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A deep learning approach 
for facility patient attendance 
prediction based on medical 
booking data
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nowadays, data-driven methodologies based on the clinical history of patients represent a promising 
research field in which personalized and intelligent healthcare systems can be opportunely designed 
and developed. In this perspective, Machine Learning (ML) algorithms can be efficiently adopted to 
deploy smart services to enhance the overall quality of healthcare systems. in this work, starting from 
an in-depth analysis of a data set composed of millions of medical booking records collected from 
the public healthcare organization in the region of campania, italy, we have developed a predictive 
model to extract useful knowledge on patients, medical staff, and related healthcare structures. In 
more detail, the main contribution is to suggest a Deep Learning (DL) methodology able to predict 
the access of a patient in one or more medical facilities of a fixed set in the immediate future, the 
subsequent 2 months. A structured Temporal Convolutional Neural Network (TCNN) is designed 
to extract temporal patterns from the administrative medical history of a patient. the experiment 
shows the goodness of the designed methodology. finally, this work represents a novel application 
of a TCNN model to a multi-label classification problem not linked to text categorization or image 
recognition.

Healthcare is one of the main sectors fostering the exponential growth of big data on account of four impor-
tant phenomena: the digitalization of diagnostic imaging, the replacement of papers with digital reporting, 
the development of biotechnologies used in the field of the so-called “omics” sciences, and the explosion of 
the so-called Internet of Medical Things (IoMT). The application of Machine Learning (ML) in healthcare is a 
very promising research field in which researchers, companies, and organizations are increasingly endeavoring 
to design innovative services and smart  solutions1,2. The potential of ML in medicine is particularly notable in 
certain areas, such as the automatic analysis of medical records, which, being compiled in an unstructured way, 
have traditionally not been considered as exploitable with an algorithmic approach aiming at the production 
of automatic and structured composition reports. The progress of ML, on the other hand, is making it possible 
to exploit these data also, since it is no longer as “difficult” for software as it had been until the recent past. In 
this perspective, the great experience and huge amount of data deriving from the healthcare domain can enable 
physicians and organizations to make quicker and more accurate diagnoses and offer personalized and efficient 
 services3 and can facilitate researchers in an understanding of the mechanisms underlying diseases to predict 
the disease risk and achieve its timely prevention. Yang et al. discussed for the first time on the application of 
emerging information technologies and new paradigms to healthcare  services4. Certainly, a potentially immense 
amount of data is generated, enhanced day-by-day through the application of e-Health services, such as Elec-
tronic Health Records (EHRs), and the storage of the medical appointments, diagnoses, and prescriptions of each 
patient, managed through medical management software used by healthcare facilities and health professionals. 
Designing predictive models using  EHRs5,6 is also a well assessed research direction. Here the main issue is 
the extraction of predictive variables from the available data in each medical patient’s record. In a data-driven 
healthcare regime, many challenges have to be addressed, such as temporality, sparsity, noisiness, and bias on the 
EHR data. Accordingly, several ML approaches based on deep learning methodologies have been  proposed7,8. 
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Since 2012, the accesses to medical services within the public healthcare system in Italy are provided through a 
booking system in dedicated centers administered by the local health authority and controlled by the regional 
government. To access the booking center, a referral written by a practitioner is required; each referral includes a 
prescription to different provisions, like specialized medical examinations, medical therapy sessions, laboratory 
testing analyses, e.g. any venous blood sampling examinations, and diagnostic examinations. The data that we 
have analyzed in this research study comes from a distributed database serving various local health departments 
of Campania, Italy. In more detail, we have analyzed data generated within five years, from 1st January 2014 to 
31st December 2018, of medical prescriptions and booking appointments, including cancellations and reschedul-
ings, which in total amount to more than 13 million entries. This paper aims to exploit temporal administrative 
records to provide predictions on the possible medical examinations of a patient in the following two months, 
and in particular at which facility the appointment will occur. Thus, the model is linked to the prediction of 
patient distribution through the regional healthcare system. Therefore, our problem is a multi-label problem, 
because an appointment booking at one facility does not exclude the possibility of another appointment at a 
different facility. In this work, the number of facilities we focused on is fixed to 10. Our ML approach consists 
of a deep learning methodology based on a Temporal Convolutional Neural Network (TCNN), adapted to the 
more complex case of patient information developing over time. The output of the proposed method is, for each 
facility under consideration, the possibility that the patient will have an appointment at that facility, expressed 
as a percentage. The performance of our model has been verified by considering several metrics in a comparison 
with other methodologies suited to the solution of multi-label problems. Moreover, in the latter part of the work, 
an additional service is presented: a lower bound for each facility patient attendance in the subsequent 2 months.

Data preprocessing
The main table of the database has more than 13 million unique rows, referring to booking appointments and 
medical prescriptions covering the period 2014–2018. Each record stores insights about the patient (gender, age 
at the time of prescription, etc), the practitioner, the appointment [date, medical facility, health service (HS) 
provision, etc], and the referral (prescription date, number of prescriptions, etc). Moreover, code correspondence 
tables contain details about each medical facility (e.g. location) or HS provision (e.g. a list of medical branches 
that can be associated together).

Data cleaning. Due to the presence of outliers in the data set (e.g. test referrals with more than one patient 
and/or multiple practitioners), an operation of data cleaning has been carried out: (1) all records containing 
‘unknown’ referrals, prescriptions, locations and medical facilities (due to unrecoverable errors in the encod-
ing of the identification string) were removed; (2) only appointments labeled ’Valid’ were maintained; (3) only 
patients with at least five appointments throughout the reference period were maintained; (4) all invalid records 
containing zero appointments were removed; and (5) all records having negative days of waiting between the 
date of registration and the date of appointment were removed. This operation reduced the number of records 
from around 13 million to around 8.4 million and the number of patients from around 1.6 million to around 
500,000.

Data analysis. Firstly, we analyzed the number of unique occurrences of each interested entity.
As can be observed from Table 1, the data set is characterized by a high heterogeneity. Therefore, we investi-

gated the frequencies to obtain a better insight into the entity distribution. Regarding the appointment dates, the 
histogram in Fig. 1 shows that there is a significant number of appointments in any considered year or month, 
a fact which led us not to be concentrated only on the data of the previous years.

Concerning the HS provisions Table 2a records the first six, ordered by frequency. From Table 2b it can be 
observed that more than 70% of the HS provisions (1,815 out of 2,521) have an overall frequency lower than 1%. 
However, it is also clear that considering only one hundred results in a significant information loss. Thus, our 
data set is also characterized by sparsity.

Data manipulation. After the data analysis, the following features were extrapolated for each patient: gen-
der, birth year (estimated by subtracting the year of the prescription date and the patient age for each record and 
taking the minimum value), and an appointment list in terms of HS provision and medical facility for each date. 
To incorporate temporal information, inspired by the work of Cheng et al.8, we chose a matrix representation 

Table 1.  The table records the totals of unique occurrences of each entity of interest, constructed in order to 
obtain a first insight of the data set. For example, there are more than 2,000 different HS provisions and nearly 
400 distinct medical facilities.

Entity Number of unique occurrences

Appointments 8,426,972

Patients 491,137

Health service provisions 2,382

Appointment dates 1,720

Medical facilities 369

Medical branches 28
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with regular time intervals; since more than 97% of the patients never had more than two distinct appointments 
in the same week, we selected the weeks as time steps (number of weeks: 262). For each patient, two matrices 
in a sparse form, named P and F , were generated, with the time step as the row index, with the HS provision 
id and medical facility id as the column index, respectively. Therefore, for each patient, we built two matrices 
P ∈ N

262×2382
0  and F ∈ N

262×369
0  , where for example P88,54 is the number of appointments in the 88th week of 

the period 2014–2018 relating to the 54th HS provisions, F133,207 is the total of appointments in the 133rd week 
booked in the 207th medical facility. Since our interest was to build a model which considers only the previous 
twelve months of the patient’s medical history, we decided to adopt the following approach to exploit the entire 
data set as effectively as possible: for each patient, any possible 52-week temporal window of his medical history 
(1st–52nd week, 2nd–53rd week, etc) was extracted; only if there were appointments in at least four distinct 
weeks of this period and if there was at least one appointment in the following 2 months (9 weeks), was the 
window kept and the sub-matrices of P and F relating to the same period stored. Holding the same notation, we 
have P ∈ N

52×2382
0  , F ∈ N

52×369
0  and F̃ ∈ N

9×369
0  (relating to the following 2 months, used to create the labels) 

for each window. Due to the high dimensionality and sparsity of the data, we made the following considerations. 
At first, we gathered the corresponding medical branches of each HS provision into a few groups. However, 
unfortunately, we checked that an HS provision can be associated with different branches, and therefore this kind 
of collection does not result in a partition of the HS provisions set. Therefore, we constructed some statistical 
features of the HS provisions to cluster them into eight clusters (the number of clusters was determined by using 
nbClust  routine9, the clustering was performed by using K-means). Regarding the medical facilities, we sorted 
them by the amount of the appointments collected in the F̃ matrices; due to sparsity, this step aims to classify 

Figure 1.  The histogram shows the number of records relating to each month of the examined period, 
2014–2018. The month with the minimum value, May 2016, contains, however, a significant number of records, 
nearly 50,000 appointments.

Table 2.  Frequencies of health service provisions. Table (a) shows the HS provisions with the highest 
frequencies; Table (b) shows the cumulative frequency of the top n provisions with different values of n. It can 
be observed that considering only a few hundred HS provisions would imply a loss of substantial information.

Type of provision Frequency

(a)

Diabetes follow-up 0.0449

ECG 0.0406

Orthopedic examination 0.0281

Cardiac examination 0.0231

Venous blood sampling 0.0219

Dilated fundus examination 0.02

Top n provision Cumulative frequency

(b)

50 0.592

100 0.753

150 0.841

200 0.889

344 0.95

706 0.99
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samples with not extremely unbalanced labels. We considered the top 10 medical facilities as the targets for the 
multi-label classification problem; Table 3 illustrates them.

We also used these ten facilities to reclassify the remaining 359 ones according to their location. In detail, 
the top 10 facilities are located in eight distinct districts; therefore, the others were rearranged into nine groups 
basing on their geographical position (eight groups which gather the medical facilities of the same district and 
a “rest-of-the-universe” group). Thus, the newly generated data set had about 7.1 million records, each one 
consisting of seven features: (1) patient id, (2) window progressive id, (3) gender, (4) age at the first week of 
the window, (5) matrix P ∈ N

52×8
0  (HS provision cluster id as column index), (6) matrix F ∈ N

52×19
0  (an integer 

from 1 to 10 + 8 + 1 as column index, representing top 10 ranked facilities, the groups of facilities for each of the 
eight districts and the “rest-of-the-universe” group), (7) matrix F̃ ∈ N

9×19
0  . For example, P63,4 is the number of 

appointments in the 63rd week of the period 2014–2018 relating to the HS provisions of the fourth cluster, F126,7 
is the total of appointments in the 126th week booked in the seventh medical facility, and F174,15 is the number 
of appointments in the 174th week booked in a facility of the fifth district.

Next, since the features have different ranges, a scaling operation of data into the interval [0, 1] was required: 
gender feature ( 0 = male , 1 = female ) without any need for further mapping; age was scaled with a min–max 
normalization ( min = 0 , max = 120 ); and for the P and F elements scaling, we introduced a non-linear para-
metric scaling ϕ to emphasize the differences between the low numbers rather than between the high ones. In 
particular, the map defined was ϕ : x ∈ N �→ ϕ(x) = 1− �

−x ∈ [0, 1[ with � = e
2 ; the Fig. 2 shows how the 

graph of ϕ depends on the parameter while the Table 4 illustrates the mapped values of the first integers for the 
chosen value of �.

Table 3.  The top 10 medical facilities in Naples, Campania, sorted by the number of appointments in the 
extracted windows during the preprocessing phase, from 2014 to 2018.

Medical facility Number of appointments

1 PSI Napoli Est 399448

2 PSP C.so Vittorio Emanuele 354489

3 PSP Santa Maria di Loreto Crispi 349398

4 Poliambulatorio Scampia 311289

5 Poliambulatorio Palazzo Ex INAM 301247

6 Presidio San Gennaro 298928

7 Poliambulatorio Winspeare 289084

8 Poliambulatorio Cesare Battisti 274538

9 Ambulatorio San Gennaro ad Antignano 261734

10 PO Dei Pellegrini 248924

Figure 2.  Plot of the function ϕ(x) = 1− �
−x with various values of � , including, for illustrative purposes only, 

the delimiting line at y = 1 . Dots have been added to aid the visualization of the mapped values of the integers. 
As parameter � increases, the distance of ϕ(0) and ϕ(1) increases while the difference between the mapped 
values of the higher integers decreases.
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Data labeling. Based on F̃ , each window was labeled with a vector y ∈ {0, 1}11 , as follows:

while y11 = 0 only if F̃i,j = 0 ∀i ∈ {1, . . . , 9} ∀j ∈ {11, . . . , 19} ; otherwise y11 = 1 . According to this definition, 
for j ∈ {1, . . . , 10} the j-th label is equal to 1 if the patient had at least one appointment in the j-th facility in 
the following nine week period; otherwise, the label is 0. The 11th label was added only because the proposed 
method needs to handle non-zero label vectors.

In conclusion, the final data set handled by the classification methods is summarized in Tables 5 and 6.

Methods and metrics
This study aims to provide predictions on the possible appointments of a patient at any considered facility in 
the subsequent 2 months, starting from the patient’s clinical history from the previous year. In particular, to 
validate the proposed predictive model, we made a comparison with some traditional methods, with particular 
attention to the multi-label nature of the problem. In any case, where a Neural Network is deployed, the adopted 
back-propagation strategy is based on the BP-MLL  method10. It is important to note that such a method can only 
work when there are no samples with an output of all zeroes or all ones, and for this reason, there are 11 labels, 
where the last one represents the “other” facilities, i.e. the complement of the first 10 labels representing the top 
10 facilities. The adopted threshold function for each label after the training is the same as in equation 20 of 
the aforementioned work, which minimizes the sum of false positives and false negatives in the validation set.

traditional methods. The two temporal windows are represented as two vectors, which are the flattened 
versions of the temporal window matrices. These two vectors, concatenated together with the patient’s features, 
which are gender and age, represent the input for the following methods: Random Forests (RF) and Multi-Layer 
Perceptron Neural Network, (MLP).  RF11 is a bagging  algorithm12 which produces multiple random predictors 
based on decision  trees13,14, while MLP is a collection of perceptron  neurons15,16 arranged in dense layers and 
linked in a suitable way, in order to capture impulse responses by adopting a feedforward  approach17. It is impor-
tant to note that other Neural Networks, like the ones based on the Recurrent Neural Networks, were not used, 

yj =

{
0 if F̃i,j = 0 for each i = 1, . . . , 9

1 if ∃ i ∈ {1, . . . , 9} : F̃i,j > 0
, for j = 1, . . . , 10

Table 4.  The table records the values of the function ϕ(n) = 1− �
−n with � = e

2
 and the nearest backward 

finite difference in order to highlight how the distribution and the distance of the mapped points change.

n ϕ(n) ϕ(n)− ϕ(n− 1)

0 0 –

1 0.264241 0.264241

2 0.458658 0.194417

3 0.601703 0.143044

4 0.706949 0.105246

5 0.784385 0.077436

6 0.841359 0.056974

7 0.883279 0.041919

8 0.914121 0.030842

9 0.936814 0.022693

Table 5.  The input columns of the provided final data set for multi-label classification.

Feature Type Description

gender int Patient gender. 0 if male, 1 if female

age double Patient age

P int [ 52× 8] Patient provision history

F int [ 52× 19] Patient facilities history

Table 6.  The output columns of the provided final data set for multi-label classification.

Label Type Description

y1, . . . , y10 int [ 10× 1] yj = 1 if the patient makes at least an appointment in the facility j in the next two months, 0 otherwise

y11 int 1 if the patient makes at least an appointment in any other facility than the top 10, 0 otherwise
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due to the known fact that their internal memory mechanisms do work very well only on consequential data 
without large “holes”, i.e. there are not large portions of the input filled with zeroes. Furthermore, we did not use 
other known traditional Machine Learning methodologies like Support Vector Machines (SVM) and K-Nearest 
Neighbors (KNN) because they are not naturally suited to multi-label classification problems without having to 
use strategies like one-vs-one or one-vs-all.

proposed method. The design of our proposed method has been done to explore and extrapolate infor-
mation from the temporal evolution of the medical booking history of the patients; a previous work, done by 
Cheng et al., proposed Temporal Fusion Convolutional Neural Networks (TFCNN)8 study the clinical history as 
a matrix. These Neural Networks encode the input matrices into smaller but more meaningful features with a 
concatenation of temporal discrete convolution and pooling operations; then, such reduced features are passed to 
a fully connected Neural Network, to non-linearly combine them. Such networks have been applied with good 
results to chronic obstructive pulmonary disease (COPD) risk  prediction18, where, similarly to this case, the 
input is composed of the clinical history and other features that are characteristic of the patient. Due to the par-
ticular characteristics of our data set, Temporal Convolutional Neural Networks have to be used. The difference 
between the aforementioned work and this work is that our data set does not contain any clinical history, but 
only bookings to provisions, therefore a careful adjustment to the model must be done. The result of this opera-
tion is a feedforward neural network model composed of a structured temporal convolutional layer and a multi-
layer perceptron. In detail, the Temporal CNN (TCNN) block takes as input a t × d matrix ( t = 52 and d = 8, 19 
in our application) and a set S of nS sizes as parameters ( S = {6, 9, . . . , 51} in experimental tests). For each s ∈ S , 
64 filters with a s × d kernel operate on the input matrix to discover different patterns, obtaining 64 t × 1 arrays 
to which a 2× 1 pooling is applied. At this point the t2 × 1 are added to produce a single vector. The nS vectors 
obtained by varying s ∈ S are then concatenated. Hence, the output of the TCNN block is an nS · t

2 column vec-
tor. Figure 3 summarizes the above process. The convolutional layer of the proposed method is composed of four 
TCNN blocks, to apply a maximum or an average pooling to each temporal matrix. Next, by concatenating the 
output column vectors also with the gender and age features, the vector of 4 · nS · t

2 + 2 components becomes 
the input of a feedforward fully connected neural network with two hidden layers (respectively of 128 and 32 
perceptrons) and an output layer composed of 11 units, which generates the final output of the method. Figure 4 
shows the pipeline described.

evaluation metrics. Given that this study focuses on a multi-label classification problem, the evaluation of 
the models will take into account two types: by using a cumulative metric for all the labels, or by applying a single 
metric for each label. In the former methodology, three metrics were used for the comparison: the Hamming 
Distance, the Exact Accuracy and the Top 10 Facilities Exact Accuracy, while for the latter methodology, several 
metrics (accuracy, precision, recall, F1-score, and AUC) were estimated for each label. Hamming distance dH 
represents the average number of missed labels for each window, i.e. by the following formula:

Figure 3.  The proposed network model. The boxes in green represent the blocks of information in the input, 
i.e. P , F , gender, and age, where P is a temporal matrix referring to the HS provisions and F is a temporal matrix 
referring to the facilities. Gender and age are placed away from P and F to highlight the need to first extract 
hidden patterns from P and F . In detail, from the left side: P and F are each passed through two parallel TCNN 
blocks, where each block is characterized by its pooling layer. The outputs of the four blocks are concatenated 
together with gender and age and passed through a fully connected neural network with two hidden layers. Each 
circle represents a dense neuron and the links provide the feedforward propagation from the previous neuron to 
the next neuron.
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where |S| is the cardinality of the set S, ŷ ∈ {0, 1}11 is the predicted output of the model.
Meanwhile, Exact Accuracy represents the percentage of the correctly predicted samples:

where an exact prediction occurs if the vector of the predicted label ŷ is equal to the vector of the true label y.
Finally, Top 10 Facilities Exact Accuracy is defined as the Exact Accuracy of the predicted output when 

the last label is ignored, since it is just a workaround for the implementation of the BP-MLL algorithm for our 
proposed model.

For a fixed label, from the confusion matrix: 

Prediction

Actual

0 1

0 VN FN

1 FP VP

it is straightforward to calculate:

where TP is the true positive, FP is the false positive and FN is the false negative. The AUC score is defined as 
the area under the ROC curve, used to measure how well the model can distinguish between two classes, even 
more so when the labels are unbalanced.

dH (y, ŷ) =
∣∣∣
{
j | yj �= ŷj

}∣∣∣

Exact Accuracy =
Exact Predicted Samples

Total Test Samples

accuracy =
TP+ TN

TP+ FP+ TN+ FN
, precision =

TP

TP+ FP
, recall =

TP

TP+ FN
,

F1-score =
2× precision× recall

precision+ recall

Figure 4.  A representation of the TCNN block. From the left side: for a fixed kernel size s, starting from a 
temporal matrix with t  time steps and d features, 64 vectors are generated using s × d filters through an 1D 
convolution; zero padding is chosen to obtain vectors of the same dimensions, that is t × 1 . Different colors 
represent the different filters where the convolution appears for clarification. After the convolution operation, 
the filtered arrays are passed through a pooling layer, where the size of the pooling is set to 2 and therefore the 
dimension of the pooled filtered arrays is halved to t

2
× 1 . Experimental tests have confirmed that the choice 

of both the maximum and average pooling improves the model accuracy. To reduce the dimension of the 
forthcoming concatenation, an addition layer is inserted, which returns a single vector with size t

2
× 1 . The 

concatenation at the right corresponds to the concatenation of all the output vectors obtained for the different 
choices of the kernel size s.
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Results
In this section, our experimental results are shown. Firstly, the whole data set was considered, but only 37.5% 
of windows had at least one of the first ten labels equal to 1, i.e. at least one appointment in any of the facilities 
which we focused on. Therefore, before each run, we randomly reduced the remaining 62.5% of windows to a 
seventh of their number to increase the percentage of the positive cases for each label. Table 7 shows how the 
frequencies changed.

In each run, this new data set was split into a training set (90%) and test set (10%) for RF, while it was split 
into a training set (72%), validation set (18%), and test set (10%) in the case of MLP and our proposed method. 
Regarding this different rule of splitting, we clarify that the validation set is only used in the early stopping cri-
teria related to the Adam parameter optimization  algorithm19. In fact, due to long execution times, we did not 
apply any kind of semi-automatic search algorithm; in a previous testing phase, the hyperparameter tuning of 
each model was performed by analyzing the results of several test runs. After the testing phase, we evaluated the 
considered methods by performing 15 different runs for each of them, differing for the simple randomization 
of the samples in the data set before each splitting.

Tables 8 and 9 show that the proposed method outperforms the traditional method according to any of the 
considered metrics. Each listed measurement is in the form mean ± standard deviation, calculated from the 
results of all the runs. RF and MLP miss on average one every 14 labels, while the proposed method misses on 
average less than one every 26 labels ( 11/0.42087 ≈ 26.14).

In particular, the Overall Recall referring to our method (Table 9) reveals that even though the label frequen-
cies are very low, the proposed model is capable to recognize the positives with a better accuracy than the other 
tested methods. Further investigations were carried out for each facility. Table 10 shows the accuracy of our 
method referring to each facility; it can be observed that the model produces a very high accuracy for every label.

Table 7.  The frequencies of the medical facilities before and after the removal of six seventh of the samples 
which have only label 11 set to 1. The associated medical facilities are referred from Table 3.

Medical facility Frequencies (before) Frequencies (after)

1 0.056 0.120

2 0.050 0.107

3 0.049 0.106

4 0.044 0.094

5 0.042 0.091

6 0.042 0.090

7 0.041 0.087

8 0.039 0.082

9 0.037 0.079

10 0.035 0.075

11 0.728 0.415

Table 8.  Starting from the results of 15 different runs, the table shows the results of certain metrics in the form 
mean ± standard deviation for the considered methods. The best scores are highlighted in bold. It is noticeable 
that the proposed method outperformed the others according to any of the metrics used.

Method Hamming distance Exact accuracy Top 10 facilities exact accuracy

RF 0.82063± 0.00303 0.48430± 0.00164 0.59654± 0.00130

MLP 0.80802± 0.00125 0.48745± 0.00131 0.60261± 0.00104

Proposed 0.42087 ± 0.01977 0.65509 ± 0.01465 0.76854 ± 0.01101

Table 9.  Starting from the results of 15 different runs, the table shows some metrics in the form mean ± 
standard deviation for the methods considered. The proposed method outperformed the others, in particular 
with respect to the overall recall, which means that it produced far fewer false positives that RF and MLP.

Method Overall precision Overall recall Overall F1-score Overall AUC 

RF 0.77621± 0.00189 0.52943± 0.00073 0.61249± 0.00010 0.91161± 0.00049

MLP 0.73660± 0.00161 0.58937± 0.00343 0.64605± 0.00186 0.91200± 0.00122

Proposed 0.82082± 0.00945 0.89809± 0.00419 0.85733± 0.00644 0.96181± 0.00140
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Once we had gathered evidence about the quality of the proposed model, we investigated cases of patients 
who had not had any appointment in a particular facility j in the 52 weeks but also had had an appointment in 
the same facility j in the following 9 weeks. In particular, the aim was to understand the capability of the proposed 
model to predict the first access of patients to a facility. Table 11 shows the accuracy with reference to each facil-
ity; the mean accuracy on this specific set of patients is over 64% ( ±0.0156%).

As described above, starting from the previous year’s clinical history the proposed method attempts to predict 
if and in which facility a patient will have at least one appointment. By this feature, this method may be useful to 
the health authority, because it can provide a non-trivial lower bound on the facility patient attendance in terms 
of patient access. Such comparison has been done by running the proposed model 15 times in the same way as 
in the results with the other models, and then we compared the total of predicted positives with the real number 
of accesses to facility present in such test set. This has been done to keep the coherency of the statistical analysis. 
Figure 5 illustrates a single run of the comparison, but if we consider the average and the standard deviation of 
all the runs, we obtained that the difference between the lower limit and the real amount is 16± 4% of the latter.

Table 10.  Accuracy of the proposed model for each facility. The mean accuracy on the test set is over 97%, a 
further measure of the validity of model. Even if it is out of our focus, we also verified the accuracy on the 11th 
label and this proved to be similarly high (over 85%).

Facility 1 2 3 4 5

Accuracy 0.977± 0.001 0.961± 0.003 0.962± 0.002 0.981± 0.001 0.978± 0.001

Facility 6 7 8 9 10

Accuracy 0.973± 0.001 0.972± 0.001 0.973± 0.002 0.981± 0.001 0.971± 0.002

Table 11.  The table shows how the proposed method predicts the number of accesses of patients to a facility 
where they have never previously been; the overall accuracy is over 64%.

Facility 1 2 3 4 5

Accuracy on 1st access 0.695± 0.012 0.682± 0.014 0.687± 0.011 0.603± 0.044 0.684± 0.020

Facility 6 7 8 9 10

Accuracy on 1st access 0.697± 0.017 0.637± 0.022 0.609± 0.026 0.525± 0.033 0.643± 0.021

Figure 5.  The histogram summarizes the total number of accesses and the number of predicted positives 
obtained from a single run of the proposed model. As in the average of all the runs, the number of the predicted 
positives on average is almost 85% of the real number.
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conclusions
Healthcare technologies are not necessarily confined to patient management and care but can also have a great 
significance concerning prevention. The greater is the emphasis placed on preventive medicine rather than the 
mere treatment of the symptoms, the more effective will the healthcare system be for everyone, both for the 
healthcare management and the wider community. In this paper we have presented a Temporal Fusion CNN 
adapted for the multi-label problem described. Starting from only administrative information about the previous 
year’s clinical history of a patient, the goal of the model has been to predict if and in which facility the patient will 
book an appointment. Even though the administrative data do not store information about medical examination 
outcomes or reports, the experimental results prove the quality of the model constructed. As future research, with 
additional information about patients and HS provisions, it would be interesting to evaluate the model predic-
tions for patient health, not only from that of administration. In the latter part of the work, we have proposed a 
patient attendance lower bound for each facility as a service to the health authority. As a further future research 
project, supported by supplementary financial information, it may also be possible to provide statistical data to 
optimize the funding distribution of the regional health system.

Hardware and software
The hardware used in this study consists of a desktop computer with an 8-core Intel Core i9-9900K CPU, together 
with a GPU NVidia RTX 2080 Ti, all mounted on an Asus PRIME Z390-A motherboard with 128 GB of RAM 
and 2 TB of SSD. The GPU has been used to speed up the training of the deep learning models. The programming 
language adopted is Python version 3.7.6, with the libraries Numpy 1.18.1 and Pandas 1.0.1 for the data set, scikit-
learn 0.22.120 for the implementation of RF and Tensorflow 2.021 with GPU support for the deep learning models.
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