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Accuracy assessment of a novel 
semiautomatic method evaluating 
bone grafts around the dental 
implant: an in vitro and ex vivo 
study
Jun‑Yu Shi1,2,3,6, Yuan Li1,2,3,6, Long‑Fei Zhuang4, Xiao Zhang1,2,3, Ling‑Feng Fan5* & 
Hong‑Chang Lai1,2,3*

the present study aimed to evaluate the accuracy and repeatability of morphological contour 
interpolation (Mci)‑based semiautomatic segmentation method for volumetric measurements of 
bone grafts around dental implants. three in vitro (one with a cylinder and two with a geometrically 
complex form) and four ex vivo models (peri‑implant cylinder‑shaped bone defect) were created for 
imitating implant placement with simultaneous guided bone regeneration (GBR) procedure. cone 
beam computerized tomography (cBct) scans of all models were obtained with the same parameters. 
For volumetric measurements, the actual volumes of bone grafts in models were assessed by 
computer‑aided calculation and both manual and Mci‑based methods were utilized as test methods. 
the accuracy of the methods was evaluated by comparing the measured value and the actual volume. 
The repeatability was assessed by calculating the coefficients of variation of repeated measurements. 
For the accuracy of three dimensional (3D) reconstructions, the computer‑designed corresponding 
models were set as the reference and the morphological deviation of 3D surface renderings created 
by two methods were evaluated by comparing with reference. Besides, measurement time was 
recorded and a comparison between the two methods was performed. High accuracy of the Mci‑based 
segmentation method was found with a discrepancy between the measured value and actual value 
never exceeding − 7.5%. The excellent repeatability was shown with coefficients of variation never 
exceeding 1.2%. The MCI‑based method showed less measurement time than the manual method and 
its 3D surface rendering showed a lower deviation from the reference.

The clinical success of implant treatment is strongly associated with adequate bone volume, which allows the 
position of the implant in a biologically accepted and prosthetically driven  location1. Mispositioned implants 
due to insufficient bone volume can lead to esthetic failure. It is reported that 60% of implants need additional 
bone augmentation procedures to achieve good  esthetics2. Guided bone regeneration (GBR) is the most widely 
used and well-documented procedure to augment bone in localized alveolar  defects3–5.

So far histological evaluation is the most accurate method to characterize the fate of grafted bone over 
 time6. However, it cannot be applied in clinical routine and non-invasive methods have been proposed for this 
 purpose7,8. Previous studies have described methods for volumetric assessment of augmented regions included 
optical  scanning9–12 and cone beam computerized tomography (CBCT) image-based  measurement13,14. The main 
limitations of optical scanning are that they only provide information about the lateral contour precluding the 
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analyses of the interior contour, such as the morphology of initial bone defect. And it must be taken into consid-
eration that the accuracy of digital three dimensional (3D) matching procedures is not sufficiently  investigated8.

CBCT is currently considered a well-established adjunctive diagnostic, virtual simulation, and treatment 
planning tool with various clinical applications in implant  dentistry15. Linear measurements of the thickness of 
grafted facial bone wall around dental implants in cross-sectional images of CBCT are performed in most clinical 
studies. It is recommended, however, that the measurements should not be limited to the assessment based on 
the 3D volume in the entire region of  interest8.

For isolation of region of interest in CBCT imaging, conventional manual segmentation method has been 
widely used to perform 3D measurements of grafted bone  volume13,14,16. Although manually created segmentation 
is currently considered as the gold standard, this segmentation process can be very time-consuming and arduous 
which may not be clinically applicable. Moreover, the presence of metal artifacts in CBCT images, which are 
caused by titanium implants or metal-ceramic crowns, may influence the accuracy of the segmentation process.

To overcome the limitations regarding accuracy and efficiency, a novel morphology-based approach for the 
inter-slice interpolation of CBCT or CT datasets has been introduced to reduce the need for repetitive tracing. 
It has been proven to be highly reliable and accurate to reconstruct synthetic contours as well as anatomical 
 structures17. In our previous  study18, 3D surface reconstruction derived from CBCT with manual isolation and 
MCI algorithm has been used for volumetric evaluation of grafted bone volume changes in patients receiving 
implant placement and simultaneous GBR in the esthetic zone. However, the accuracy of this method warrants 
further research.

Therefore, the aims of this study were (1) to evaluate the accuracy and repeatability of the MCI-based semi-
automatic method for volumetric measurements of models imitating implant placement with simultaneous GBR 
(2) to examine the accuracy of created 3D reconstruction models and the execution time.

Results
For the cylindrical model (R) and geometrically complex models (S1/S2), the volume representing the control 
values were computer calculated and listed in Table 1. The errors between the computer calculation and the result 
of the fabrication were also presented in Table 1.

Repeatability. Different placement angles had no significant impact on the volumetric measurements with 
two segmentation methods (P > 0.05) (Fig. 1). Therefore, measured volumetric data of bone grafts in each model 
mounted on different supporting plates with two test methods were merged and means, minimum and maxi-
mum values of the volume measurements were shown in Table 2. The coefficients of variation representing the 
repeatability of the MCI-based segmentation method showed low values of 0.67% and 1.12% for S1, S2 model, 
and 0.65% for the R model. The corresponding values of the manual method showed high values of 0.95% and 
3.65% for S1, S2, and 3.23% for R.

As for the ex vivo models, the mean, minimum, and maximum values of the volume measurements obtained 
by the two test methods were shown in Table 3. The coefficients of variation representing the repeatability of the 
MCI-based segmentation method showed low values ranging from 0.93% to 1.21%. The corresponding values 
of the manual method showed high values ranging from 1.29 to 3.30%.

Accuracy. The accuracy of the measured volumes using the MCI-based method compared with the control 
values was high and well below clinical significance (Tables 4, 5). For in vitro models, the highest systematic 
error of the manual and semiautomatic methods reached − 96.56  mm3 and − 40.26  mm3 for R, respectively. The 
relative systematic error ranged from − 7.23% (S2) to 1.09% (S1) for the MCI-based method and from − 16.73% 
(S2) to − 6.99% (S1) for the manual method. For ex vivo models, the highest systematic error of the manual 
and MCI-based methods reached − 4.91  mm3  (BD5 mm−3) and − 1.32  mm3  (BD6 mm−1.5), respectively. The rela-
tive systematic error ranged from 0.07% ( BD5 mm−1.5 ) to − 0.93%  (BD6 mm−1.5) for the MCI-based method and 
from − 2.60%  (BD6 mm−3) to − 5.00%  (BD5 mm−3) for the manual method.

Morphological evaluation. Figures 2c and 3c showed the morphological differences between the 3D sur-
face renderings of bone grafts created by the two segmentation methods and corresponding reference models. 
The results showed that the 3D surface renderings of bone grafts obtained by the MCI-based segmentation 
method had a lower deviation from the reference.

Table 1.  The designed volume of bone grafts filled in vitro models and maximum differences between the 
true volume and the calculated volume, expressed in volume percent, resulting from the imprecision of the 
fabrication process.

R S1 S2

Volume 928.44 954.77 404.82

Error of fabrication (%)  ± 0.24  ± 0.31  ± 0.4
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Figure 1.  Boxplot of volume measurements of bone grafts filled in models S1–2 and R mounted on supporting 
plates with different angles using (a) MCI-based semiautomatic segmentation method and (b) manual 
segmentation method. One-way repeated measures ANOVA showed no statistically significant difference in 
volume measurement of the same model at different placement angles (P > 0.05).

Table 2.  Merged data of volume  (mm3) measurements of bone grafts filled in vitro models positioned on 
different supporting plates.

MCI-based Manual

S2 S1 R S2 S1 R

Mean 375.55 965.16 888.18 337.11 888.06 831.88

Standard deviation 4.21 6.42 5.79 12.32 8.48 26.86

Minimum 370.78 955.93 879.66 322.17 875.39 780.72

Maximum 381.67 976.19 891.99 354.17 898.18 870.96

Coefficient of variation (%) 1.12 0.67 0.65 3.65 0.95 3.23

Table 3.  Volume  (mm3) measurements of bone grafts filled in ex vivo models using the test measurements.

MCI-based Manual

BD5 mm−1.5 BD5 mm−3 BD6 mm−1.5 BD6 mm−3 BD5 mm−1.5 BD5 mm− BD6 mm−1.5 BD6 mm−3

Mean 98.20 97.68 139.98 140.09 94.08 93.22 136.96 137.63

Standard deviation 1.10 0.91 1.52 1.70 2.47 3.08 1.76 2.08

Minimum 96.78 96.18 138.16 138.61 90.76 88.89 134.90 135.27

Maximum 99.79 98.64 141.53 142.65 96.48 97.24 139.45 140.84

Coefficient of variation (%) 1.12 0.93 1.09 1.21 2.63 3.30 1.29 1.51

Table 4.  Differences in volume measurements  (mm3) of the model R and S1–2 using the test and the control 
measurements. The systematic error of the test method is given in cubic millimeters and percent.

MCI-based Manual

S2 S1 R S2 S1 R

Mean of control method 404.82 954.77 928.44 404.82 954.77 928.44

Mean of test method 375.55 965.16 888.18 337.11 888.06 831.88

Systematic error  − 29.27 10.39  − 40.26  − 67.71  − 66.71  − 96.56

Relative systematic error (%)  − 7.23 1.09  − 4.34  − 16.73  − 6.99  − 10.40
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execution time. Figure 4 showed the time consumed by the two segmentation methods for the measure-
ments of bone grafts volume. The results indicated that the time for measurement with the MCI-based segmen-
tation method was significantly less than that of the manual segmentation method (P < 0.001).

Discussion
The present study aimed to test the MCI-based semiautomatic method with a manual method for the volumetric 
measurements of bone grafts around the implant. The computer-assistant calculation for the volume of space 
inside models for filling bone grafts was set as a reference in this study. The results demonstrated the investigated 
MCI-based method was more accurate than the manual method for volumetric measurement of bone grafts 
around the implant as shown by the smaller differences between the measured and actual volume for all models. 
Additionally, excellent repeatability of the MCI-based method was observed as shown by the lower coefficients 
of variation compared with the manual method for all models.

Table 5.  Differences in volume measurements  (mm3) of ex vivo models using the test and the control 
measurement. The systematic error of the test method is given in cubic millimeters and percent.

MCI-based Manual

BD5 mm−1.5 BD5 mm−3 BD6 mm−1.5 BD6 mm−3 BD5 mm−1.5 BD5 mm−3 BD6 mm−1.5 BD6 mm−3

Mean of control method 98.13 98.13 141.30 141.30 98.13 98.13 141.30 141.30

Mean of test method 98.20 97.68 139.98 140.09 94.08 93.22 136.96 137.63

Systematic error 0.07  − 0.45  − 1.32  − 1.21  − 4.05  − 4.91  − 4.34  − 3.67

Relative systematic error (%) 0.07  − 0.46  − 0.93  − 0.86  − 4.13  − 5.00  − 3.07  − 2.60

Figure 2.  (a) Three 3D printed models exhibiting concentric cylinder geometry (R) and complex geometrical 
forms (S1/S2) imitating implant placement with simultaneous GBR procedure. (b) CBCT images of three 
models placed on three different auxiliary appliances. (c) 3D color map showing morphological deviation 
between the reference model and the 3D surface renderings using manual and MCI-based segmentation.

Figure 3.  (a) Occlusal view of a cylindrical peri-implant bone defect. (b) CBCT images with the volumetric 
measurements of the 5 mm height of bone grafts in the augmented regions. (c) 3D color map showing 
morphological deviation between the 5 mm height of the ideal cylinder and the 3D surface renderings using 
manual and MCI-based segmentation.
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The small differences between measured and actual volume in all models showed the MCI-based method 
(lower relative systematic error for every model) was more accurate than the manual method. The reason for 
improving the accuracy of volumetric measurement was that the MCI algorithm could avoid the delineation 
of grafted bone on every slice and error accumulation of manual segmentation in slices with serious artifacts 
interference.

It was worth mentioning that a higher relative systematic error of volume measurement was found in the S2 
model compared with R and S1 (S2: − 7.23%/− 16.73%, S1: 1.09%/− 6.99%, R: − 4.34%/− 10.40% for MCI-based 
and manual method, respectively ) using two methods. Owing to the concave feature of S2, the extent to which 
artifacts interfered with the outer boundary of bone grafts in S2 may be larger than that of the other two models. 
For ex vivo models, the regular cylinder model was chosen in this study because it was difficult to create complex 
geometric structures in ex vivo for measurements. Lower relative systematic errors were found for volumetric 
measurements of ex vivo models than in vitro models. Easy segmentation of cylinder form may be the reason.

The coefficients of variation for measurements in all models showed better repeatability of MCI-based 
(< 1.2%) than that of a manual method (0.95–3.65%). The results indicated the superior applicability of the 
MCI-based segmentation method and this was by the findings in our previous  study18. The stability of the MCI 
algorithm may account for the improved repeatability of measurements.

As for the morphological evaluation of reconstructed 3D surface renderings and time management, 3D 
surface renderings of bone grafts obtained by the MCI-based method showed lower morphological deviation 
from reference models. This result suggested that the morphology of interpolated sequences generated by itera-
tion MCI algorithm was indeed similar to the input slices without obvious oversize or undersize slices. Due to 
the reduction of the manual segmentation process, the MCI-based method took less time to measure compared 
with the manual method.

To the best of our knowledge, the semiautomatic method proposed in this study for volumetric measurements 
of bone grafts around the implant is quite different from semiautomatic segmentation methods mentioned in 
previous studies. Many semiautomatic segmentation methods have been proposed in the literature. These meth-
ods essentially concentrate on the region of interest segmentation on every slice and few are superior to manual 
 segmentation19 in CBCT images without artifacts interference. It is reasonable to assume that the manual segmen-
tation method will be more accurate than other semiautomatic methods in CBCT images affected by artifacts.

It should be noted that the MCI algorithm does not attempt to improve the quality of CBCT images, and 
the operation of our semiautomatic method is completely based on the existing CBCT. Many image-modifying 
algorithms like metal artifacts reduction algorithms and methods for altering the image capture process have 
been developed to reduce artifacts involved in CBCT  imaging8. However, artifacts that were inherent in the CBCT 
images cannot be thoroughly eliminated and the effect of these methods was controversial.

According to the results, the clinical application of the MCI-based segmentation method is very promising. 
It could provide the possibility to assess the influence factors of GBR outcome by evaluating 3D alteration of 
bone grafts at different follow-up time points. As a non-invasive method, future investigations could examine 
the correlation between initial grafting contour and GBR radiological outcomes and further provide an explicit 
standard on how much contouring is needed for GBR procedures.

Some limitations should be identified in the present study. Firstly, the conclusion was based on results using 
in vitro setup. Blood clot formation could not be reproduced in such an in vitro setup. Besides, the accuracy of 
the MCI-based method depends strongly on how well the region of interest is shown in the CBCT images and 
it is not suitable in cases of strongly distorted images. If CBCT images are distorted severely, a slice that is less 
affected by the metal artifact within 4–5 slices cannot be found and the accuracy will be affected.

Figure 4.  Box-and-scatter plot of the time it took to measure the volume of bone grafts in models with manual 
and MCI-based segmentation. Each data point represents one measurement. Manual segmentation took a 
significantly longer time than MCI-based segmentation.
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Methods
in vitro model. Three customized models (1 standard model and 2 models derived from clinical cases) for 
assessing bone grafts volume were fabricated for imitating surgical implant placement with simultaneous GBR 
procedure.

One model (R) was manufactured with simple concentric cylinder geometry (Fig. 2a). Within the cylinder, 
two hollow cylinders were designed to contain dental implant and bone grafts, respectively. A cover with a loop-
ing structure was manufactured to provide a protective layer for the entrance and control the volume of bone 
grafts in the cylinder. The clinical situation was simulated by placing an implant into the inner cylinder and 
filling the intact outer cylinder with bone grafts under the cover. The size of the outer cylinder for filling with 
bone grafts was 928.44  mm3 (rounded to two digits after comma).

Two models (S1/S2) exhibiting complex geometrical forms were created to mimic the clinical situation of 
implant placement with a simultaneous GBR procedure (Fig. 2a). These models were mathematically designed 
based on CBCT data from two patients receiving GBR treatment in the maxillary anterior region. The form with 
a curved structure was designed to imitate alveolar bone and a hollow cylinder in it was utilized to contain an 
implant. The volume of irregular structure for bone grafts filling was as 954.77 and 404.82  mm3 (S1/S2).

All implants placed in R, S1, and S2 were Straumann Standard Plus SLA implants with 4.1 mm diameter and 
10 mm length (Institut Straumann AG, Waldenburg, Switzerland). Local bone augmentation space was filled 
with deproteinized bovine bone particles (Bio-Oss, 0.25–0.5 mg, Geistlich Biomaterials, Wolhusen, Switzerland).

For R, S1, and S2, auxiliary supporting plates were fabricated to simulate the spatial position of the dental 
implant when taking CBCT in clinical practice. Three different angles of bevels on the auxiliary supporting 
plates range from 15° to 35° (A1–3, B1–3). For CBCT scans, R1 was positioned on A1–3, while S1 and S2 were 
positioned on B1–3 (Fig. 2b). Therefore, each model was scanned three times.

ex vivo model. Two fresh porcine mandibles were sectioned by using a handsaw in a vertical direction 
to produce four bone sections. This was done to reduce the model size to facilitate implant insertion and GBR 
procedure. A crestal incision in the lower border of mandible was made and a full thickness mucoperiosteal flap 
was raised. The implant sites were prepared according to manufacturing instructions. The implants used were 
bone level implants (Alpha-Bio Tec, SPI, 3.3 × 10 mm, Petach Tikwa, Israel). Two types of implants were used 
in vitro and ex vivo models with an attempt to mimic the clinical situation of different types of implant place-
ment with simultaneous GBR. As for the GBR procedure, two trephines with an internal diameter of 4.0/5.0 mm 
and an external diameter of 5.0/6.0 mm were used to initiate a cut to a depth of 8 mm as measured from the bone 
crest to create a cylinder of bone 1.5 or 3 mm mesially away from the implant site. The entire core was gently 
loosened and removed (Fig. 3a). Thus, four peri-implant cylinder-shaped bone defects were created:  BD5 mm−1.5, 
 BD5 mm−3,  BD6 mm−1.5,  BD6 mm−3. Each bone defect was augmented with demineralized bovine bone mineral (Bio-
Oss, 0.25–0.5 mg, Geistlich Biomaterials, Wolhusen, Switzerland) and covered with collagen membrane (Bio-
Gide, Geistlich AG, Wolhusen, Switzerland). Then mucoperiosteal flaps were repositioned and sutured.

The volume of interest was set as the middle part of the bone graft (5 mm). The 1 mm in the top and 2 mm 
in the bottom were excluded to avoid the unsmooth interface (Fig. 3b).

cBct scanning. All scans were performed using the CBCT machine (i-CAT Cone Beam Computed 
Tomography machine, USA). The datasets were obtained with a voxel resolution of 0.25 mm, a field of view 
(16 cm diameter/13 cm height), a tube voltage of 120 kV and a tube current of 5 mA. The data sets were exported 
in digital imaging and communications in medicine (DICOM) format.

cBct image‑based volumetric measurement of bone grafts. In this study, manual and MCI-based 
segmentation methods were used to perform volumetric measurements and 3D reconstruction of bone grafts in 
models. The acquired CBCT DICOM datasets were imported into Medraw software (Image Medraw Technology 
Co., Ltd, Shanghai, China) for segmentation, iteration of MCI algorithm, 3D surface renderings reconstruction, 
and subsequent volume analysis of bone grafts. All measurements were performed by two doctors who had 
learned how to operate the software, and the mean value was recorded. Five repeated measurements of each 
CBCT image were performed using two different segmentation methods, respectively.

In the conventional manual segmentation method, bone grafts could be demarcated from models by density 
and structure. Each slice was displayed on computer monitor and drawing function was used to trace manually 
the perimeters of the bone grafts area on each coronal or sagittal section.

In the semiautomatic segmentation method, it mainly involved two steps as described in our previous  study18. 
Briefly, perimeters of the grafted bone area were manually traced on coronal or sagittal slices without or with 
few artifacts’ interferences. Manually segmented slices were selected as the input slice of the MCI algorithm. 
Afterward, the iteration of the MCI process automatically computed a transition sequence between a pair of 
corresponding input slices which could gradually transform the shapes and elements equally similar to the input 
slices were selected. The schematic diagram of the MCI algorithm was shown in Fig. 5. After the segmentation 
procedure, the 3D surface rendering of bone grafts could be visualized in a separate 3D visualization window. 
The measurements of grafted bone volume were calculated by the built-in analysis module from segmented data.

outcomes
Volumetric measurement. Repeatability. The repeatability of the test method was assessed by calculat-
ing the coefficients of variation of the repeated measurements for each model.
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Accuracy. The actual volumes of bone grafts filled in vitro models (R, S1/S2) were assessed by combining the 
computer-aided calculation and the precision of the Lite600 3D printer (0.01 mm in linear dimension) (Union-
Tech stereolithography).

The actual volumes of bone grafts filled in ex vivo models were considered as the volume of a cylinder with 
5 or 6 mm in diameter and 5 mm in height.

The computer-calculated volume values of bone grafts in vitro and ex vivo models served as a control, whereas 
the manual and semiautomatic segmentation methods represented the test measurements.

Morphological evaluation of 3D surface rendering. Point-based registration was used to evaluate 
the accuracy of 3D surface renderings created by the two segmentation methods. Medraw software was used 
to measure the 3D deviation of the registered models for each reference point group on standard tessellation 
language (STL) files obtained from the CBCT scans. STL files of the computer-generated corresponding models 
were regarded as the reference and the 3D surface renderings obtained from two segmentation methods again 
served as the test.

execution time evaluation. The time needed to determine measurements for the two test methods was 
recorded and the comparison was performed.

Statistical analysis
All analyses were performed with a standard statistical software package (SPSS version 21, Chicago, IL). Mean 
values and standard deviations were calculated.

The repeatability of the test method was evaluated by calculating the coefficients of variation of the repeated 
measurements for each model.

The accuracy of the test method was calculated by comparing the mean values of the test with the actual 
values. The difference between these values was presented as the systematic error of the test method. The relative 
systematic error of the test measurements was calculated by dividing the systematic error of the test measure-
ments by the control values multiplied by 100.

One-way repeated-measures ANOVA was used to analyze the mean measured volume of R, S1, and S3 
mounted on different supporting plates, and paired student’s t-test was used to assess the execution time of two 
segmentation methods. The level of significance was set at 5%.

Received: 2 February 2020; Accepted: 18 August 2020

Figure 5.  One iteration in the proposed morphological contour interpolation.
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