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Demystifying the spectral collapse 
in two‑photon Rabi model
c. f. Lo

We have investigated the eigenenergy spectrum of the two‑photon Rabi model at the critical coupling, 
particularly the special feature “spectral collapse”, by means of an elementary quantum mechanics 
approach. the eigenenergy spectrum is found to consist of both a set of discrete energy levels and a 
continuous energy spectrum. each of these eigenenergies has a two‑fold degeneracy corresponding 
to the spin degree of freedom. the discrete eigenenergy spectrum has a one‑to‑one mapping with 
that of a particle in a “Lorentzian function” potential well, and the continuous energy spectrum can be 
derived from the scattering problem associated with a potential barrier. the number of bound states 
available at the critical coupling is determined by the energy difference between the two atomic levels 
so that the extent of the “spectral collapse” can be monitored in a straightforward manner.

In 1963 Jaynes and  Cummings1 introduced the quantum Rabi model as the simplest, yet non-trivial, model 
describing the interaction between radiation and matter by concentrating on the near-resonance linear coupling 
between a sinlge two-level atomic system and a quantized radiation mode (� = 1):

where the radiation mode of frequency ω is described by the bosonic operators a and a† , the two atomic levels 
separated by an energy difference ω0 are represented by the spin-half operators Sz and Sx , and the atom-field 
coupling strength is measured by the positive parameter ǫ . The various coupling regimes of the model can be 
specified in terms of the three model parameters. Due to recent technological advancement, the interest in 
this simple model has been increasing rapidly, and its applications are no longer limited to the weak coupling 
 regime2–14. In addition, Braak’s discovery in  201115 that the quantum Rabi model is exactly solvable further 
boosts the interest in the model.

Stimulated by the success of the quantum Rabi model, more and more people have paid special attention to 
extending and generalizing the model in order to explore new quantum effects. Among these generalizations, 
the quantum two-photon Rabi model is of particular interest (� = 1):

and has been realized in many different experimental systems for a wide range of coupling  strengths16–26. Unlike 
the one-photon counterpart, the two-photon generalization exhibits a particular feature, commonly known as the 
spectral collapse, which occurs when the coupling strength ǫ goes beyond a critical value ǫc ≡ ω/2 . In 1998, via 
exact numerical diagonalization, Ng et al.27 first demonstrated that while the quantum two-photon Rabi model 
has a discrete eigenenergy spectrum for ǫ < ǫc , no normalizable eigenstate exists in the Hilbert space spanned 
by the photon number states for ǫ > ǫc . The authors pointed out that in the special case of ω0 = 0 the system 
corresponds to a quantum simple harmonic oscillator in the momentum space for ǫ < ǫc , whereas it represents 
an inverted harmonic potential barrier for ǫ > ǫc , and that this abrupt change in the fundemental nature of the 
system results in a transformation from a discrete eigenenergy spectrum to a continuous energy spectrum. In 
addition, at the critical coupling ǫc the system behaves like a free particle. For ω0  = 0 the above analysis still holds 
for both ǫ < ǫc and ǫ > ǫc because the first term in Eq. (2) is a bounded operator. Nevertheless, the characteristic 
behaviour of the eigenstates at the critical coupling ǫc remains as a mystery.

Recently a number of theoretical studies on the spectral  collapse28–38 of the model have indeed confirmed 
the results and observations of Ng et al.27. Nevertheless, our understanding of the quantum two-photon Rabi 
model at the critical coupling ǫc is still very limited because current theoretical approaches (both analytical 
and numerical) fail in dealing with the collapse point rigorously. While numerical methods (such as numerical 
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exact  diagonalization27,35 and the ones based upon spectral function and continued  fraction34) suffer from the 
demand of a huge amount of computational power and unstable convergence, analytical analyses (like variational 
 approximation24 and Braak’s G-function  method15,30–32) are unable to approach the collapse point satisfactorily. 
For instance, as pointed out by Duan et al.33, the G-function method seems to suggest that the eigenenergy 
spectrum at the critical coupling ǫc consists of a discrete part in addition to a continuum: the ground state is 
always separated from the continuum by a finite excitation gap, ruling out a quantum phase transition in the 
usual sense, whereas the perturbation theory predicts the vanishing of the gap to all orders, demonstrating its 
non-perturbative nature. In addition, performing a numerical study of both the spectral functions and survival 
probabilities based upon a continued fraction approach, Lupo et al.34 identifies a signal suggesting that there is 
a remaining relevant discrete point in the spectrum.

Accordingly, the crucial contribution of our work is to solve this mystery completely. It is found that at the 
critical coupling ǫc the eigenenergy spectrum of the two-photon Rabi model consists of both a set of discrete 
energy levels and a continuous energy spectrum. The discrete eigenenergy spectrum has a one-to-one mapping 
with that of a particle in a “Lorentzian function” potential well whose eigenspectrum can be easily determined 
by an elementary quantum mechanics approach and the continuous energy spectrum can be derived from the 
scattering problem associated with a potential barrier. Without loss of generality, we set the energy unit such 
that ω = 1 for simplicity in the following analysis.

two‑photon Rabi model
As shown in Ng et al.27, we apply the unitary transformation

to transform the Hamiltonian H in Eq. (2) to

Defining the “position” and “momentum” operators of the boson mode as

and

respectively, the transformed Hamiltonian H̃ is given by

where

is the Hamiltonian of a quantum simple harmonic oscillator of unit mass. At the critical coupling ǫc ≡ 1/2 , Eq. 
(7) is reduced to

It is not difficult to see that within the subspace of even number states of H0 the transformed Hamiltonian H̃ 
becomes

whereas within the subspace of odd number states we have

Obviously, in both cases the spin degree of freedom and the boson mode are decoupled.
The eigenstates of H̃e are simply given by the states {|Mz�|φe�} , where |Mz� is an eigenstate of the spin operator 

Sz and |φe� is an eigenstate of even parity of the one-body Hamiltonian he:
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for Mz = ±1/2 . In the coordinate space the eigenvalue equation of he reads

where E denotes the eigenenergy and

is the Fourier transform of φe(x) . Here we have made use of the fact that

where K
(

x, t; y
)

 is the propagator of H0 defined by

Similarly, in the momentum space the eigenvalue equation of he is given by

On the other hand, the eigenstates of H̃o consist of the states 
{
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}

 , where |My� is an eigenstate of the spin 
operator Sy and |φo� is an eigenstate of odd parity of the one-body Hamiltonian ho:

for My = ±1/2 . The eigenvalue equations of ho in both coordinate space and momentum space are given by

and

respectively.
Eliminating φe(x) from Eqs. (13) and (17) as well as φo(x) from Eqs. (19) and (20) yields
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such that Eq. (22) can be expressed as

which is the time-independent Schrödinger equation of the bound state problem associated with a “Lorentz-
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which is the time-independent Schrödinger equation of the scattering state problem associated with the potential 
barrier: 

(

1− q̄2
)−1 that is singular at q̄ = ±1.

Accordingly, at the critical coupling ǫc the system not only has a set of discrete eigenenergies but it also has a 
continuous energy spectrum. In Eq. (23) the parameter ω0 specifies the depth of the “Lorentzian function” poten-
tial well and determines the number of bound states available. It is well known that there is at least one bound 
state for ω0 > 0 . On the other hand, in Eq. (24) the parameter ω0 specifies the magnitude of the potential barrier. 
Moreover, the disappearance of spin eigenvalues in Eq. (22) implies that each eigenstate is doubly degenerate.

conclusion
In this communication we have shown that at the critical coupling ǫc the eigenenergy spectrum of the two-photon 
Rabi model consists of both a set of discrete energy levels and a continuous energy spectrum, and that each of 
these eigenenergies has a two-fold degeneracy corresponding to the spin degree of freedom. The discrete eigen-
energy spectrum has a one-to-one mapping with that of a particle in a “Lorentzian function” potential well, and 
the continuous energy spectrum can be derived from the scattering problem associated with a potential barrier. 
It is obvious that whilst setting ω0 = 0 in Eq. (24) results in the time-independent Schrödinger equation of a free 
particle, Eq. (23) is reduced to one with no admissible solution. Since both Eqs. (23) and (24) cannot be solved in 
closed form, we need to resort to numerical methods. As a result, it can be concluded that the two-photon Rabi 
model has three different regimes: (1) a purely discrete eigenenergy spectrum for ǫ < ǫc , (2) a purely continuous 
energy spectrum for ǫ > ǫc , and (3) a combination of a set of discrete energy levels and a continuous energy 
spectrum at ǫ = ǫc . The number of bound states available at the critical coupling ǫc can be controlled by adjusting 
the parameter ω0 , implying that the extent of the spectral collapse can be monitored in a straightforward manner.

Furthermore, Ng et al.39,40 has demonstrated that spectral collapse also appears in two other generalizations 
of the quantum Rabi model, namely the intensity-dependent Rabi model (� = 1):

and the two-mode two-photon Rabi model (� = 1):

Analogous to the two-photon Rabi model, the intensity-dependent Rabi model exhibits spectral collapse for 
the coupling strength ǫ being larger than a critical value ǫc ≡ ω/2 , whilst in the two-mode two-photon Rabi 
model spectral collapse occurs at the critical coupling ǫc ≡ ω . This similiarity arises from the fact that the three 
generalizations of the quantum Rabi model share the same SU(1, 1) dynamical  symmetry41. Hence, we believe 
that a similar approach can be applied to tackle the spectral collapse problem of these two models.
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