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imaging reconstruction comparison 
of different ghost imaging 
algorithms
Hong‑Chao Liu

As an indirect and computational imaging approach, imaging reconstruction efficiency is critical 
for ghost imaging (GI). Here, we compare different GI algorithms, including logarithmic GI and 
exponential GI we proposed, by numerically analysing their imaging reconstruction efficiency and 
error tolerance. Simulation results show that compressive GI algorithm has the highest reconstruction 
efficiency due to its global optimization property. Error tolerance studies further manifest that 
compressive GI and exponential GI are sensitive to the error ratio. By replacing the bucket input of 
compressive GI with different bucket object signal functions, we integrate compressive GI with other 
GI algorithms and discuss their imaging efficiency. With the combination between the differential GI 
(or normalized GI) and compressive GI, both reconstruction efficiency and error tolerance will present 
the best performance. Moreover, an optical encryption is proposed by combining logarithmic GI, 
exponential GI and compressive GI, which can enhance the encryption security based on GI principle.

As an indirect imaging technique, ghost imaging (GI) obtains the object image from the correlation of light 
intensity fluctuation correlation. Usually, two beams are required in the GI process: One, called object beam, 
interacts with object and is bucket detected by a single-pixel camera; the other, called reference beam, carries 
no object information and is detected by a spatially resolved multi-pixel detector. Since the first GI experiment 
was reported in  19951, GI attracted considerable research  interests2–21 both in fundamental physics, such as the 
EPR paradox  study7, and practical applications, such as turbulence-free  detection8,10 and medical  imaging16–18. 
Nevertheless, the correlation measurement of GI always requires lots of integration time, which is the bottle-
neck blocking its wide applications. In order to enhance the imaging efficiency and quality, different GI recon-
struction algorithms were proposed, including high-order ghost imaging (HGI)22–26, differential ghost imaging 
(DGI)27, normalized ghost imaging (NGI)28, compressive ghost imaging (CGI)29, etc. As these GI algorithms 
have completely different definitions, a comparison is necessary to demonstrate their performance in imaging 
reconstruction. Moreover, a combination between different GI algorithms is lack of investigation so far, least of 
all for relevant potential applications.

In this work, we compare imaging reconstruction efficiency and error tolerance of six representative GI 
algorithms, together with logarithmic GI and exponential GI we  proposed30. Numerical simulations show that 
compressive GI algorithm takes a great advantage in the imaging reconstruction process due to its global optimi-
zation property. Moreover, error tolerance studies manifest that compressive GI and exponential GI are sensitive 
to the error ratio. By further replacing the bucket input of compressive GI with different bucket object signal 
functions, we combine compressive GI with other seven GI algorithms and discuss their imaging efficiency. 
With a combination of differential GI (or normalized GI) and compressive GI, a high reconstruction efficiency 
and error tolerance algorithm can be achieved. In addition, by combining logarithmic GI, exponential GI and 
compressive GI, we propose an optical encryption which can enhance the security in the encryption process.

Results
Comparison of imaging efficiency of different ghost imaging algorithms.  Figure 1(a,b) show the 
schematic setup of traditional two-detector GI and computational GI, respectively. In traditional two-detector 
GI, the illuminating patterns from the source are passive ones which are always random and non-deterministic. 
In computational GI, the illuminating patterns are computer-generated where deterministic patterns become 
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 possible9,14,31,32. By calculating the correlation between the bucket object signals and illuminating patterns, the 
ghost image can be reconstructed. Reconstruction algorithms and illuminating patterns are two main factors 
give significant impacts on GI efficiency. Compared with the random patterns, different deterministic patterns 
(e.g.,  Hadamard33–35 and  Fourier36 patterns) have been proposed and demonstrated their advantages in compu-
tational GI configuration with a low sampling ratio due to their characteristic (e.g., orthogonality). Nevertheless, 
the advantages of deterministic patterns are always accompanied by some limitations (e.g., the inapplicabil-
ity in passive illumination cases, the size limitation of Hadamard matrix and the order effect of Hadamard 
 patterns34,35), which complicates the pattern effect on GI efficiency. For simplicity and without loss of generality, 
we here choose random patterns to focus on the study of GI algorithm effect. Eight different GI algorithms are 
compared below, and their definitions can be found in the Method Section.

Figure 2 shows the reconstructed ghost images with different GI algorithms in simulations. A grayscaled 
Baboon picture ( 101× 101 pixels) acts as the imaging object, as shown in Fig. 2(a). In the simulation, we set 
p = 50 and q = 1 in HGI algorithm, because a large p and a small q will largely increase the image visibility and 
suppress the noise  level25,26. For both LGI and EGI algorithms, we set base A,B = 10 and constant C = 1 in the 
simulation. The measurement number N is 10,000 for all algorithms in the simulations. Peak signal-to-noise 
ratio (PSNR) is applied here to evaluate the image quality below, which is defined as
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Figure 1.  Schematic setup of (a) traditional two-detector ghost imaging and (b) computational ghost imaging.
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Figure 2.  Simulated ghost images with different algorithms: (a) Object, (b) ghost imaging with DC 
background, (c) high-order ghost imaging, (d) ghost imaging without DC background, (e) logarithmic ghost 
imaging, (f) exponential ghost imaging, (g) differential ghost imaging, (h) normalized ghost imaging, (i)–(o) 
compressive ghost imaging with different bucket object signal function F(Ioi) in (b)–(h), respectively. The 
measurement number N = 10000 for all algorithms.
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where MAX=255 is the maximum possible pixel value of the image. MSE is the mean square error, read by 
1

m× n

∑

i,j

[

Tre(xi , yj)− T(xi , yj)
]2 , where Tre(xi , yj) and T(xi , yj) are the pixel values of the recovered image 

and the object, respectively.
Figure 2(b–i) show a comparison of eight different GI algorithms introduced above. Simulation results mani-

fest that GI with DC component and HGI algorithms provide no object information, indicating that neither 
of them can overcome the Nyquist limit ( N = 101× 101 ). A little improvement is achieved when one chooses 
the GI algorithm without DC component or LGI algorithm as shown in Fig. 2(d,e). Although EGI offers a bet-
ter performance than former four algorithms, it fails to present a clear image structure as DGI and NGI do in 
Fig. 2(g,h). With a great advantage of the global optimization, CGI in Fig. 2(i) recovers nearly all details of the 
object image within the Nyquist limit. To clearly demonstrate the recovery efficiency of different GI algorithms, 
Fig. 3 is plotted with a grayscaled boat picture ( 101× 101 pixels) acting as the object. PSNR values show that 
CGI can recover an image with the quality comparable to the ones of DGI and NGI by performing one order 
less measurements. Meanwhile, DGI and NGI take an advantage over the EGI, LGI and GI without DC compo-
nent algorithms. GI with DC component and HGI algorithms conduct the simplest calculations in the imaging 
process, nevertheless, at the expense of the lowest imaging efficiency.

Because CGI has its unique merit in the imaging reconstruction calculation as demonstrated above, we fur-
ther apply different F(Ioi) in other algorithms to replace the bucket object signal Ioi of the CGI as the input, and 
discuss their imaging efficiency. Figure 2(i–o) show a comparison of CGI with seven different bucket object signal 
functions F(Ioi) . One can see that CGI with F(Ioi) = Ioi and F(Ioi) = Ioi − Xi�Io�/�X� take exactly the same 
PSNR values as shown in Fig. 2(i) and Fig. 2(n). More generally, one can prove that when F(Ioi) = c1Ioi + c2Xi 
( c1 and c2 are constant, c1  = 0 ), CGI calculation will provide the same PSNR value as the one with F(Ioi) = Ioi , 
indicating that the bucket reference signal Xi brings no effect on the orthogonal matching pursuit method applied 
in the CGI simulations. Meanwhile, as shown in Fig. 2(o), CGI with F(Ioi) = Ioi/Xi − �Io�/�X� can also achieve 
a high imaging efficiency comparable to the DGI and GI with DC cases in Fig. 2(i) and Fig. 2(n). In addition, 
CGI with bucket object signal of HGI, GI without DC component and LGI, show low recovery efficiencies, but 
EGI offers a medium imaging quality, as shown in Fig. 2(j–m). In order to quantitatively estimate the efficiency of 
CGI with different bucket object signal functions, Fig. 4 is plotted. A grayscaled peppers picture ( 51× 51 pixels) 
plays the role of object. As can be seen, CGI with bucket object signal functions of DGI, NGI and GI with DC 
component always achieve a high imaging efficiency, in comparison to the medium efficiency of CGI (EGI) case 
and other three low efficiency cases, which is consistent with the results in Fig. 2.

In addition, it should be mentioned that, in the definition of Eq. (3), the DC component of the reference 
beam is sometimes removed together with the DC component of the object  beam27,28, leading Eq. (3) into the 
expression as G(2) = (1/N)

∑N
i=1(Ioi − �Io�)(Ii(x, y)− �X�) . With this definition, the imaging efficiency of GI 

without DC component algorithm will keep unchanged. However, the efficiency of CGI (GI without DC) case 
will be improved as high as the one of CGI (GI with DC) case.
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Figure 3.  Comparison of different ghost imaging algorithms in simulations. The inset grayscaled boat picture 
( 101× 101 pixels) acts as the object.
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Comparison of error tolerance of different ghost  imaging algorithms.  To further compare the 
reconstruction efficiency, the error tolerance of different GI algorithms are discussed below. We here introduce 
the error by messing up the order i of reference signals (or random matrix Mm×n

i  ). In Fig. 5, one can see that CGI 
(GI with DC) algorithm shows a dramatic decrease as the error ratio increases although it has the highest recov-
ery efficiency with no error. When the error ratio is greater than 10% , the imaging quality of CGI (GI with DC) 
is lower than DGI and NGI algorithms. As the error ratio increases more than 30% , the imaging quality of CGI 
(GI with DC) becomes comparable to the ones of GI without DC component and LGI algorithms. It implies that 
a global optimization algorithm is sensitive to the error. More sensitive than the CGI (GI with DC) algorithm, 
EGI fails to recover the image information even with 5 % error ratio, as shown in Fig. 5. This might be caused by 
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Figure 4.  Comparison of compressive ghost imaging with different bucket object signal function F(Ioi) in 
simulations. The inset grayscaled peppers picture ( 51× 51 pixels) acts as the object.
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Figure 5.  Comparison of error tolerance of different ghost imaging algorithms in simulations. The inset 
grayscaled boat picture ( 51× 51 pixels) acts as the object. The measurement number N is 15,000.
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its divergence reconstruction calculations, that is, the exponential function will largely amplify the input errors. 
By contrast, all other algorithms exhibit nearly linear decrease as the error ratio increases, as shown in Fig. 5.

Moreover, the error tolerance of CGI algorithm with different bucket object signal function F(Ioi) are studied 
in simulations. In Fig. 6, three cases, i.e., CGI (GI with DC), CGI (DGI) and CGI (NGI), have similar PSNR values 
when error ratio is 0 % . Nevertheless, the recovery efficiency of CGI (GI with DC) decreases much faster than the 
other two cases. Interestingly, although both CGI (GI with DC) and EGI are extremely sensitive to the error as 
discussed in Fig. 5, the combination of them, i.e., CGI (EGI) are more robust than the CGI (GI with DC) case. 
When the error ratio is greater than 10% , the imaging quality of CGI (EGI) becomes higher than the CGI (GI 
with DC) case. The solid and dash lines in Fig. 6 show the DGI and EGI algorithms, respectively. Comparison 
manifests that both DGI and NGI have better performance than other algorithms except CGI (DGI) and CGI 
(NGI), when taking the error into consideration. Therefore, CGI (DGI) and CGI (NGI) are two best choices for 
GI reconstruction whatever error level it is.

Optical  encryption  scheme  based  on  the  combination  of  different  ghost  imaging  algo-
rithms.  The imaging principle of GI offered an optical encryption  scheme9, where the bucket object signals 
of target information were viewed as the ciphertext and random matrices played the role of keys. Based on this 
scheme, different optical encryption methods were developed, such as gray-scale and color image  encryption37, 
multiple-image  encryption38, metasurface-based  encryption39, specific phase masks  encryption40, symmetric-
asymmetric  cryptography41, etc. Different from above methods, we here propose an optical encryption scheme 
based on the combination of different GI algorithms, where the bucket object signals of GI are re-encoded into 
different bucket object signal functions as the ciphertext. The combinations of different bucket object signal 
functions and their relevant parameters (e.g., base value of LGI and EGI) will protect the GI information against 
the eavesdropper.

The encryption scheme is shown in Fig. 7. Suppose Alice plans to send a baboon picture ( 51× 51 pixels) to 
Bob. By employing the computational GI experimental setup, Alice encodes the picture into a series of numbers 
F1(Ioi) = Ioi . Using the shared dictionary, i.e., the random matrices {Mm×n} , Bob therefore can recover the 
information by using any GI algorithms, as shown in Fig. 7. Assuming there is an eavesdropper who has stolen the 
shared dictionary {Mm×n} together with the number series F1(Ioi) = Ioi . Obviously, the eavesdropper can easily 
decode the information by using the most-efficient algorithm CGI. In order to ensure Bob be able to obtain the 
picture and simultaneously keep the information safe, a combination of different GI algorithms is a good option. 
Here, Alice can choose LGI and EGI to improve the security. As shown in Fig. 7, Alice encodes the number series 
into the form of F2(Ioi) = logB(C · Ioi/X) . After receiving the message from Alice, Bob can apply BBF2(Ioi ) to the 
CGI algorithm to decode the picture. Without knowing the combination form of F2(Ioi) , the eavesdropper is 
unable to decrypt the information even he (or she) steals all shared dictionary and number series by using the 
CGI or other reconstruction algorithm, as shown in Fig. 7. Therefore, a combination of different GI algorithms 
can provide additional security lock to the optical encryption process.
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Figure 6.  Comparison of error tolerance of compressive ghost imaging with different bucket object signal 
function F(Ioi) in simulations. The inset grayscaled peppers picture ( 51× 51 pixels) acts as the object. The 
measurement number N is 10,000.
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conclusion
In summary, we compared the imaging reconstruction efficiency and error tolerance of different GI algorithms. 
Simulations based on the computational GI scheme have manifested that CGI algorithm has the highest recon-
struction efficiency due to its global optimization property. The imaging efficiency of compressive GI with dif-
ferent bucket object signal functions has also been discussed. Error tolerance studies have further demonstrated 
that CGI and EGI are sensitive to the error ratio. With DGI or NGI bucket object signal function as the input in 
the CGI algorithm, the imaging reconstruction efficiency would be the highest one whatever error level it is. In 
addition, an optical encryption was proposed by combining different GI algorithms. The combination of LGI, 
EGI and CGI can enhance the security of the GI encryption process.

Methods
Definitions of different ghost imaging algorithms.  The traditional second-order GI reconstruction 
algorithm is expressed as

where Ioi and Ii(x, y) represent the bucket intensity signal of object beam and the spatial intensity distribution 
of reference beam in the ith measurement, respectively. To remove the background effect and achieve a better 
GI quality, a DC component is usually subtracted from the bucket object signal, leading the GI algorithm into 
the form as

where �· · · � denotes an ensemble average for N measurements. Based on the two-detector experimental setup, 
the most-used form of HGI algorithm is given  as23,25,26

where p and q are the power indices of the bucket object signal and reference signal, respectively.
Developing from the basic GI definition in Eq. (2), in DGI and NGI algorithms, the bucket object signal Ioi 

is replaced by different bucket object signal functions F(Ioi) . In DGI algorithm, the bucket object signal func-
tion is defined  as27

where Xi =
∫

Ii(x, y)dxdy is the total intensity of the reference beam in the ith measurement. In NGI algorithm, 
the bucket object signal function is defined  as28

(2)G(2) =
1

N

N
∑

i=1
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N
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(Ioi − �Io�)Ii(x, y),

(4)G(p,q) =
1

N

N
∑
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Figure 7.  Scheme of the encryption method based on logarithmic ghost imaging and exponential ghost 
imaging. The object is a 51× 51 pixels grayscaled baboon picture. The ghost images are reconstructed with 
15,000 measuring times, and B = 10 , C = 1 in the simulations.
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In analogy to the definitions of DGI and NGI, we recently proposed the LGI and EGI algorithms by defining 
the bucket object signal as logarithmic and exponential functions of Ioi ,  respectively30. Thus, the reconstruction 
algorithm of LGI is

where A is the base of the logarithmic function. The reconstruction algorithm of EGI is expressed as

where B is the base of the exponential function, C is a constant depending on the value of base B.
Different from all algorithms above, compressive sensing is an iterative algorithm with global optimization 

based on the sparsity of the imaging  object29,42. By applying compressive sensing to the GI reconstruction process, 
the two-dimensional reference signal Ii(x, y) are resized into a row vector ( 1× K , K = m× n ), where m and n 
are the pixel numbers of the x and y directions, respectively. And the set {Ii(x, y)} of N measurements is rewrit-
ten into a two-dimensional matrix D ( N × K ). Meanwhile, the set of bucket object signal {Ioi} is expressed as 
a column vector ICGI ( N × 1 ). If the object is sparse in matrix D, its image can be reconstructed by solving the 
convex optimization program  as11,29,42

where TCGI is the recovered image information, T is the imaging object information, and ‖ T ‖1 is the L1-norm 
of T. All GI algorithms above can also work well within both the traditional two-detecor GI and computational 
GI scheme shown in Fig. 1.

Information for target images and random matrices.  All image targets used in this work were gray-
scaled with 8-bit. In the simulations, the pixel values of all random matrices {Mm×n} ranged from 0 to 1 with 
average value as 0.5. The widely-used orthogonal matching pursuit method were employed in the CGI simula-
tion program. In the error tolerance simulations, we introduced the error by messing up the order i of ran-
dom matrix Mm×n

i  . 5 % error ratio means 5 % bucket signals had a random combination with random matrices 
{Mm×n} , whereas the rest 95% bucket signals were well matched with their corresponding random matrices 
{Mm×n}.
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