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examining the impact of inducible 
ischemia on myocardial 
fibrosis and exercise capacity 
in hypertrophic cardiomyopathy
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Myocardial ischemia in hypertrophic cardiomyopathy (HcM) is associated with poor outcomes. 
Vasodilator stress cardiac magnetic resonance (cMR) can detect and quantitate inducible ischemia 
in HcM patients. We hypothesized that myocardial ischemia assessed by cMR is associated with 
myocardial fibrosis and reduced exercise capacity in HCM. In 105 consecutive HCM patients, we 
performed quantitative assessment of left ventricular volume and mass, wall thickness, segmental 
wall thickening percent, segmental late Gadolinium enhancement (LGE), and extracellular volume 
fraction (ECV). Time-signal intensity curves of first pass perfusion sequences were generated for 
each segment at stress and rest. A myocardial perfusion reserve index (MPRI) (stress/rest slope) was 
calculated. Patients who underwent an echocardiographic (n = 73) and cardiopulmonary exercise 
test (n = 37) within 30 days were included. The mean age was 53.2 ± 15.4 years; 60% were male, and 
82 patients had asymmetric hypertrophy. Segments with end diastolic thickness ≥ 1.2 cm had a 
higher burden of LGE (4.1% vs 0.5% per segment), reduced MPRI (2.6 ± 1.5 vs 3.1 ± 1.8) and reduced 
thickening percent (48.9 ± 41.7% vs. 105.3 ± 59.5%), (P < 0.0001 for all comparisons). Patients with 
ischemia (any segment with MPRI < 2) were more likely to have dynamic left ventricular outflow tract 
(LVOT) obstruction (63.3% vs 36.7%, P = 0.01), to be smokers (17% vs 6.9%, P = 0.04), and had a higher 
ECV (30% vs 28%, P = 0.04). The total LGE burden was similar between the two groups (P = 0.47). 
Increasing ischemia burden (number of segments with MPRI < 2) was associated with worsened 
ventilatory efficiency (VE/VCO2) (P < 0.001) but not peak oxygen consumption or anerobic threshold 
(P > 0.2). In a patient-level multivariable logistic regression model, only LVOT obstruction remained 
a significant predictor of ischemia burden (P = 0.03). Myocardial ischemia by CMR is associated with 
myocardial segmental dysfunction and interstitial fibrosis, as assessed by ECV, in HCM patients, 
even in segments free of LGE. Conversely, quantitative ischemia burden was not associated with 
replacement fibrosis as assessed by total LGE burden. Patients with ischemia had greater prevalence 
of dynamic LVOT obstruction; and in a subset of patients with cardiopulmonary exercise testing, 
ischemia burden was associated with worsened ventilatory efficiency.

Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy, with a prevalence recently 
estimated as high as 1 in 200 live  births1. The natural history of HCM varies from a benign asymptomatic course 
to symptoms of chest pain or dyspnea, and in advanced stages to heart failure and sudden  death2. Myocar-
dial ischemia is an important pathophysiologic process in HCM and is associated with left ventricular adverse 
remodeling and systolic  dysfunction3,4. Potential mechanisms include increased oxygen requirements due to 
hypertrophy, diastolic dysfunction and elevated filling pressures, abnormalities of intramyocardial arterioles, 
abnormal coronary flow dynamics in part due to left ventricular outflow tract (LVOT)  obstruction5–7.

Cardiovascular magnetic resonance (CMR) is an important imaging modality in diagnosing and risk stratify-
ing HCM  patients8,9. It is a validated non-invasive method for quantitation of myocardial replacement fibrosis 
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using the late gadolinium enhancement (LGE)  technique10, as well as myocardial interstitial fibrosis using extra-
cellular volume fraction (ECV)11,12. Vasodilator stress CMR allows for detection and quantitation of myocar-
dial ischemia, and the degree of ischemia assessed by CMR has recently been linked to progression of  LGE13. 
Assessment of myocardial ischemia, however, is not part of routine clinical assessment of HCM patients by 
CMR, particularly those considered to be low-intermediate risk for  SCD14,15. We hypothesized that myocardial 
ischemia assessed by vasodilator stress CMR will be associated with myocardial fibrosis and reduced exercise 
capacity. Our second objective was to assess the predictors of ischemia on CMR.

Methods
The study was approved by the institutional review board at Houston Methodist Hospital and informed writ-
ten consent obtained from all patients. All studies were performed in accordance with relevant guidelines and 
regulations. We included 105 consecutive adult patients from the DEBAKEY CMR Registry (NCT04281823), 
a prospective institutional registry. The studies were performed between July 2011 and June 2017. We included 
patients > 18 years old confirmed to have HCM according to  guidelines8. We excluded patients who had prior 
septal reduction therapy, epicardial coronary artery disease (CAD), prior myocardial infarction, late gadolin-
ium enhancement (LGE) in a CAD pattern, implanted cardiac devices, claustrophobia, or glomerular filtration 
rate < 30 mL/min per 1.76  m2. Figure 1 shows an overview of the study and exclusion criteria.

cMR imaging protocol. Patients were asked to refrain from caffeine for 24 h before Regadenoson stress 
CMR. Most procedures were completed in approximately 45 min. Studies were performed on 3 T and 1.5 T 
CMR systems (Siemens Avanto, Aera, Verio, and Skyra, Siemens, Erlangen, Germany). Steady state free pre-
cession sequences were used to acquire a series of short axis cine images and standard long axis views (2, 3, 4 
chamber) during single breath holds, using retrospective ECG gating with slice thickness of 6, 4 mm gap, echo 
time = 1.33 ms, temporal resolution per phase 35–40 ms, in-plane resolution ~ 1.5–2.0 × 1.5–2.0 mm/pixel, and 
flip angle of 45–75 degrees. The ECG triggered modified Look Locker inversion recovery (MOLLI) sequence 
was employed for assessment of myocardial T1 relaxation times in a mid-ventricular slice. Native myocardial T1 
relaxation time was measured before administration of  contrast16. Regadenoson 0.4 mg (Astellas, Northbrook, 
Illinois, USA) was injected over approximately 10 s into a peripheral vein followed by a 5 mL saline flush. The 
stress perfusion sequence was started within 30–60  s of Regadenoson injection. Gadolinium-based contrast 
(0.15 mmol/kg gadopentetate dimeglumine or gadoterate meglumine) was infused at 3.5–4.5 ml/s followed by 
a saline flush (50 ml) via an antecubital vein (dose split equally for stress and rest perfusion). Patients routinely 
received aminophylline 100 mg intravenously for reversal of hyperemia after stress images were acquired. Rest 
perfusion was performed ~ 10 min after reversal.

LGE imaging was performed ~ 10 min after intravenous injection of the second dose of gadolinium contrast 
(rest perfusion imaging) using an ECG gated inversion recovery gradient echo sequence in identical locations to 
the cine images. Scanning parameters included slice thickness of 6 mm, gap 4 mm, voxel size 2.1 × 1.6 × 6 mm, 
TE = 1.15, and flip angle = 20°16. Acquisition scans for post contrast T1 mapping were performed after the stand-
ard delayed enhancement acquisition protocol for a mid-ventricular matching slice, approximately 15–20 min 
after the infusion of the contrast agent. Parameters for MOLLI technique include slice thickness of 6 mm, voxel 
size 2.1 × 1.6 × 6 mm, TE = 1.09, TR = 675, flip angle = 35°, twofold parallel imaging. Precontrast 5(3)3 and post-
contrast 4(1)3(1)2 heart beat sampling schemes were used on the 1.5-T scanner and pre-contrast 5(4)2 and 

Figure 1.  Flow chart shows the exclusion criteria and subgroups. HCM, Hypertrophic cardiomyopathy; HMH, 
Houston Methodist Hospital; CMR, Cardiac magnetic resonance; CAD, Coronary artery disease.
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post-contrast 4(1)2(2)2 heart beat sampling schemes on the 3.0-T scanner. Shimming and delta frequency 
adjustments were applied to minimize off-resonance  artifacts16.

cMR imaging analysis. HCM phenotype was assessed by identifying the predominant location of hyper-
trophy (asymmetric septal hypertrophy, concentric hypertrophy, apical hypertrophy). One experienced observer 
performed quantification of left and right ventricular ejection fraction and volumes on a series of short axis 
slices from the base to the apex of each ventricle. The endocardial borders were manually traced for end dias-
tolic and end systolic images for all slices. Quantitative analysis of segmental thickness and segmental systolic 
function (thickening percent) was recorded according to the American Heart Association’s 16 segment model. 
Papillary muscles were excluded from ventricular volumes. LV mass was calculated by tracing LV epicardial and 
endocardial borders at end diastole and assuming myocardial density of 1.05 g/ml. CMR42 Version 5.6 (Circle 
Cardiovascular, Calgary, Canada) was used for all analyses.

first pass perfusion analysis. In semiquantitative perfusion analysis, time-signal intensity curves of 
motion corrected perfusion sequences were generated for each myocardial segment using semiautomated track-
ing of the endocardial and epicardial borders with manual correction to exclude artifacts. Corresponding time 
signal intensity curves were derived for each myocardial segment, and the maximal slope of these curves was 
reported for each of the 16 myocardial segments. This analysis was repeated for rest perfusion imaging and a 
myocardial perfusion reserve index (MPRI) (stress/rest slope) calculated for each segment. Baseline correction 
was applied on the rest perfusion sequences to account for remaining gadolinium contrast signal from the stress 
sequences performed first. An MPRI below 2 was considered  abnormal17. Figure 2 shows an example case.

Late Gadolinium enhancement analysis. Manual endocardial and epicardial contour tracing was per-
formed for all short-axis segmented LGE images and the full width half maximum technique signal threshold 
was used in LGE quantitation. Total LGE mass was expressed as a percentage of the LV. Percent LGE in each 
segment was also calculated similar to perfusion slopes and percent thickening.

Figure 2.  Semiquantitative analysis of MPRI. A case example of a 58 years old patient with hypertrophic 
cardiomyopathy and septal thickness of 2.7 cm, panel A. Panels B and C show derivation of MPRI at rest and 
stress respectively. Red arrows highlight segments with reduced flow at stress. Panels E and F show enhancement 
curves of myocardial segments at rest and stress respectively, with the arterial input function in orange. Panel 
D shows a polar plot with reduced MPRI measures in the septum. MPRI, myocardial perfusion reserve index; 
LVOT, left ventricular outflow tract. Patient consent for publishing anonymized figure was obtained.
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T1 mapping analysis. Analysis of T1 values was performed using manually contoured regions of interest, 
for both pre and post contrast midventricular  slices16. Extracellular volume (ECV) was calculated as: ECV = ∆R1 
myocardium/∆R1 blood × (100 − HCT), where ∆R1 myocardium or change in relaxation rate is given by: 1/T1 
myocardium post contrast injection—1/T1 myocardium pre-contrast injection, and ΔR1 blood = 1/T1 blood-
post contrast—1/T1 blood-pre-contrast administration. HCT refers to hematocrit obtained at the time of CMR. 
By this technique an estimate of T1 is encoded in the intensity of each pixel. ECV, T1 pre-contrast and T1 post 
contrast values were calculated separately for each of the six segments in the midventricular slice before and after 
contrast administration. We applied the ECV analysis to the six segments at the mid-ventricular level similar 
to other  investigators18. Measurements were calculated as an average of all 6 segments. An offset of 20% from 
epicardial and endocardial contours was applied in the perfusion and T1 sequences to reduce bias from partial 
volume effects.

Each CMR imaging technique was blindly scored on separate days without knowledge of clinical data or 
echocardiographic findings, which were collected by other observers. Interobserver variability was assessed in 
10 random patients by a blinded experienced CMR reader. First pass perfusion measurements, LGE, and ECV 
measures had excellent correlation (Interclass correlation coefficient = 0.94, 0.94, 0.96, respectively, P < 0.001).

echocardiographic and cardiopulmonary exercise. Patients who underwent an echocardiographic 
study within 30  days of the CMR study were included (n = 73). Echocardiographic measurements were per-
formed by an independent observer without knowledge of CMR findings. The remainder of patients were refer-
rals from other institutions thus echocardiographic studies were not available for analysis. Dynamic LVOT 
obstruction was quantified at rest, with the Valsalva maneuver, and with exercise if indicated (six patients had 
exercise echocardiography, and two of them had no LVOT obstruction at rest but provokable LVOT obstruction 
with exercise echocardiography)16. In patients who did not have an echocardiographic study available for analy-
sis within 30 days of CMR, we used CMR findings or available echocardiographic studies outside of the 30 day 
window, to determine the presence of LVOT obstruction. This was done only for the purposes of ESC risk score.

A subgroup of patients (n = 37) underwent a symptom limited exercise treadmill testing for clinical indica-
tions. A modified Bruce protocol with measurement of peak oxygen consumption (Medgraphics Cardiorespira-
tory Diagnostic, Ultima Medgraphics, Saint Paul, MN) was used. Respiratory gas analysis was done as breath by 
breath gas analysis. Continuous EKG monitoring was performed. Stress testing was terminated due to leg fatigue, 
shortness of breath, or chest pain. The cardiovascular and ventilatory responses to exercise evaluated included 
changes in heart rate, blood pressure, peak O2 consumption (PVO2), anerobic threshold (AT), and ventilatory 
efficiency (VE/VCO2) values. Testing was performed after cardiac medications were withheld for four half-lives 
to avoid their confounding effects on LV function.

Statistical analysis. Patient characteristics were reported as proportions for categorical variables and as 
median / interquartile range (IQR) or mean/standardized deviation for continuous variables as applicable. Dis-
tribution of continuous variables was tested by The Kolmogorov–Smirnov test. Differences across groups were 
determined by Chi-square for categorical variables and Student t-test or Mann Whitney U tests for continuous 
variables as appropriate. Descriptive analyses of MPRI were performed both on a patient and segmental level. 
Univariate logistic regression analyses were used to determine the characteristics associated with MRPI < 2. Vari-
ables having a p-value of < 0.2 in the univariate analysis or considered as clinically important were investigated 
further by multivariable logistic regression modeling. All the analyses were performed on SPSS version 21 (IBM 
Corp., Armonk, NY, USA). A p value of < 0.05 was considered statistically significant.

Results
Baseline patient characteristics are shown in Table 1. The mean age was 53.2 ± 15.4 years and 63 patients (60%) 
were male. The HCM phenotype was asymmetric hypertrophy in 82, apical in 17, and concentric in 6 patients. 
Chest pain was reported by 17 (16.2%) patients and dyspnea was reported by 44 (41.9%) patients. In 73 patients 
who underwent echocardiography, 32 (43.8%) had LVOT obstruction defined as peak gradient ≥ 30 mmHg at 
 rest19. None of the patient had prior history of syncope or sudden death. Twenty-two (21%) patients had family 
history of sudden death. Nineteen patients (18%) had moderate mitral regurgitation (MR) quantified by CMR 
and three patients had severe MR. The remainder of patients had mild or no MR. One patient had an LVEF 
of < 50%. Most studies were performed on a 3 T scanner (78%) and the rest were performed on a 1.5 T scanner 
(22%). The median estimated European Society of Cardiology (ESC)  Risk20 was 2.2% with IQR of 1.3. Only two 
patients had an ESC risk ≥ 6%. No adverse events were recorded after Regadenoson infusion. All stress perfusion 
studies were completed successfully.

Per segment quantitative analysis. Segmental level analysis of all 105 patients included 1,680 segments. 
The mean end-diastolic wall thickness was 10.6 mm (± 3.9 mm) with 513 (30.5%) of segments having end dias-
tolic wall thickness ≥ 1.2 cm. In comparison to normal thickness segments, segments with end diastolic thick-
ness ≥ 1.2 cm had a higher burden of LGE (4.1% vs 0.5% per segment), reduced MPRI (2.6 ± 1.5 vs 3.1 ± 1.8) and 
reduced thickening percent (48.9 ± 41.7% vs 105.3 ± 59.5%), (P < 0.0001 for all comparisons). On comparison 
of segments < 1.2 cm vs ≥ 1.2 cm, segmental ECV was similar (29% vs 28.4%, P = 0.8). Consistent results for all 
comparisons were noted when comparing segments ≥ 1.5 cm (220 segments, 13.1%) vs. segments < 1.5 cm and 
when comparing segments ≥ 1.3 cm (400 segments, 23.8%) vs. segments < 1.3 cm (Fig. 3).

Segments with high ECV ≥ 30% had a lower MPRI (2.64 ± 1.4 vs 3.1 ± 1.8, P < 0.001) even after excluding seg-
ments with any LGE. Segments with LGE had a lower MPRI than segments without LGE (3.12 ± 1.4 vs 3.29 ± 1.6, 
P = 0.04) (Fig. 4). Univariate predictors of MPRI < 2 included increased end-diastolic wall thickness, decreased 
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segmental thickening, and increased ECV (Table 2). A multivariable logistic regression model showed end-
diastolic wall thickness and ECV as independent predictors of MPRI < 2.

Global ventricular measures. Forty-seven patients (44.8%) had at least one segment with MPRI < 2 and 
were considered the group with ischemia. The mean number of segments with MPRI < 2 was 6.7 ± 5.3 segments. 
Global ventricular measures are shown in Table  3. Left and right ventricular indexed volumes and ejection 
fraction measures were similar between the two groups (P ≥ 0.2 for all comparisons). The distribution of apical 
hypertrophy, asymmetric hypertrophy, and concentric hypertrophy was similar among the ischemic and non-
ischemic groups (P = 0.3). LGE was present in 90 (85.7%) of patients. The mean number of segments with LGE 
was 4.1 ± 3.7 segments.

In comparison to patients without ischemia, patients with ischemia were more likely to have dynamic LVOT 
obstruction (63.3% vs 33.3%, P = 0.01), and have a higher resting LVOT gradient (48.6 ± 39.5 vs 25.3 ± 34 mmHg, 
P = 0.01). There were more smokers in the ischemia group (17% vs 6.9%, P = 0.04). There was a trend in the 
ischemia group to have family history of sudden death (P = 0.052). No significant differences in NYHA class were 
found. The total LGE burden was similar between the two groups (P = 0.4) but ECV was higher in the ischemic 
group (30% vs 28%, P = 0.04).

echocardiographic parameters and exercise capacity. In patients who underwent exercise testing, 
no significant differences were noted in exercise duration in the ischemic vs non-ischemic group (11:15 ± 5:30 vs 
11:26 ± 4:38 min:sec, P = 0.9), peak VO2 consumption (20.2 ± 7.1 vs 23.3 ± 9.8 ml/kg/min, P = 0.34) vs or anaero-
bic threshold (10.9 ± 3.6 vs 12.8 ± 4.2 ml/kg/min, P = 0.20). But VE/VCO2 was higher in the group with ischemia 
(P = 0.05), and increasing ischemia burden (number of segments with MPRI < 2) was associated with worsened 
ventilatory efficiency VE/VCO2 (P < 0.001) (Fig. 5). No significant associations were noted between reduced 
MPRI and diastolic function parameters or echocardiographic estimated left ventricular filling pressure (data 
not shown).

In a patient level multivariate logistic regression model correcting for age, gender, anteroseptal wall thick-
ness, indexed LV mass, VE/VCO2 and ECV > 30%, only LVOT obstruction remained a significant predictor of 
reduced MPRI (Table 4).

Discussion
We found that reduced myocardial perfusion reserve by vasodilator stress CMR was associated with myocardial 
segmental function and interstitial fibrosis, measured by ECV, in low-intermediate risk HCM patients. Reduced 
MRPI correlated with increased wall thickness, reduced segmental wall thickening, increased ECV, even in 
myocardial segments free of LGE. Patients with ischemia had greater prevalence of dynamic LVOT obstruction 
and a higher resting LVOT gradient compared to patients without ischemia. We also assessed the impact of 
myocardial ischemia on exercise capacity and found a higher burden of ischemia to be associated with worsened 
exercise capacity assessed by ventilatory efficiency, but not peak VO2, exercise duration, or anaerobic threshold.

Patients with HCM have long been known to have intramural small vessel disease and myocardial fibrosis by 
histopathological studies. Maron et al.5. described thickening of the vessel walls and a decrease in luminal size. 

Table 1.  Baseline clinical characteristics. Values are mean ± SD, n (%), or median (interquartile range). The 
p values are results for the t-test, Mann Whitney U test, or the chi-square test. BMI, body mass index; ESC: 
European society of cardiology; LVOT, left ventricular outflow tract; MPRI, myocardial perfusion reserve 
index; SCD, sudden cardiac death. *In patients with echocardiography data.

Characteristics—n (%) or mean (SD)

All patients No ischemia Ischemia

P value105 58 (55.2) 47 (44.8)

Age 53.2 (15.4) 54.4 (14.3) 51 (16.6) 0.3

Male gender 63 (60) 37 (63.8) 26 (55.3) 0.4

Caucasian 64 (62.5) 36 (63.2) 29 (61.7) 0.6

ESC risk 2.2 (1.3) 2.3 (1.4) 2.2 (1.3) 0.8

BMI 29.9 (5.9) 30.5 (5.7) 29.1 (6.1) 0.2

Hypertension 57 (54.3) 25 (46.8) 22 (43.1) 0.6

Diabetes 11 (10.5) 9 (15.5) 2 (4.3) 0.1

Current smoker 12 (11.4) 4 (6.9) 8 (17) 0.04

Chest pain 17 (16.2) 10 (17.2) 7 (14.9) 0.6

Dyspnea 44 (41.9) 25 (43.1) 19 (40.4) 0.4

NYHA class III–IV 15 (15.4) 8 (15.1) 7 (15.9) 0.6

Family history of SCD 22 (21) 6 (12.8) 16 (27.6) 0.052

LVOT gradient > 30 mmHg (*) 32 (43.8) 13 (33.3) 19 (63.3) 0.01

LVOT rest gradient (*) 35.6 (38.1) 25.3 (34) 48.6 (39.5) 0.01

Average 16 segment MPRI 3.2 (1.4) 3.9 (1.3) 2.2 (0.7) 0.001
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Figure 3.  Segmental level analysis according to left ventricular end diastolic wall thickness against percent 
thickening (panel A), MPRI (panel B), LGE (panel C), and ECV (panel D). ECV, extracellular volume fraction; 
LGE, late Gadolinium enhancement; MPRI, myocardial perfusion reserve index.

Figure 4.  Segmental level analysis of median MPRI according presence of LGE (panel A), and ECV (panel B). 
ECV, extracellular volume fraction; LGE, late Gadolinium enhancement; MPRI, myocardial perfusion reserve 
index.
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The wall thickening was related to proliferation of medial or intimal components, or both, especially smooth 
muscle cells and collagen. Small vessel disease was also significantly more common in segments having consider-
able myocardial fibrosis, which could account for the association of increased ECV in segments with decreased 
MRPI reported in our study. However, in contrast to our study, the severity of small vessel disease was not dif-
ferent in those with obstructive HCM vs non-obstructive HCM. A potential explanation could be the additive 

Table 2.  Segmental level univariate predictors of MPRI < 2. ECV, extracellular volume fraction; LGE, late 
Gadolinium enhancement; MPRI, myocardial perfusion reserve index.

Characteristic

Predictors of MPRI < 2 (segmental level)

Univariate OR (95% CI) P Multivariate OR (95% CI) P

End diastolic wall thickness (per cm increase) 2.4 (1.8, 3.3) 0.001 2.9 (1.1, 7.3) 0.02

Thickening percent (per 100% increase) 0.78 (0.62, 0.98) 0.03 1.1 (0.5, 2.4) 0.7

LGE per segment (%) 1.001 (0.99, 1.01) 0.6

ECV per segment (%) 1.04 (1.004, 1.097) 0.03 1.05 (1.007, 1.1) 0.02

Table 3.  Global ventricular measures in patients with and without ischemia. The p values are results for the 
t-test, Mann Whitney U test, or the chi-square test. ECV, extracellular ejection fraction; LGE, late Gadolinium 
enhancement; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; LVEF, 
left ventricular ejection fraction; RVEDV, right ventricular end diastolic volume; RVESV, right ventricular end 
systolic volume; RVEF, right ventricular ejection fraction.

Characteristics—n (%) or mean (SD)

All patients No ischemia Ischemia

P value105 58 (55.2) 47 (44.8)

Apical hypertrophy 17 (16.2) 9 (15.5) 8 (17) 0.3

LVEDV (indexed) 32.5 (8) 32.4 (9) 32.5 (7.8) 0.9

LVESV (indexed) 14.7 (9.6) 15.3 (9.4) 13.9 (10.5) 0.2

LV mass (indexed) 105 (34.5) 107.4 (36.2) 109.1 (32.7) 0.8

LVEF 75.8 (7.4) 75.2 (7.1) 76.6 (7.7) 0.3

RVEDV (indexed) 63.6 (22.4) 64.7 (25.8) 63.6 (19.4) 0.3

RVESV (indexed) 23.1 (13.6) 24.6 (14.7) 29.9 (12.2) 0.4

RVEF 63. (9.5) 64 (10.1) 62.1 (9.4) 0.8

ECV (%) 0.29 (0.041) 0.28 (0.037) 0.30 (0.044) 0.04

Total LGE burden (% of LV mass) 4 (8.5) 4 (8.3) 5 (10) 0.4

Figure 5.  Patient level analysis to examine the association of increased burden of ischemia (assessed by number 
of segments with MPRI < 2) and worsened ventilatory efficiency (higher is worse). P value is for multivariable 
linear regression controlling for baseline heart rate. MPRI, myocardial perfusion reserve index; VE/VCO2, ratio 
of minute ventilation to CO2 production or ventilatory efficiency.
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effect of altered coronary hemodynamics in obstructive  HCM7, which could only be studied in vivo and could 
worsen myocardial ischemia in segments with existing small vessel disease. Factor et al.21 also described areas 
of interstitial, perivascular and replacement fibrosis in specimens of HCM patients, with markedly increased 
collagen and strikingly increased and disorganized matrix connective tissue.

The direct visualization and quantitation of replacement fibrosis by LGE techniques has become essential 
in risk-stratifying HCM patients. Vasodilator stress CMR can also detect and quantify perfusion abnormali-
ties in HCM, which were recently linked to LGE  progression13. Our findings are consistent with prior CMR 
studies in showing that myocardial ischemia, reduced thickening, and LGE is more prevalent in hypertrophied 
 segments10,22. In addition, we show that ischemia is associated with LVOT obstruction and associated with 
increased interstitial fibrosis. Despite segments with LGE having a statistically significant reduction in MPRI 
compared to segments without LGE in our study, the overall burden of LGE was similar between the ischemia 
and no ischemia groups, in contrast to other  studies23. Possible explanations for this difference include a smaller 
sample size in other studies, residual enhancement in areas of LGE when performing rest imaging (due to contrast 
given for the stress perfusion imaging) which may affect MRPI calculation, and importantly, that pathophysi-
ologic mechanisms behind ischemia and LGE are not completely interlinked. Based on the association of CMR 
detected ischemia with interstitial fibrosis and reduced segmental function, we hypothesize that assessment of 
ischemia could aid in the detection of early features of decompensation towards heart failure in HCM patients. 
However, further longitudinal studies are needed to further explore this. Considering the association between 
ischemia burden and LVOT obstruction, intensification of therapy to alleviate LVOT obstruction may have an 
effect on reducing ischemic burden, although whether this impacts clinical outcomes requires further study. The 
complex and heterogenous etiologies of ischemia in HCM certainly warrant further investigation.

In our study, myocardial ischemia was associated with decreased ventilatory efficiency on CPET, which is 
known to be a poor prognostic marker both in HF and in  HCM24. However, we did not find significant differ-
ences in exercise duration, peak VO2 or the anaerobic threshold between the ischemic and non-ischemic groups, 
although the latter two were slightly lower in the group with ischemia. This may be due to the small number of 
patients with exercise data and confirmation is needed in larger studies.

Our study has several limitations: this is a cohort from a tertiary referral center and selection bias limits 
the generalizability of the findings. However, the low-intermediate risk population is likely the group where 
stress CMR can influence management and frequency of monitoring. We used semi-quantitative measures of 
ischemia rather than absolute measures of myocardial blood flow, however, semi-quantitative measures were 
found to be more reproducible than quantitative methods and could be performed with commercially available 
 software25. Semi-quantitative measures were also validated against microspheres albeit not in  HCM26. We did 
not assess differences in MRPI in the subendocardium vs subepicardium in our study. However, studies by Tyan 
et al.22, Petersen et al.27, and others have established myocardial ischemia to predominate in the subendocardial 
zones. Data on exercise capacity was limited to a small subgroup which limited analysis; and Holter monitoring, 
genotyping, and clinical outcomes were not described. As this is a relatively low risk population, we observed 
only 3 deaths on follow up. Only a minority of patients enrolled underwent coronary angiography to rule out 
epicardial coronary disease. However, patients with LGE or ischemia in a coronary distribution were excluded; 
and clinical history and available diagnostic testing results were thoroughly evaluated to minimize confound-
ing. No control population was used in this study because our primary aim was to compare HCM patients with 
and without ischemia and multiples studies have already established the differences between HCM patients and 
healthy controls.

conclusions
We found that reduced myocardial perfusion reserve measured by vasodilator stress CMR was associated with 
myocardial segmental function and myocardial interstitial fibrosis, as assessed by ECV, in low-intermediate risk 
HCM patients. While segments with LGE had slightly lower MPRI, quantitative total ischemia burden was not 
associated with replacement fibrosis as total LGE burden. Reduced MRPI correlated with increased wall thick-
ness, reduced segmental wall thickening, increased ECV, even in myocardial segments free of LGE. Patients 
with ischemia have greater prevalence of dynamic LVOT obstruction. In the subset of patients who underwent 

Table 4.  Patient level multivariable regression model to predict extent of ischemia (number of segments with 
MPRI < 2). VE/VCO2, ventilatory efficiency; ECV, extracellular volume fraction; LVOT, left ventricular outflow 
tract.

Predictors of MPRI < 2 (patient level)

Characteristic Multivariate OR (95% CI) P

Age (years) 0.93 (0.84, 1.0) 0.14

Female gender 0.108 (0.001, 11.9) 0.3

VE/VCO2 slope 1.22 (0.85, 1.75) 0.2

LV mass index (g/m2) 0.92 (0.84, 1.02) 0.1

Anteroseptal wall thickness (mm) 0.60 (0.01, 27.1) 0.7

ECV > 30% 2.9 (0.06, 128.8) 0.5

LVOT gradient (mmHg) 1.05 (1.005, 1.1) 0.03
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cardiopulmonary exercise testing, presence of ischemia was associated with worsened ventilatory efficiency but 
no significant difference in exercise duration or peak VO2.
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