whether the failure of a sample could have occurred due to the stress concentra-
tion around these features. A visual inspection of the aforementioned images indicates that this is not the case. 
Indeed, the fracturing occurred at the density contrast boundaries rather that at the vugs. To quantitatively assess 
the possibility of fracturing due to stress concentration at the vugs, we present here a simple model of an elastic 
body with isolated, as well as interacting spherical and elliptical vug-like inclusions.

Figure 7 shows that stress concentrations under tension are localized around isolated inclusions as would be 
also evident from classic closed-form solutions16. Where the inclusions interact, once again, stress concentra-
tions are localized around and between the inclusions and are unlikely to produce a plane of weakness cutting 
through the entire sample.

This work followed the classic scientific method: from the observation to a hypothesis to its validation to 
additional testing. Specifically, in trying to understand reasons for the occurrence of a subhorizontal (rather 
than inclined at 45°) crack in a rock sample subject to uniaxial loading, it was noticed that the sample exhibited 
a clearly visible density and structural discontinuity located exactly where the crack appeared. This discontinuity 
most likely translated into an elastic moduli contrast. The hypothesis is that an incipient fracture was generated 
along this discontinuity as the sample was lifted from the depth and unavoidably unloaded during this extraction. 
Later, during loading, the sample failed along this subtle plane of weakness. A numerical experiment confirmed 

Figure 6.   2D vertical slices along the central axis of 3D CT-scans of the third carbonate sample pre- (left) and 
post-testing (right). Arrows are used to point to the density and, as a result, elastic property contrasts in the pre-
test image that developed into fractures clearly visible in the post-test image.

Figure 7.   Von Mises stress distribution inside a digital object created to simulate elastic stresses around 
spherical and elliptical inclusions (vugs) under hydrostatic tension.
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that a strong von Mises stress concentration develops at an elastic property boundary during hydrostatic tension. 
This simulation confirms the hypothesis.

Data availability
The source data for Fig. 2 are available from the authors upon request.
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