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QSpR models for predicting 
the adsorption capacity 
for microplastics of polyethylene, 
polypropylene and polystyrene
Miao Li, Haiying Yu, Yifei Wang, Jiagen Li, Guangcai Ma & Xiaoxuan Wei*

Microplastics have become an emerging concerned global environmental pollution problem. their 
strong adsorption towards the coexisting organic pollutants can cause additional environmental risks. 
therefore, the adsorption capacity and mechanisms are necessary information for the comprehensive 
environmental assessments of both microplastics and organic pollutants. to overcome the lack 
of adsorption information, five quantitative structure–property relationship (QSPR) models were 
developed for predicting the microplastic/water partition coefficients (log Kd) of organics between 
polyethylene/seawater, polyethylene/freshwater, polyethylene/pure water, polypropylene/seawater, 
and polystyrene/seawater. All the QSPR models show good fitting ability (R2 = 0.811–0.939), predictive 
ability (Q2

ext = 0.835–0.910, RMSEext = 0.369–0.752), and robustness (Qcv
2 = 0.882–0.957). They can be 

used to predict the Kd values of organic pollutants (such as polychlorinated biphenyls, chlorobenzene, 
polycyclic aromatic hydrocarbons, antibiotics perfluorinated compounds, etc.) under different pH 
conditions. the hydrophobic interaction has been indicated as an important mechanism for the 
adsorption of organic pollutants to microplastics. in sea waters, the role of hydrogen bond interaction 
in adsorption is considerable. For polystyrene, π–π interaction contributes to the partitioning. The 
developed models can be used to quickly estimate the adsorption capacity of organic pollutants on 
microplastics in different types of water, providing necessary information for ecological risk studies of 
microplastics.

Microplastics, defined as plastics with particle size < 5 mm, have become one of the most prominent global envi-
ronmental pollution  problems1,2. They may originate directly from industrial and personal products, or from the 
degradation of large-size  plastics3. For environmental management, we can ban the direct sources of microplastics 
to a certain extent. However, the wide application of plastic products in daily life makes hundreds of millions of 
tons of plastic waste, which definitely become the precursors of microplastics, be discharged into the environment 
each  year4. As a result, microplastics have been detected in waste  water5,6, natural  water7,8, and even in drinking 
 water9. At present, the pollution of microplastics has become a persistent environmental problem that needs 
to be urgently addressed. Therefore, comprehensive and accurate assessment of their environmental risks (e.g., 
environmental behavior and ecotoxicity) is particularly important for developing effective environmental policies.

Previous studies proved that the large specific surface area makes microplastics show high adsorption capacity 
to the coexisting organic pollutants, such as polycyclic aromatic  hydrocarbons10, polychlorinated  biphenyls11, 
etc. Some ionizable organic pollutants (e.g., antibiotics) also can be adsorbed on  microplastics12. The adsorption 
interaction may further alter the behavior and toxicity of both microplastics and organic pollutants, such as 
inevitably change the distribution of organic pollutants between the environmental phase and the microplastic 
 phase13, or affect the structures and properties of microplastics and organic pollutants and subsequently affect 
their environmental transformations. More importantly, more organic pollutants can be carried by microplas-
tics into organisms because of the adsorption, which may increase the bioconcentration of chemicals and cause 
increased  toxicity14,15. Thus, quantitative measurement of the adsorption for organic pollutions on microplastics 
is necessary for assessing the environmental risk of both microplastics and organic pollutants in a more com-
prehensive and accurate way.
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Generally, equilibrium partitioning coefficient of organic pollutants between microplastics and water (Kd) is 
used to represent the adsorption capacity. It can be determined through adsorption equilibrium  experiment11. 
Previous  studies12,16 indicate that the composition and property of both microplastics and water environment 
media can affect the determined Kd value. Thus, the specific environmental condition should be considered for 
measuring the Kd values, which will greatly increase the amount of experimental work. However, the present 
research on microplastics is still in its infancy, and the adsorption data is scarce, which will certainly limit their 
further research on microplastics and their risk assessment. Therefore, there is an urgent need for a fast and 
accurate method to obtain the Kd values at different adsorption conditions.

Quantitative structure–property relationship (QSPR) has been proved to be reliable for quickly predicting 
the properties of  chemicals17,18. Especially, the polyparameter linear free energy relationship (pp-LFER) models 
based on Abraham descriptors were widely employed to predict the partitioning of chemicals between two phases 
and explore the partition  mechanisms19,20. For example, many researchers predicted the adsorption capacity of 
polymers with large size (e.g., used for equilibrium passive samplers) based on pp-LFER21. However, the large 
difference in polymer size may limit the application of these already developed models to the prediction of the 
adsorption capacity for  microplastics22–24. A few studies established pp-LFER models of log Kd under correspond-
ing experimental conditions based on their measured experimental  values25–27. While, the lack of experimental 
values of Abraham descriptors for many nonpolar chemicals will affect the construction and application of 
pp-LFER  model20,28. In order to expand the application range, different descriptors that can be theoretically 
calculated (e.g., quantum chemical  descriptors29) may be selected to build the Kd prediction models. In addition, 
some ionizable organics such as antibiotics can also be adsorbed by microplastics. The distribution of dissociation 
species varies under different pH conditions, which will lead to different apparent Kd values. Thus, the molecular 
dissociation under certain pH values should be involved in the development of QSPR predictive models.

In this study, we thus collected Kd values for the three most frequently detected microplastics, including 
polyethylene (PE), polypropylene (PP) and polystyrene (PS) in different waters, and employed the n-octanol/
water distribution coefficient at special pH condition (log D), and six quantum chemical descriptors to establish 
new QSPR models. The main purpose is to develop a more practical computational method that can quickly 
predict the adsorption capacity of microplastics towards organic pollutants in water environments with differ-
ent pH values.

Results and discussion
QSpR models for the adsorption of pe. Three QSPR models of log Kd were developed for the adsorp-
tion of PE in seawater, freshwater and pure water, respectively:

where log D is the n-octanol/water distribution coefficient at special pH value, εα is the covalent acidity, εβ is 
the covalent basicity and M′w is the relative molecular mass. As shown in Williams plot for model (3) (Fig. S1 of 
the Supplementary Information, S1), 17α-ethinyl estradiol obtained an absolute SR value (− 3.392) larger than 3 
and it was diagnosed as an outlier. Structural analysis showed that 17α-ethinyl estradiol is significantly different 
from other compounds due to its acetylene group and steroidal ring (unsaturated benzene ring connects with 
saturated six-membered ring). Such discrepancy may be the main cause of predictive inaccuracy. After removing 
it, the following model was yielded:

The statistical parameters of the developed QSPR models are presented in Table 1. For the models (1), (2) 
and (4), R2 = 0.868, 0.903 and 0.811, Q2 = 0.868, 0.903 and 0.811, and RMSE = 0.826, 0.686 and 0.612, respectively. 
The statistical results indicate that the models have high goodness-of-fit. As shown in Table S1, all the VIF values 
(1.000–1.204) are less than 10, indicating there is no multicollinearity for the three models. The fitting plots 
(Fig. 1) state a good consistence between the experimental and predicted log Kd values. As shown in Fig. 2, the 
distributions of predictive errors show no dependence on experimental log Kd values. Thus, the developed models 
have no systematic error, which is also proved by BIAS = 0.000–0.001 (Table 1).

For the simulated external validation, the redeveloped QSPR models (S1–S3) based on 70% experimental 
data and the same descriptors in model (1), (2) and (4) show similar fitting performance (including R2, Q2, 
RMSE and MAE) and regression coefficients with the models developed by the whole dataset (Table 1). Thus, 
the models are statistically stable. As the training subsets are randomly assigned, there is no casual correlation. 
The predictive performance of each rebuilt model to the test set (30% subset, shown by the superscript of b 
in Table 2) are listed in Table 1. The values of Q2, RMSE and MAE indicate excellent predictive quality of the 
developed QSPR models. The results of leave-one-out cross validation (Q2

CV = 0.882–0.940) also show a good 
robustness and internal predictivity.

Williams plots were employed to test the application domain of the QSPR models (1), (2) and (4). The calcu-
lated alert value h* are 0.324, 0.250 and 0. 128, respectively. As shown in Fig. 3, there are three (oxytetracycline, 
sulfadiazine and δ-hexachlorocyclohexane), and one (2,2′,3,3′,4,4′,5-heptachlorobiphenyl) compounds located 

(1)
Seawater: logKd = (0.725 ± 0. 058) × logD + (−36.236 ± 9.034) × εα

+ (−23.169± 4.501) × εβ + (17.856± 2.572)

(2)Freshwater: logKd = (0.667 ± 0.047)× logD + (1.714 ± 0.302)

(3)Pure water: logKd = (0.449 ± 0.041)× logD+ (0.265 ± 0.115) ×M ′
w + (1.855 ± 0.302)

(4)Pure water: logKd = (0.486 ± 0.035)× logD + (2.420 ± 0.199)
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at the right side of h* for models (1) and (4), respectively. As their absolute SR values are < 3, these chemicals are 
not diagnosed to be outliers. In summary, these results indicate the developed QSPR models have excellent gen-
eralization capabilities in their descriptor matrix. Given the molecular structures for developing models, QSPR 
model (1) can be used to predict the log Kd values of organics including polychlorinated biphenyls, antibiotics, 
polycyclic aromatic hydrocarbons, chlorobenzenes, perfluorinated compounds and hexachlorocyclohexanes 
between PE and sea water; model (2) can be employed for predicting the log Kd values of polychlorinated 

Table 1.  Statistical parameters of the regression models and simulated external validation.

N R2 Q2 RMSE BIAS MAE MPE MNE

Model (1) 37 0.868 0.868 0.826 0.000 0.695 1.643 − 1.678

Training set 26 0.857 0.857 0.880 0.000 0.748 1.634 − 1.437

Test set 11 0.902 0.892 0.752 − 0.102 0.664 1.230 − 1.074

Model (2) 24 0.903 0.903 0.686 0.000 0.502 1.044 − 1.983

Training set 17 0.896 0.896 0.732 0.000 0.511 1.059 − 1.895

Test set 7 0.947 0.910 0.661 0.036 0.467 0.970 − 0.998

Model (3) 48 0.800 0.800 0.641 0.000 0.463 2.175 − 1.801

Model (4) 47 0.811 0.811 0.612 0.001 0.470 1.469 − 1.721

Training set 33 0.804 0.804 0.671 0.000 0.522 1.442 − 1.671

Test set 14 0.854 0.835 0.471 − 0.081 0.3838 0.953 − 0.536

Model (5) 35 0.939 0.939 0.381 − 0.003 0.282 1.069 − 0.706

Training set 25 0.945 0.945 0.396 0.000 0.307 0.968 − 0.697

Test set 10 0.898 0.874 0.369 0.047 0.228 0.792 − 0.646

Model (6) 28 0.837 0.837 0.791 0.000 0.634 1.703 − 1.610

Training set 20 0.829 0.829 0.853 0.000 0.669 1.585 − 1.593

Test set 8 0.859 0.843 0.714 0.092 0.654 0.903 − 0.697

Figure 1.  Fitting plots of experimental and predicted log Kd by models (1), (2) and (4).

Figure 2.  Distributions of prediction errors of log Kd calculated by models (1), (2) and (4).
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No Organic compounds

Log Kd a

Log D εα εβ π RefsExp. Pred.

For the adsorption of PE in seawater

1 2,4,4′-trichlorobiphenylb 6.150 5.490 5.690 0.252 0.317 11

2 2,4′,5-trichlorobiphenyl 6.000 5.473 5.690 0.251 0.321 11

3 2,2′,3,5′-tetrachlorobiphenyl 5.890 5.444 6.340 0.259 0.329 11

4 2,2′,5,5′-tetrachlorobiphenyl 5.900 5.497 6.340 0.257 0.329 11

5 2,4,4′,5-tetrachlorobiphenyl 6.660 6.112 6.340 0.246 0.321 11

6 2,3′,4,4′-tetrachlorobiphenylb 6.690 6.048 6.340 0.247 0.322 11

7 2,2′,4,5,6′-pentachlorobiphenyl 6.190 6.160 6.980 0.248 0.336 11

8 2,3,3′,4,4′-pentachlorobiphenylb 6.970 6.561 6.980 0.243 0.325 11

9 2,3′,4,4′,5-pentachlorobiphenyl 7.000 6.634 6.980 0.242 0.324 11

10 3,3′,4,4′,5-pentachlorobiphenyl 7.780 6.920 6.980 0.235 0.322 11

11 3,3′,4,4′,5,5′-hexachlorobiphenyl 8.840 7.450 7.620 0.231 0.327 11

12 2,2′,3,4′,5,6-hexachlorobiphenyl 6.790 6.624 7.620 0.248 0.336 11

13 2,2′,3,4,4′,5′-hexachlorobiphenylb 7.250 6.686 7.620 0.246 0.335 11

14 2,2′,4,4′,5,5′-hexachlorobiphenylb 7.650 6.682 7.620 0.248 0.334 11

15 2,3,3′,4,4′,5-hexachlorobiphenyl 7.860 7.135 7.620 0.238 0.329 11

16 2,2′,3,3′,4,4′,5-heptachlorobiphenyl 7.940 7.137 8.270 0.245 0.338 11

17 2,2′,3,4,4′,5,5′-heptachlorobiphenyl 7.940 7.271 8.270 0.243 0.335 11

18 Dichlorodiphenyltrichloroethaneb 4.986 5.534 5.440 0.238 0.330 32

19 Pentachlorobenzene 5.220 4.876 5.220 0.246 0.339 33

20 Hexachlorobenzene 4.630 5.669 5.860 0.234 0.344 33

21 Phenanthreneb 4.440 4.999 4.350 0.254 0.294 33

22 Fluoranthene 5.520 6.403 4.930 0.226 0.296 33

23 Anthracene 4.770 6.275 4.350 0.230 0.276 33

24 Pyreneb 5.570 6.413 4.930 0.236 0.279 33

25 Chrysene 6.390 6.398 5.520 0.243 0.287 33

26 Benzoapyrene 7.170 7.800 6.110 0.226 0.271 33

27 Dibenzanthraceneb 7.870 7.645 6.700 0.235 0.283 33

28 Benzo[g,h,i]perylene 7.610 8.656 6.700 0.230 0.246 33

29 Pentadecafluorooctanoic acid 2.695 2.673 4.000 0.307 0.300 13

30 Dioctyl phthalate 4.993 6.636 8.390 0.283 0.305 13

31 Trimethoprim 0.811 1.500 0.730 0.280 0.291 12

32 Sulfadiazineb 0.797 0.424 − 1.510 0.275 0.274 12

33 Oxytetracycline 0.623 − 1.055 − 5.590 0.245 0.258 34

34 α-Hexachlorocyclohexane 2.410 2.797 4.260 0.254 0.386 33

35 β-Hexachlorocyclohexane 2.040 3.512 4.260 0.237 0.382 33

36 γ-Hexachlorocyclohexane 2.330 2.879 4.260 0.257 0.378 33

37 δ-Hexachlorocyclohexaneb 2.080 3.175 4.260 0.244 0.386 33

For the adsorption of PE in freshwater

38 2,4,4′-trichlorobiphenyl 5.350 5.509 5.690 11

39 2,4′,5-trichlorobiphenyl 5.110 5.509 5.690 11

40 2,2′,3,5′-tetrachlorobiphenyl 4.920 5.943 6.340 11

41 2,2′,5,5′-tetrachlorobiphenylb 5.010 5.943 6.340 11

42 2,4,4′,5-tetrachlorobiphenylb 5.890 5.943 6.340 11

43 2,3′,4,4′-tetrachlorobiphenyl 6.170 5.943 6.340 11

44 3,3′,4,4′-tetrachlorobiphenyl 6.620 5.943 6.340 35

45 2,2′,4,5,6′-pentachlorobiphenyl 5.610 6.370 6.980 11

46 2,3,3′,4,4′-pentachlorobiphenyl 6.350 6.370 6.980 11

47 2,3′,4,4′,5-pentachlorobiphenyl 6.360 6.370 6.980 11

48 3,3′,4,4′,5-pentachlorobiphenylb 6.940 6.370 6.980 11

49 3,3′,4,4′,5,5′-hexachlorobiphenyl 8.780 6.797 7.620 11

50 2,2′,3,4′,5,6-hexachlorobiphenyl 6.180 6.797 7.620 11

51 2,2′,3,4,4′,5′-hexachlorobiphenylb 6.890 6.797 7.620 11

52 2,2′,4,4′,5,5′-hexachlorobiphenyl 7.040 6.797 7.620 11

53 2,3,3′,4,4′,5-hexachlorobiphenyl 7.170 6.797 7.620 11

Continued
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No Organic compounds

Log Kd a

Log D εα εβ π RefsExp. Pred.

54 2,2′,3,4,4′,5-hexachlorobiphenyl 6.920 6.797 7.620 35

55 2,2′,3,4′,5′,6-hexachlorobiphenylb 6.240 6.797 7.620 35

56 2,2′,3,3′,4,4′,5-heptachlorobiphenylb 7.290 7.230 8.270 11

57 2,2′,3,4,4′,5,5′-heptachlorobiphenyl 7.390 7.230 8.270 11

58 Ciprofloxacin 1.741 0.914 − 1.200 12

59 Trimethoprim 0.923 1.967 0.380 12

60 Sulfadiazine 0.792 1.234 − 0.720 12

61 Amoxicillinb 0.924 0.240 − 2.210 12

For the adsorption of PE in pure water

62 2,2′,5-trichlorobiphenylb 4.900 5.185 5.690 36

63 2,4,4′-trichlorobiphenyl 5.400 5.185 5.690 36

64 2,4′,5-trichlorobiphenyl 5.301 5.185 5.690 37

65 2,2′,4,4′-tetrachlorobiphenyl 5.083 5.501 6.340 37

66 2,2′,5,5′-tetrachlorobiphenyl 5.500 5.501 6.340 36

67 2,2′,3,5-tetrachlorobiphenyl 5.500 5.501 6.340 36

68 2,3′,4,4′-tetrachlorobiphenylb 5.900 5.501 6.340 36

69 2,2′,4,5,5′-pentachlorobiphenyl 6.200 5.812 6.980 36

70 2,3,3′,4′,6-pentachlorobiphenylb 6.100 5.812 6.980 36

71 2,3′,4,4′,5-pentachlorobiphenyl 6.400 5.812 6.980 36

72 2,3,3′,4,4′-pentachlorobiphenyl 6.300 5.812 6.980 36

73 2,2′,4,5′,6-pentachlorobiphenylb 5.019 5.812 6.980 37

74 2,2′,4,4′,5,5′-hexachlorobiphenylb 6.400 6.123 7.620 36

75 2,2′,3,4,4′,5′-hexachlorobiphenyl 6.600 6.123 7.620 36

76 2,2′,3,3′,4,5-hexachlorobiphenylb 6.600 6.123 7.620 36

77 2,2′,3,3′,4,4′-hexachlorobiphenyl 6.500 6.123 7.620 36

78 2,2′,3,4′,5,5′,6-heptachlorobiphenyl 7.100 6.439 8.270 36

79 2,2′,3,4,4′,5,5′-heptachlorobiphenylb 7.000 6.439 8.270 36

80 2,2′,3,3′,4,4′,5-heptachlorobiphenyl 6.900 6.439 8.270 36

81 Chlorobenzeneb 3.080 3.703 2.640 30

82 Benzene 2.190 3.387 1.990 30

83 Toluene 2.910 3.654 2.540 30

84 Ethyl benzoate 2.810 3.548 2.320 30

85 Naphthaleneb 3.770 3.961 3.170 30

86 2-Methylanthracene 5.000 4.797 4.890 36

87 1-methylphenanthrene 4.700 4.797 4.890 36

88 9,10-Dimethylanthraceneb 5.300 5.064 5.440 36

89 3,6-dimethylphenanthrene 5.200 5.064 5.440 36

90 Phenanthrene 4.300 4.534 4.350 36

91 Anthracene 4.300 4.534 4.350 36

92 Oxytetracycline 1.176 − 0.068 − 5.120 34

93 Phenylalanine 3.519 1.798 − 1.280 38

94 Cyclohexane 3.880 3.965 3.180 30

95 Hexane 4.500 4.019 3.290 30

96 Carbamazepineb 2.281 3.514 2.250 39

97 3-(4-methylbenzylidene)camphor 4.726 5.297 5.920 39

98 Triclosanb 3.711 4.685 4.660 39

99 Sulfamethoxazole 2.845 2.653 0.480 40

100 Propanololb 3.362 3.684 2.600 40

101 Sertraline 3.522 4.991 5.290 40

102 p,p’-DDT 5.590 5.720 6.790 41

103 o,p’-DDT 5.760 5.720 6.790 41

104 p,p’-DDD 4.890 5.273 5.870 41

105 o,p’-DDD 4.940 5.273 5.870 41

106 p,p’-DDE 5.770 5.336 6.000 41

107 o,p’-DDE 5.620 5.336 6.000 41

Continued
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Log Kd a

Log D εα εβ π RefsExp. Pred.

108 p,p’-DDMUb 5.370 5.093 5.500 41

For the adsorption of PP in seawater

109 2,3-dichlorobiphenylb 4.980 4.332 5.050 0.321 13

110 2,4′-dichlorobiphenyl 4.980 4.411 5.050 0.317 13

111 2,4,4′-trichlorobiohenyl 5.090 4.873 5.690 0.317 13

112 2,2′,5,5′-tetrachlorobiphenyl 5.090 5.137 6.340 0.329 13

113 2,2′,3,5′-tetrachlorobiphenyl 5.140 5.133 6.340 0.329 13

114 3,3′,4,4′-tetrachlorobiphenyl 5.630 5.358 6.340 0.318 13

115 2,3′,4,4-tetrachlorobiphenyl 5.260 5.277 6.340 0.322 13

116 2,3′,4,4′,5-pentachlorobiphenylb 5.710 5.708 6.980 0.324 13

117 2,3,3′,4,4′-pentachlorobiphenylb 5.770 5.690 6.980 0.325 13

118 2,2′,3,4′,5-pentachlorobiphenyl 5.510 5.526 6.980 0.334 13

119 2,2′,3,5′,6-pentachlorobiphenylb 5.260 5.577 6.980 0.331 13

120 2,3,3′,4′,6-pentachlorobiphenyl 5.630 5.538 6.980 0.333 13

121 2,2′,4,5,5′-pentachlorobiphenylb 5.510 5.594 6.980 0.330 13

122 2,2′,3,3′,4,6′-hexachlorobiphenylb 6.190 5.994 7.620 0.335 13

123 2,3,3′,4,5,6-hexachlorobiphenylb 6.060 5.993 7.620 0.335 13

124 2,2′,4,4′,5,5′-hexachlorobiphenyl 6.190 6.013 7.620 0.334 13

125 2,2′,3,4,4′,5-hexachlorobiphenyl 5.770 5.977 7.620 0.335 13

126 2,2′,3,3′,4,4′-hexachlorobiphenyl 5.450 5.930 7.620 0.338 13

127 2,2′,3,4′,5,5′,6-heptachlorobiphenylb 5.730 6.448 8.270 0.336 13

128 Pentachlorobenzene 4.500 4.098 5.220 0.339 33

129 Hexachlorobenzene 5.010 4.489 5.860 0.344 33

130 Phenanthrene 4.000 4.314 4.350 0.294 33

131 Fluorantheneb 4.790 4.720 4.930 0.296 33

132 Anthracene 4.290 4.678 4.350 0.276 33

133 Pyrene 4.800 5.038 4.930 0.279 33

134 Chrysene 5.510 5.344 5.520 0.287 33

135 Benzoapyrene 6.100 6.079 6.110 0.271 33

136 Dibenz[a,h]anthracene 7.000 6.294 6.700 0.283 33

137 Benzo[g,h,i]perylene 6.690 7.006 6.700 0.246 33

138 Trimethoprim 0.594 1.663 0.730 0.291 12

139 Sulfadiazine 0.853 0.299 − 1.510 0.274 12

140 α-Hexachlorocyclohexane 2.690 2.474 4.260 0.386 33

141 β-Hexachlorocyclohexane 2.180 2.554 4.260 0.382 33

142 γ-Hexachlorocyclohexaneb 2.580 2.633 4.260 0.378 33

143 δ-Hexachlorocyclohexane 2.230 2.483 4.260 0.386 33

For the adsorption of PS in seawater

144 Pentachlorobenzene 5.100 4.070 5.220 1.138 33

145 Hexachlorobenzeneb 5.280 4.545 5.860 1.204 33

146 Phenanthrene 5.390 5.190 4.350 1.518 33

147 Fluorantheneb 5.910 5.528 4.930 1.553 33

148 Anthracene 5.610 5.560 4.350 1.616 33

149 Pyrene 5.840 6.437 4.930 1.794 33

150 Chryseneb 6.630 6.146 5.520 1.661 33

151 Benzo[a]pyrene 6.920 7.347 6.110 1.924 33

152 Dibenz[a,h]anthracene 7.520 7.267 6.700 1.847 33

153 Benzo[g,h,i]perylene 7.150 5.540 6.700 1.388 33

154 4-Fluorobenzoic acid 2.134 1.771 − 0.940 1.112 16

155 Trimethoprim 0.863 2.566 0.730 1.164 12

156 Sulfadiazine 0.833 1.874 − 1.510 1.193 12

157 α-Hexachlorocyclohexane 3.190 3.297 4.260 1.024 33

158 β-Hexachlorocyclohexaneb 2.630 3.515 4.260 1.082 33

159 γ-Hexachlorocyclohexane 3.010 3.416 4.260 1.056 33

160 δ-Hexachlorocyclohexane 2.800 3.221 4.260 1.004 33

Continued
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biphenyls and antibiotics between PE and fresh water; model (4) can be performed to predict the adsorption of 
PE in pure water towards organic pollutants such as polychlorinated biphenyls, antibiotics, polycyclic aromatic 
hydrocarbons, chlorobenzenes, aromatic hydrocarbons and aliphatic hydrocarbons.

The n-octanol/water distribution coefficient at special pH value (log D) was selected for all the three log Kd 
predictive models for PE in seawater, freshwater and pure water. The experimental log Kd values significantly 
correlate with log D, which yields positive correlation coefficients (0.725, 0.667 and 0.486) in models (1), (2) and 
(4). Thus, the organic pollutants with high hydrophobicity will prefer to be adsorbed onto the PE. For example, 
hydrophobic polychlorinated biphenyls (PCBs) with large log D values exhibit higher log Kd values than ioniz-
able organic pollutants (e.g., antibiotics). This is because the hydrophobicity of PE itself makes hydrophobic 
interaction as the main mechanism in the adsorption of PE towards organic pollutants. The same adsorption 
mechanism was also confirmed by Hüffer et al. who established prediction model based on the log Kow values 
of seven organic  compounds30.

For the adsorption of PE in seawater, εα and εβ, which respectively represents covalent acidity and covalent 
basicity, were also selected. The quantum chemical descriptor of εα shows a negative contribution to the log Kd 
values, suggesting that organic pollutant with large εα value prefers to dissolve in water, leading to a decrease 
in log Kd. That means the surface of PE has a weaker H-accepting ability to organic pollutants than water at the 
adsorption  interface31. Similarly, the log Kd values increase with decreasing εβ, indicating that the H-donating 
ability of the PE surface is also weaker than water. It follows that hydrogen bond interaction is also an important 
mechanism for the interactions between PE and organic pollutants in sea water.

Compared with fresh water and pure water, the high salinity of seawater can enhance the dipole–dipole and 
dipole–induced dipole interactions in the system, which can make hydrogen bonds form easily. As a result, εα 
and εβ play more important role in the log Kd value of PE for seawater. In brief, the distribution behavior of the 
studied organics between PE and water is mainly affected by the hydrophobic interaction. For the adsorption in 
seawater, hydrogen bond interaction is another important driving force.

No Organic compounds

Log Kd a

Log D εα εβ π RefsExp. Pred.

161 Perfluoropentanoic acid 2.432 0.835 1.540 0.628 16

162 Perfluorohexanoic  acidb 1.760 1.181 2.220 0.655 16

163 Perfluoroheptanoic acid 1.731 1.492 3.110 0.654 16

164 Perfluorodecanoic acid 2.669 2.480 5.780 0.663 16

165 Pentadecafluorooctanoic acid 3.220 2.055 4.000 0.719 16

166 Heptadecafluorooctanesulfonamide 2.147 2.963 5.800 0.789 16

167 Perfluoro-1-octanesulfonyl  fluorideb 2.792 3.233 6.890 0.758 16

168 Perfluoroundecanoic acid 2.752 2.992 6.670 0.715 16

169 Perfluorododecanoic  acidb 2.720 3.308 7.550 0.715 16

170 Pentacosafluorotridecanoic  acidb 3.162 3.558 8.440 0.697 16

171 Perfluorotetradecanoic acid 3.088 3.904 9.330 0.704 16

Table 2.  Experimental and predicted log Kd values of organic compounds and the values of the selected 
molecular descriptors in models (1), (2), (4), (5) and (6). a The unit of Kd is kg/L; b The compounds used for test 
subset in simulated external validation.

Figure 3.  Williams plots for the applicability domain of models (1), (2) and (4). The hi refers to 
the verse leverage value. (a) oxytetracycline; (b) sulfadiazine; (c) δ-hexachlorocyclohexane; (d) 
2,2′,3,3′,4,4′,5-heptachlorobiphenyl.
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QSpR model for the adsorption of pp. A QSPR model of log Kd was yielded for the adsorption of PP 
in seawater:

Values of R2, Q2, and RMSE are 0.939, 0.939 and 0.381, respectively. Thus, the model (5) show great goodness 
of fitting and can explain 94% variability of the whole dataset. The nonlinearity of model (5) has been proved 
by the VIF values (1.034 for both descriptors, Table S1). As shown in Fig. S2, the predicted log Kd values show 
good consistence with their experimental values. The Fig. S3 and BIAS value (− 0.003) proved that there is no 
dependence of predictive errors on experimental log Kd values.

For the simulated external validation, the regression coefficients (R2 = 0.945, RMSE = 0.396 and MAE = 0.307) 
and statistical parameters of the training subset are similar to that of the whole dataset (Table 1 and model S4). 
Thus, model (5) is statistically stable and there is no casual correlation. As shown in Table 1, the high prediction 
quality of the developed QSPR model can be proved by the predictive performance of the new model (Q2 = 0.874, 
RMSE = 0.369 and MAE = 0.228) to the test subset. Furthermore, model (5 has good robustness and internal 
predictive ability (Q2

CV = 0.957). The Williams plot for the applicability domain of model (5) (Fig. S4) shows 
that there are two compounds (sulfadiazine and γ-hexachlorocyclohexane) located at the right side of h* (0.257). 
While, these two compounds yield absolute SR values < 3, indicating they are not outliers. Thus, model (5) can 
be used to predict the log Kd values of PE in seawater towards the organics including polychlorinated biphenyls, 
chlorobenzenes, hexachlorocyclohexanes, polycyclic aromatic hydrocarbons and antibiotics.

For the adsorption of PP in sea water, log D and εβ were also selected in model (5). Thus, hydrophobic inter-
action and hydrogen bond interaction also play determining roles in the adsorption. However, unlike the log 
Kd predictive model of PE in seawater, the εα representing the covalent acidity is not selected in model (5). Such 
dissimilarity may come from the addition of methyl groups in the PP structure that reduces the difference of 
H-accepting ability between the microplastics and water, consequently resulting in a negligible contribution of 
εα in the adsorption of PP.

QSpR model for the adsorption of pS. For the adsorption of PS in seawater, the experimental log Kd 
values of 28 organic pollutants (of which 14 are ionizable compounds) were used to established predictive model:

As shown in Tables 1 and S1, the obtained statistical parameters (R2 = Q2 = 0.837) prove a good regression 
performance and the calculated VIF values (1.000 for both descriptors) prove no multicollinearity of model (6). 
Meanwhile, the favorable consistence between the experimental and predicted log Kd values was observed in 
Fig. S5. The pattern of predictive errors shown in Fig. S6 reveals no systematic error for model (6), which is also 
verified by BIAS = 0.000 (Table 1).

Based on the training subset (70%), similar regression coefficients and statistical parameters of the new model 
(S5) were obtained (Table 1). The comparable statistics were also received for the test set. Moreover, Q2

CV value 
(0.898) of the leave-one-out cross validation was obtained, higher than the acceptable criteria. Thus, model (6) has 
satisfactory robustness and internal predictive ability. As shown in the Fig. S7 of Williams plot, three compounds 
(fluoranthene, chrysene and pentacosafluorotridecanoic acid) with ׀SR3 > ׀ locate at the right side of h* (0.321), 
indicating that they are not outliers. In conclusion, model (6) can be employed for predicting the adsorption 
carrying capacity (log Kd) of PS for organic pollutants (especially for ionizable organic pollutants) within the 
application domain in seawater. In previous  study20, the influence of dissociation on log Kd for ionizable organic 
pollutants was not considered in the construction of predictive models. In fact, the physicochemical proper-
ties (e.g., hydrophobicity) of various dissociation species are quite different, which may significantly affect the 
partition of ionizable organic pollutants between PS and seawater. Therefore, the predictive models established 
without considering the effect of pH on the distribution of dissociation species is only applicable to predict log 
Kd values under the experimental water pH. However, the QSPR model (6) constructed in this study can expand 
the predictive application to various pH values. Limited by the number of ionizable compounds and pH range 
used for model construction, the developed models are more suitable for the pH range of natural waters (6–9).

The presence of log D in model (6) proves that hydrophobic interaction also can enhance the adsorption of 
organics on PS in seawater. In addition to log D, π was also selected. The experimental log Kd values positively 
correlate with π (3.766) in the QSPR model, indicating that chemicals with larger π value preferred to be adsorbed 
onto PS in seawater. As shown in Tables 2 and S2, the organic compound, which contains strong π–electron 
conjugation in the structure, generally has a large π value. Thus, it can be inferred that the π − π interaction also 
contributes to the adsorption for PS. The phenyl groups in the PS structure produce higher π–π interactions 
with organic chemicals than PE and PP, thus yielding higher log Kd values (Table 2). For example, the log Kd 
value of phenanthrene onto PS (5.50) is much higher than that on PE (4.440) and PP (4.000) in sea water. In 
brief, hydrophobic interaction and π–π interaction play important roles in the adsorption of PS in sea water.

Materials and methods
collection of experimental Kd values. In order to improve the predictive accuracy, the properties of 
microplastics and water environment media were considered by screening and classifying the experimental data 
used for modeling. For the adsorption of organic pollutants on PE, 37, 24 and 48 experimental Kd values were 
collected for seawater, freshwater, and pure water, respectively. For the adsorption of PP and PS in seawater, 35 
and 28 experimental Kd values were selected, respectively. All these collected data are listed in Table 2. The unit 
of all Kd values was unified to kg/L. As the value of Kd is quite large, its logarithmic form (log Kd) was used for 

(5)Seawater: logKd = (0.751± 0. 035)× logD + (−19.323± 2.072)× εβ + (6.735± 0.663)

(6)Seawater: logKd = (0.357± 0. 062)× logD + (3.766± 0.384)× π + (−2.080± 0.540)
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developing QSPR models. Experimental conditions for determining Kd values are shown in Table S3. Molecular 
structures for all organic pollutants, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, 
aromatic hydrocarbons, chlorobenzenes, hexachlorocyclohexanes, aliphatic hydrocarbons, antibiotics and per-
fluorinated compounds, are shown in Table S2.

Molecular structural parameters. Based on the previous  studies20,30, hydrophobic interaction, hydrogen 
bond and π-π interaction may play important roles in the adsorption of microplastics towards organic pollutants. 
Thus, the n-octanol/water distribution coefficient at special pH value (log D), molecular mass (M′w = Mw/100) 
and six quantum chemical descriptors were calculated for developing QSPR models (Table  S4). Six selected 
quantum chemical descriptors include molecular volume (V′ = V/100), the ratio of average molecular polariz-
ability and molecular volume (π = α/V), the most positive atomic charge on H atom (qH+), the most negative 
atomic charge (q−), covalent acidity (εα = ELUMO − EHOMO-water), and covalent basicity (εβ = ELUMO-water − EHOMO) 
where EHOMO refers to the highest occupied molecular orbital energy and ELUMO stands for the lowest unoc-
cupied molecular orbital energy. For non-dissociable compounds, the n-octanol/water distribution coefficients 
are the same for the different pH values. While for the ionizable organics, different log D values for the relevant 
experimental conditions were obtained from  SciFinder42. The values of Mw, V, π, q+, q–, EHOMO and ELUMO were 
extracted from the Gaussian output files.

The structures of all the molecules were optimized at B3LYP/6-31G(d,p) level using Gaussian 09 program 
 package43, and confirmed to be local minima by vibrational frequency analyses with the same method. For the 
ionizable compounds, all dissociation species may exist under the experimental pH conditions were optimized. 
The apparent value of each quantum chemical descriptor at special pH value can be calculated as:

where X stands for the quantum chemical descriptor, αi is the fraction of each dissociation species under the 
experimental pH conditions (Table S3), which can be calculated through the pKa values of the ionizable com-
pounds (Table S5).

Model development and validation. The initial prediction model can be expressed as follows:

where d, v, m, a, b, p, f and e are fitting coefficients, and g is a regression constant. The model development and 
variable filtration were performed by multiple linear regression (MLR)44 with a step-wise algorithm embedded 
in soft package SPSS 21.0. The statistical parameters squared correlation coefficient (R2) and root-mean-square 
error (RMSE) were calculated to characterize the fitting performance and predictive squared correlation coef-
ficient (Q2) was used to represent the predictive ability of the developed QSPR  models45. Statistically, the values 
of R2 and Q2 should be > 0.5. The larger value of Q2 indicates the predictive ability of model is stronger. The col-
linearity of the employed parameters was assessed by the variance inflating factor (VIF) values. The calculation 
details for all statistical parameters were listed in the Text S1.

The statistical robustness and predictive ability of the developed models were verified by the simulated exter-
nal validation and leave-one-out cross  validation46. The data set was randomly divided into a 70% training set 
and a 30% test  subset25,29 (shown in Table 2). Based on the training set, a new model was rebuilt with the same 
descriptors selected by the whole dataset. Subsequently, log Kd values in the test subset were predicted and evalu-
ated by the new models. The values of R2, Q2 and RMSE of the simulated external validation were calculated to 
estimate the predictive  performance47. To assess the model robustness, cross-validated correlation coefficients 
(Q2

CV) were calculated with Weka 3.8.048.

outliers and application domain. The Williams plot was performed to visualize the application domain 
and determine the  outliers49,50, where the leverage value (hi) was set as horizontal coordinate and standardized 
predictive residuals (SR) was set as vertical coordinate. Hat-matrix was used to calculate the hi  values51. When 
the absolute value of SR is larger than 3, the relevant compound was designated as outlier and should be removed. 
Warning value (h*) is defined as h* = 3p/n51, where p and n are the number of descriptors and compounds in the 
developed model, respectively. If hi > h*, the compound is far away from the descriptor-matrix center. Thus, the 
Williams plot also can be used to describe the distribution of chemicals in the whole descriptor matrix.

conclusions
QSPR models were established for predicting the adsorption capacity of organic pollutants on PE in seawater, 
freshwater and pure water, on PP in seawater and on PS in seawater. The statistical results and application domain 
validations indicate the satisfactory goodness-of-fit, robustness and predictive ability of the predictive models. 
The constructed models have two significant advantages: (1) the descriptors used in the models are not dependent 
on experimental values and can be simply obtained based on the structure of organic pollutants; (2) the models 
can be used to predict the log Kd values of ionizable compounds at various pH values.

Based on the descriptors selected in the predictive models, main adsorption mechanisms between micro-
plastics and organic pollutants were explored. For all the systems studied here, hydrophobic interaction has 
been proved to be an indispensable factor for the adsorption. Hydrogen bond interaction and π–π interaction 
are also considerable mechanisms for the adsorption onto PE and PP in sea water and the adsorption onto PS 
in sea water, respectively. Thus, this study provides us feasible tools to rapidly and easily predict the adsorption 

(7)XpH =

∑
αiXi

(8)logKd = d logD + vV ′
+mM ′

w + aεα + bεβ + pπ + fq+ + eq− + g
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capacity of organic pollutants onto different microplastics in various waters, and also reveals the possible adsorp-
tion mechanisms. It will be helpful for further investigation of the environmental risks of both microplastics 
and their coexisting organic pollutants. Of course, the application scope of the predictive models constructed in 
this study is still limited as the limitation of experimental data. Therefore, it is still necessary to develop QSPR 
models for other types of microplastics in the further, or develop predictive method that does not depend on 
experimental data.

Received: 28 March 2020; Accepted: 10 August 2020
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