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novel miRnA signature 
for predicting the stage 
of hepatocellular carcinoma
Srinivasulu Yerukala Sathipati1,2 & Shinn‑Ying Ho1,3,4*

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Recently, 
microRnAs (miRnAs) are reported to be altered and act as potential biomarkers in various cancers. 
However, miRNA biomarkers for predicting the stage of HCC are limitedly discovered. Hence, we 
sought to identify a novel miRnA signature associated with cancer stage in Hcc. We proposed a 
support vector machine (SVM)-based cancer stage prediction method, SVM-HCC, which uses an 
inheritable bi‑objective combinatorial genetic algorithm for selecting a minimal set of miRnA 
biomarkers while maximizing the accuracy of predicting the early and advanced stages of Hcc. SVM‑
HCC identified a 23-miRNA signature that is associated with cancer stages in patients with HCC and 
achieved a 10-fold cross-validation accuracy, sensitivity, specificity, Matthews correlation coefficient, 
and area under the receiver operating characteristic curve (AUC) of 92.59%, 0.98, 0.74, 0.80, and 
0.86, respectively; and test accuracy and test AUC of 74.28% and 0.73, respectively. We prioritized the 
miRNAs in the signature based on their contributions to predictive performance, and validated the 
prognostic power of the prioritized miRnAs using Kaplan–Meier survival curves. the results showed 
that seven miRNAs were significantly associated with prognosis in HCC patients. Correlation analysis 
of the miRNA signature and its co-expressed miRNAs revealed that hsa-let-7i and its 13 co-expressed 
miRNAs are significantly involved in the hepatitis B pathway. In clinical practice, a prediction model 
using the identified 23-miRNA signature could be valuable for early-stage detection, and could also 
help to develop miRnA‑based therapeutic strategies for Hcc.

Hepatocellular carcinoma (HCC) is the most common type of liver cancer, and the third leading cause of cancer 
deaths  worldwide1. Hepatitis B and C viral  infection2,3,  cirrhosis4, heavy  alcoholism5,  hemochromatosis6 and 
alpha-1-antitrypsin  deficiency7 are risk factors associated with HCC. Treatment conditions depend on cancer 
stage, availability of treatment resources, liver function, and clinical  expertise1. Despite advances in treatment 
conditions, the overall survival rate of patients with HCC has not  improved8, largely because most cases of HCC 
are diagnosed at an advanced  stage9. Early-stage detection of HCC creates opportunities to use a wider range 
of treatment  options10. Hence, early-stage detection of HCC plays a critical role in guiding treatment decisions. 
Identification of biomarkers for early-stage detection will help to improve treatment strategies and ensure that 
more patients receive the proper treatment.

Recently, microRNAs (miRNAs) have attracted interest as biomarkers due to their critical roles in cancer 
development and prognosis. MiRNA dysregulation is observed in multiple types of cancers: in lung cancer, 
hsa-let-7a expression is associated with poor  survival11. MiRNAs have been used as biomarkers in  HCC12. Hsa-
miR-155 is highly expressed in breast and colon  cancers13. Differential expression of miRNAs has been observed 
in ovarian  cancer14. In gastric cancer, a seven-miRNA signature has been used to predict overall survival and 
relapse-free  survival15.

Several studies have reported dysregulation of miRNAs in HCC. For example, miR-222 deregulation is 
observed in HCC cell  lines16. In humans, miR-224 targets glycine N-methyl transferase and plays an important 
role in HCC  tumorigenesis17. A 20-miRNA signature is associated with survival in HCC  patients18. Moreover, 
some miRNAs are thought to have therapeutic potential in  HCC19. Previously, Toffannin et al., used miRNA 
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profiling of 89 HCC patients, followed by unsupervised hierarchical clustering, to categorize HCC into three sub 
 classes20. Machine learning models have been used to predict the treatment response of trans-arterial chemoem-
bolization in patients with  HCC21. The random forest method and multiple urine DNA biomarkers have been 
used for HCC  screening22. A. Nagy et al. identified 223 miRNAs as prognostic biomarkers based on previous 
literature and validated their prognostic power using the independent datasets; in which, 55 individual miRNAs 
are significantly associated with the overall survival of  HCC23. Previously developed methods and studies have 
mainly focused on identifying differentially expressed genes and survival variants in HCC. Early stage detection 
and diagnosis of cancer remains a challenge for clinicians. MiRNAs are considered as potential tumor markers 
due to their tissue specificity and capability to predict clinicopathological  parameters24. Several studies have been 
demonstrated that miRNAs have the potential to be new biomarkers in various cancers for early  detection25–28. 
Moreover, miRNAs can be detectable not only from tissue samples but also from a wide range of biological sam-
ples, such as urine, blood plasma, and serum. However, few studies have attempted to predict the stage of HCC 
using the genomic profiling. Therefore, this study aims to identify a miRNA signature consisting of a small set 
of miRNA biomarkers that can predict the cancer stage of patients with HCC, so that this miRNA signature can 
be useful for developing gene-based target therapies in HCC.

In this study, we proposed a method for predicting the early and advanced stages of HCC using miRNA 
expression profiles. We retrieved 348 expression profiles of 540 miRNAs (348*540) from 348 HCC patients from 
The Cancer Genome Atlas (TCGA) database. Our dataset includes 258 patients with early-stage disease and 
90 patients with advanced HCC. We utilized a support vector machine (SVM)-based  classifier29, SVM-HCC, 
which incorporated with an inheritable bi-objective combinatorial genetic algorithm (IBCGA)30 to identify a 
miRNA signature capable of distinguishing early-stage patients from advanced-stage HCC. Though optimiza-
tion technique of the SVM-HCC was adopted from our previous  study31, identified miRNA signature is novel in 
HCC stage prediction. The main purpose of this study is to identify a miRNA signature associated with cancer 
stage of patients with HCC. We ranked the miRNAs in the signature based on their contributions to predictive 
performance, and subjected the 10 top-ranked miRNAs to further analysis. Next, to investigate the prognostic 
power of the identified miRNA signature among the patients with HCC, Kaplan–Meier (KM) survival analysis 
was performed. The expression difference of the 10 top-ranked miRNAs was compared between cancer and 
normal samples. The biological significance of the identified miRNA signature was analyzed using Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) annotations. Finally, we identified 
co-expressed miRNAs to the miRNA signature to provide the more information on its overall impact on HCC.

Results and discussion
The proposed method, SVM-HCC, distinguished patients with HCC into early-stage and advanced-stage groups 
based on their miRNA expression profiles. We used a dataset containing 540 miRNA expression profiles from 
348 HCC patients, of whom 248 had early-stage and 90 had advanced-stage HCC. SVM-HCC, used a feature 
selection algorithm (IBCGA) to select a significant miRNA signature associated with early and advanced stages 
of HCC. The system flowchart of the overall process is depicted in Fig. 1.

We compared SVM-HCC with standard machine learning methods including sequential minimal optimiza-
tion (SMO), multilayer perceptron (MLP), naïve Bayes, LibSVM, and random forest. For the feature selection, 
we used the Ranker search and correlation attribute evaluation method of Waikato Environment for Knowl-
edge Analysis (Weka) to select 30 features to classify early-stage and advanced-stage HCC patients. SVM-HCC 
performed well relative to these machine learning methods in terms of training accuracy. Using the training 
set (n = 348), SVM-HCC achieved a mean training accuracy, sensitivity, specificity, and Matthews correlation 
coefficient (MCC) of 89.56 ± 1.27%, 0.94 ± 0.01, 0.73 ± 0.03, and 0.71 ± 0.03, respectively. SVM-HCC achieved the 
best training accuracy, sensitivity, specificity, MCC, and area under the receiver operating characteristic curve 
(AUC) of 92.24, 0.96, 0.81, 0.79, and 0.90, respectively. The comparison results are shown in Table 1.

Figure 1.  System flowchart representing the dataset, SVM-HCC method and miRNA signature identification.
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Next, to observe the difference in the prediction performance among the standard machine learning methods 
with the feature size, we used the greedy stepwise search and Cfs Subset Evaluator attribute evaluation method 
of Weka to select 19 features to classify early and advanced stages of patients with HCC. The prediction perfor-
mance results shown that only a slight difference in the prediction accuracies was observed for the SMO, MLP, 
naïve Bayes, LibSVM, and random forest methods when compared to the Table 1. SMO, MLP, naïve Bayes, 
LibSVM, and random forest methods shown the accuracy differences of 1.15%, 1.43%, 0.86%, 2.87%, and 1.15%, 
respectively. However, there was no larger difference observed for the AUCs among these methods, shown in 
Supplementary Table S1.

the comparison of AUcs. Further, statistical analysis was performed to compare the prediction ability of 
SVM-HCC with some machine learning methods using the AUC comparison method proposed by Hanley and 
 McNeil32. This analysis provides the statistical test comparison between the AUC of SVM-HCC and the AUCs 
of other machine learning methods. When compared the statistical test AUC of SVM-HCC (AUC = 0.9), SMO 
obtained a standard error (SE), AUC area difference (AUCd), Z value, and a p value of 0.03, 0.40, 10.29, and 
p < 0.001, respectively; MLP obtained SE, AUCd, Z value, and a p value of 0.033, 0.3, 8.09, and p < 0.001, respec-
tively; naïve Bayes obtained SE, AUCd, Z value, and a p value of 0.029, 0.19, 5.71, and p < 0.001, respectively; 
LibSVM obtained SE, AUCd, Z value, and a p value of 0.034, 0.36, 9.34, and p < 0.001, respectively; and random 
forest obtained SE, AUCd, Z value, and a p value of 0.028, 0.18, 5.48, and p < 0.001, respectively. The statistical 
analysis shows that SVM-HCC method is significantly (p < 0.001) different and performed better when com-
pared with the other standard machine learning methods, shown in Supplementary Table S2.

We performed 30 independent runs of SVM-HCC to select a robust miRNA signature using the appearance 
 score33, which was calculated based on the frequency of each feature over the independent runs. The most robust 
miRNA signature had an appearance score of 6.17. SVM-HCC identified a 23-miRNA signature associated with 
the early and advanced stages of HCC, and achieved a tenfold cross-validation (10-CV) accuracy, sensitivity, 
specificity, MCC and AUC of 92.59%, 0.98, 0.74, 0.80, and 0.86, respectively, and a test accuracy and test AUC of 
74.28% and 0.73, respectively. The predictive performance of SVM-HCC was evaluated using a receiver operating 
characteristic (ROC) curve, and is shown in Fig. 2. Additionally, to investigate the effect of clinical characteristics 
on the prediction performance, we added some of the clinical characteristics of patients with HCC such as gender, 
risk factors, race, hepatitis serology, and vital status to the miRNA signature for the stage prediction. However, 
addition of these clinical features did not improve the prediction performance of SVM-HCC.

Ranking of miRnA signature. We ranked the miRNA signature identified by SVM-HCC by main effect 
difference (MED)  analysis34. The larger MED score indicates the higher contribution towards the prediction 
accuracy. In this analysis, miRNAs in the signature were ranked based on their MED scores. The miRNA sig-
nature contains 23 miRNAs: in order of decreasing MED scores, hsa-miR-550a, hsa-miR-549, hsa-miR-518b, 
hsa-miR-512, hsa-miR-1179, hsa-miR-574, hsa-miR-424, hsa-miR-4286, hsa-let-7i, hsa-miR-320a, hsa-miR-17, 
hsa-miR-299, hsa-miR-3651, hsa-miR-2277, hsa-miR-621, hsa-miR-181c, hsa-miR-539, hsa-miR-106b, hsa-
miR-1269, hsa-miR-139, hsa-miR-152, hsa-miR-2355, and hsa-miR-150. Rankings of miRNA signatures and 
MED scores are provided in Table 2. According to the MED analysis, the 10 top-ranked miRNAs contributed 
better towards prediction performance when compared to the remaining miRNAs of the signature. Hence, we 
subjected the 10 top-ranked miRNAs to further analysis.

Validation of top‑ranked miRnA prognostics in Hcc. We validated the prognostic power of the 10 
top-ranked miRNAs in HCC using Kaplan–Meier (KM) survival curves generated by the KM  plotter35. We 
selected overall survival data available for 376 patients from TCGA and 166 patients from the GSE31384 dataset, 
while the median follow-up time of patients in TCGA and GSE31384 was 19.6 and 34 months, respectively. Four 
of the ten top-ranked miRNAs were significantly associated with overall survival of HCC patients in the TCGA 
dataset. These four miRNAs, hsa-miR-550a, hsa-miR-574, hsa-miR-424, and hsa-let-7i, had p values of 4.9e-07, 
0.016, 0.024, and 0.032 and hazard ratios of 2.38, 1.64, 1.57, and 1.49, respectively. Three of the top-ranked miR-
NAs were significantly associated with overall survival of HCC patients in the GSE31384 dataset, hsa-miR-549, 
hsa-miR-518, and hsa-miR-512, with p values of 0.0021, 0.0022, and 0.0021 and hazard ratios of 2.12, 2.03, and 
0.48, respectively. The KM survival curves for the seven miRNAs are shown in Fig. 3. The KM survival curves 

Table 1.  Comparison of predictive performance of SVM-HCC with those of other machine learning methods.

Method Training accuracy (%) Selected miRNAs Sensitivity Specificity MCC AUC 

SMO 72.70 30 0.96 0.05 0.03 0.50

MLP 66.09 30 0.79 0.27 0.07 0.60

Naïve Bayes 73.27 30 0.82 0.46 0.3 0.71

LibSVM 74.71 30 0.99 0.11 0.15 0.54

Random forest 75.28 30 0.94 0.21 0.22 0.72

SVM-HCC 92.24 37 0.96 0.81 0.79 0.90

SVM-HCC-Mean 89.56 ± 1.27 35 ± 3.9 0.94 ± 0.01 0.73 ± 0.03 0.71 ± 0.03 0.86 ± 0.02
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for the remaining three miRNAs, hsa-miR-1179, hsa-miR-4286, and hsa-miR-320a are shown in Supplementary 
Fig. S1.

Furthermore, we predicted the prognosis of patients with HCC using remaining 13 miRNAs of the sig-
nature across TCGA and GSE31384 datasets. Seven of these 13 miRNAs were significantly associated with 
the prognosis of patients with HCC across TCGA dataset. Totally, there were 11 of the 23-miRNA signature 
including, hsa-miR-550a (p < 0.001), hsa-miR-574 (p = 0.016), hsa-let-7i (p = 0.03), hsa-miR-424 (p = 0.024), hsa-
miR-2277 (p = 0.017), hsa-miR-539 (p = 0.05), hsa-miR-106b (p = 0.011), hsa-miR-1269a (p = 0.001), hsa-miR-139 

Figure 2.  ROC curves for evaluating the predictive performance of SVM-HCC. The ROC curve for Training 
dataset (AUC = 0.90 using 348-patient HCC cohort), 10-CV (AUC = 0.86 using 243-patient HCC cohort), and 
test dataset (AUC = 0.73 using 105-patient HCC cohort).

Table 2.  Ranking of miRNAs and their corresponding scores, using MED analysis.

Rank MiRNA MED score

1 hsa-miR-550a 60.91

2 hsa-miR-549 54.72

3 hsa-miR-518b 51.15

4 hsa-miR-512 50.67

5 hsa-miR-1179 27.73

6 hsa-miR-574 27.02

7 hsa-miR-424 26.62

8 hsa-miR-4286 24.72

9 hsa-let-7i 24.16

10 hsa-miR-320a 22.97

11 hsa-miR-17 22.81

12 hsa-miR-299 22.02

13 hsa-miR-3651 17.02

14 hsa-miR-2277 13.76

15 hsa-miR-621 13.61

16 hsa-miR-181c 13.05

17 hsa-miR-539 12.97

18 hsa-miR-106b 10.83

19 hsa-miR-1269 8.53

20 hsa-miR-139 6.70

21 hsa-miR-152 6.62

22 hsa-miR-2355 3.76

23 hsa-miR-150 2.10
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(p < 0.001), hsa-miR-2355 (p = 0.03), and hsa-miR-150 (p = 0.03) were significantly associated with prognosis of 
patients with HCC across TCGA dataset.

Among the 23-miRNA signature, 10 miRNAs including, hsa-miR-549 (p = 0.002), hsa-miR-518b (p = 0.002), 
hsa-miR-512 (p = 0.011), hsa-miR-574 (p = 0.002), hsa-miR-299 (p < 0.001), hsa-miR-181c (p = 0.003), hsa-
miR-539 (p = 0.001), hsa-miR-106b (p < 0.001), hsa-miR-152 (p < 0.001), and hsa-miR-150 (p = 0.031) were sig-
nificantly associated with prognosis of patients with HCC across GSE31384 dataset.

Expression difference of top ranked miRNAs in tumor vs normal. We then compared the expression 
levels of the 10 top-ranked miRNAs in tumor and normal samples using UALCAN web  portal36, and observed 
a significant difference in miRNA expression levels between the two groups. Of the top 10 ranked miRNAs, 
eight miRNAs, hsa-mir-550a, hsa-miR-518b, hsa-miR-512, hsa-miR-574, hsa-miR-424, hsa-miR-4286, hsa-let-
7i, hsa-miR-320a are significantly expressed in tumor and normal samples, a p value < 0.05 was considered a 
threshold to describe the statistical significant. Among, two of the ten top-ranked miRNAs (hsa-miR-549 and 
hsa-miR-1179), the role of hsa-miR-549 was not reported earlier in HCC, and hsa-miR-1179 was not signifi-
cantly expressed between the tumor and adjacent normal tissues of the TCGA cohort. However, hsa-miR-549 
contributed better towards predicting the stage of HCC (MED rank 2) and possessed a significant role in other 
 cancers37–39. Though, the expression of hsa-miR-1179 was not significant between the tumor and adjacent nor-
mal tissues of the TCGA cohort, a Quantitative Real Time-Polymerase Chain Reaction study on 40 HCC samples 
reported that hsa-miR-1179 was significantly expressed between HCC and matched normal tissues, and plays an 
important role in HCC progression and  metastasis40. The expression levels of the 10 top-ranked miRNAs in the 
tumor and normal samples are listed in Supplementary Table S3. Box plot representation of relative expression 
difference of top ranked miRNAs in tumor and normal samples is given in Supplementary Fig. S2. The individual 
data points of the expression analysis can be accessed from the UALCAN web portal.

Further, we attempted to distinguish the tumor and normal samples using the identified miRNA signature. 
We used a dataset consisting of 32 normal samples and randomly selected 32 tumor samples, and LibSVM of 
the WEKA to distinguish the tumor and normal samples. LibSVM achieved a leave-one-out accuracy of 100% 
to distinguish tumor and normal samples using the 23-miRNA signature.

Significance of top-ranked miRNAs in cancer. Nine of the ten top-ranked miRNAs are involved in 
HCC and various other cancers; we summarize their functions in HCC, based on reports in the experimentally 
validated literature, in Supplementary Table S4.

Hsa-miR-549, the second-ranked miRNA, is differentially expressed in cancer cells relative to normal cells. 
For example, hsa-miR-549 is highly expressed in colon  cancer37, colorectal  cancer38, and breast  cancers39, with 
log–fold changes of 0.51, 1.75, and 0.66, respectively, relative to normal cells. However, the role of hsa-miR-549 
in HCC has not been reported previously. Our results suggest that hsa-miR-549 is significantly associated with 
overall survival in HCC patients, and that it actively participates in other major cancers. Hence, it is a worthy 
subject of further investigation.

Other than the 10 top-ranked miRNAs, several of the remaining miRNAs in the signature are actively involved 
in HCC and other cancers. For example, expression of hsa-miR-11 is associated with poor prognosis in HCC 
 patients41, whereas hsa-miR-299 acts as a tumor suppressor in  HCC42. Hsa-miR-3651, hsa-miR-621, hsa-miR-
181c, hsa-miR-539, hsa-miR-106b, hsa-miR-1269, hsa-miR-139, hsa-miR-152, and hsa-miR-150 are all signifi-
cantly involved in  HCC43–50.

We constructed a miRNA target interaction network using  Cytoscape51 to investigate regulatory interactions 
compiled in the miRTarBase database. The top-ranked miRNAs annotated with miRBase accession numbers and 
predicted miRNA interactions using miRTarBase was 2,274. The predicted miRNA target interaction network 
is shown in Supplementary Fig. S3.

KeGG pathway and gene ontology enrichment analysis. Next, we investigated the biological signif-
icance of the top-ranked miRNAs using KEGG pathway and GO annotation analysis. First, we used the DIANA-
miRPath web  tool52 to examine their functional annotations. Fisher’s exact test was used for the enrichment 
analysis. The 10 top-ranked miRNAs are involved in several pathways, the most significant of which are fatty 
acid metabolism, fatty acid biosynthesis, fatty acid elongation, endocytosis, fatty acid degradation, pathways 
in cancer, lysine degradation, viral carcinogenesis, glioma, and the Hippo signaling pathway. The top-ranked 
miRNAs, along with the numbers of predicted target genes in each pathway, are listed in Table 3. The heatmap 
of the 10 top-ranked miRNAs enriched in KEGG pathways is shown in Fig. 4(A) and the number of target genes 
involved in pathways is shown in Fig. 4(B). The 23-miRNA signature enriched in KEGG pathways is shown in 
Supplementary Fig. S4.

Second, we analyzed the involvement of the top-ranked miRNAs in biological pathways, molecular func-
tions, and cellular components using GO annotations. We found that these miRNAs are significantly involved in 
biological pathways including the mitotic cell cycle, blood coagulation, cellular protein metabolic process, mem-
brane organization, epidermal growth factor receptor signaling pathway, and cell death, with p values < 1.11E-16. 
They are also involved in molecular functions including protein binding transcription factor activity, nucleic 
acid binding transcription factor activity, ion binding, and RNA binding. Finally, they are involved in cellular 
components including cytosol, protein complex, neoplasms, and organelles. Details of these associations are 
given in Supplementary Table S5, and the enrichment of the 23-miRNA signature in GO annotations is shown 
in Supplementary Fig. S5.
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MiRnAs co‑expressed with the top‑ranked miRnAs. Identifying more relevant miRNAs may lead to 
the identification of robust miRNAs that are essential for cancer. Moreover, correlated miRNAs may represent 
similar biological processes. In its optimization process, SVM-HCC selects a minimal set of biomarkers; hence 
it selected 23 biomarker miRNAs as a signature associated with HCC stage. However, it might not select some 
important biomarker miRNAs that are also associated with cancer stage in patients with HCC; also, the prior-
ity of miRNA selection may change with the size and number of miRNA profiles used. Hence, to select robust 

Table 3.  KEGG pathway analysis of the 10 top-ranked miRNAs.

KEGG pathway Genes MiRNAs Adjusted p value

Fatty acid metabolism 10 3  < 0.001

Fatty acid biosynthesis 4 2  < 0.001

Fatty acid elongation 1 1  < 0.001

Endocytosis 45 3  < 0.001

Fatty acid degradation 1 1  < 0.001

Pathways in cancer 141 4  < 0.001

Lysine degradation 19 3  < 0.001

Viral carcinogenesis 55 2  < 0.001

Glioma 29 4  < 0.001

Hippo signaling pathway 55 3  < 0.001

Chronic myeloid leukemia 33 4  < 0.001

Hepatitis B 55 3  < 0.001

Proteoglycans in cancer 73 2  < 0.001

TGF-beta signaling pathway 29 3  < 0.001

Adherens junction 33 3  < 0.001

Renal cell carcinoma 24 2  < 0.05

Prostate cancer 41 3  < 0.05

Estrogen signaling pathway 27 3 0.05

Thyroid cancer 12 3 0.07

Cell cycle 51 2 0.06

Transcriptional misregulation in cancer 46 3 0.18

Colorectal cancer 27 3 0.12

Figure 4.  KEGG pathway analysis of the 10 top-ranked miRNAs. (A) Heatmap showing enrichment of the 
10 top-ranked miRNAs in KEGG pathways. (B) The 10 top-ranked miRNAs involved in KEGG pathways 
are shown in the vertical dimension, and the number of target genes involved in pathways is shown in the 
horizontal dimension. The size of the pathway is proportional to the number of genes involved in that particular 
pathway.
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miRNAs outside the 23-miRNA signature, we sought to identify miRNAs that were co-expressed with those 23 
miRNAs.

We computed the correlations among each miRNA in the signature using the Pearson correlation coefficient. 
The miRNAs with the highest correlation coefficient in the signature (0.92) were hsa-miR-512 and hsa-miR-518. 
These two miRNAs were also significantly associated with overall survival in HCC patients, with p values of 
0.0022 and 0.0021. Because these miRNAs had high correlation coefficients, we considered them for further 
analysis. Thus, we sought to analyze the top-ranked individual miRNAs in the signature. The correlation heatmap 
of the miRNA signature is shown in Fig. 5.

Additionally, we sought to identify the miRNAs that were highly correlated with the miRNA signature in the 
540 expression profiles constituting our dataset. To this end, we measured the correlations of the 23-miRNA 
signature with the 540 miRNA expression profiles. We considered miRNAs with higher correlations to be 
co-expressed with the signature. These co-expressed miRNAs and their correlation coefficients are listed in 
Supplementary Table S6. We considered R ≥ 0.5 to be statistically significant. Five miRNAs in the top-ranked 
miRNA signatures had co-expressed miRNAs with correlations ≥ 0.5. Hsa-miR-518 and hsa-miR-512 had nine 
co-expressed miRNAs in common. Three miRNAs, hsa-miR-424, hsa-let-7i, and hsa-miR-320a, had 15, 16, and 
1 co-expressed miRNA, respectively.

Furthermore, we examined the biological significance of the top-ranked miRNAs and their co-expressed miR-
NAs to determine whether they were involved in any common pathways. KEGG pathway analysis of hsa-miR-518 
and hsa-miR-512 and their co-expressed miRNAs included glycosphingolipid biosynthesis-lacto and neolacto 
series (hsa00601), folate biosynthesis (hsa00790), one-carbon pool by folate (hsa00670), mucin-type O-Glycan 
biosynthesis (hsa00512), and central carbon metabolism in cancer (hsa05230). Details of the involvement of 
hsa-miR-518, hsa-miR-512, and their co-expressed miRNAs in KEGG pathways are provided in Supplementary 
Table S7. Hsa-miR-424 and its co-expressed miRNAs are significantly involved in several cancer pathways, includ-
ing proteoglycans in cancer (hsa05205), the Hippo signaling pathway (hsa04390), viral carcinogenesis (hsa05203), 
pathways in cancer (hsa05200), and glioma (hsa05214). Details of the involvement of hsa-miR-424 and its co-
expressed miRNAs in KEGG pathways are provided in Supplementary Table S8. Hsa-let-7i and its co-expressed 
miRNAs are involved in several cancer pathways, including proteoglycans in cancer, viral carcinogenesis, path-
ways in cancer, chronic myeloid leukemia, thyroid cancer, bladder cancer, colorectal cancer, glioma, and prostate 
cancer. Interestingly, we found that hsa-let-7i and its co-expressed miRNAs, hsa-miR-145-5p, hsa-miR-10a-3p, 
hsa-let-7b-5p, hsa-miR-155-5p, hsa-miR-142-5p, hsa-miR-125a-3p, hsa-miR-199a-5p, hsa-miR-214-3p, hsa-miR-
424-3p, hsa-miR-708-3p, hsa-miR-542-5p, hsa-miR-342-5p, and hsa-miR-450a-5p, are significantly (p value of 
1.18E-10) involved in the hepatitis B pathway (hsa05161), and target 77 genes. Chronic hepatitis B infection has 

Figure 5.  Heatmap showing correlation coefficients among the members of the 23-miRNA signature.
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been linked to  HCC53. Details of the involvement of hsa-let-7i and its co-expressed miRNAs in KEGG pathways 
are provided in Supplementary Table S9. Experimentally validated gene interactions for hsa-let-7i and its co-
expressed miRNAs in the hepatitis B pathway are shown in Supplementary Table S10.

Hsa-miR-320a had a co-expressed miRNA, hsa-miR-1301. These two miRNAs are significantly involved in 
cancer pathways including transcriptional misregulation in cancer, glioma, viral carcinogenesis, pathways in 
cancer, colorectal cancer, and pancreatic cancer. Their involvement in biological pathways is shown in detail in 
Supplementary Table S11. Together, these analyses revealed that not only the 23-miRNA signature, but also its 
co-expressed miRNAs, are involved in important pathways, and are therefore worthy of further exploration in the 
context of HCC. These findings could facilitate the development of miRNA-based therapeutic strategies for HCC.

MiRnAs correlated to the hepatitis infection. We measured the correlation between identified 
miRNA signature and clinicopathological features of HCC using Spearman correlation coefficient. Three miR-
NAs, hsa-let-7i, hsa-miR-320a, and hsa-miR-2355 of the signature were significantly correlated with the hepa-
titis infection, shown in Supplementary Table S12. Additionally, correlation was measured for hsa-let-7i and 
its 13 co-expressed miRNAs, which were involved in hepatitis B pathway. Two of these miRNAs, hsa-miR-145 
and hsa-miR-125a were significantly correlated with the hepatitis infection, shown in Supplementary Table S13.

conclusions
Detecting liver cancer at an early stage is difficult because its symptoms often appear only at the later stages. 
Currently, the diversity of miRNAs, and their differential expression in multiple types of cancer, make them 
worthy of investigation in the context of cancer research. Recently, miRNAs have been explored as biomarkers 
of various cancers. Identifying miRNA signatures associated with early-stage HCC could provide useful insight 
into miRNA-mediated diagnosis of this disease. Developing computational methods for early-stage detection 
based on miRNA expression could elucidate the variants involved in cancer progression. Besides, potential feature 
selection methods can easily deal with high-dimensional samples such as gene expression profiles.

In this study, we introduced a SVM-based prediction method, SVM-HCC, which incorporates an optimal 
feature selection algorithm (IBCGA) to identify miRNA signatures capable of distinguishing early-stage and 
advanced-stage patients with HCC. SVM-HCC identified a 23-miRNA signature associated with early-stage and 
advanced-stage HCC, and achieved a 10-CV mean accuracy, sensitivity, specificity, and MCC of 92.44 ± 0.99, 
0.96 ± 0.01, 0.78 ± 0.03, and 0.79 ± 0.02, respectively. We prioritized the 23-miRNA signature based on MED 
scores; miRNAs with higher MED score contributed more to prediction accuracy. The highest-ranked miRNAs 
were subjected to further analysis.

We validated the prognostic power of the top-ranked miRNAs in HCC using KM survival curves. The results 
revealed that 7 of the 10 top-ranked miRNAs, hsa-miR-550a, hsa-miR-574, hsa-miR-424, hsa-let-7i, hsa-miR-549, 
hsa-miR-518, and hsa-miR-512, were significantly associated with overall survival in patients with HCC. In 
addition, the top-ranked miRNAs are all significantly involved in HCC, with the exception of hsa-miR-549. This 
miRNA plays an important role in other cancers, but its role in HCC had not been reported previously. However, 
our results suggest that hsa-miR-549 is significantly associated with overall survival in patients with HCC, and is 
therefore worthy of further investigation. KEGG pathway and GO enrichment analyses revealed the functional 
mechanisms of top-ranked miRNAs in several cancer and non-cancer pathways. Although, the identified miRNA 
signature is potential to predict the stage of HCC, additional information on co-expressed miRNAs to the miRNA 
signature was provided to explore the possible miRNAs beyond this 23-miRNA signature that might provide 
specific information/knowledge on its overall impact on HCC. Interestingly, we found that hsa-let-7i and its 13 
co-expressed miRNAs were significantly involved in the hepatitis B pathway.

Together, our findings help to explore the role of miRNAs in HCC, and could facilitate early-stage detection 
and prevention.

Materials and methods
Dataset. From the TCGA database, we retrieved a dataset containing miRNA expression profiles from 348 
patients with liver HCC; these profiles were obtained using the Illumina HiSeq 2000 platform. After filtering, 
the final dataset contained 540 miRNA expression profiles from 348 patients. The HCC stage system in the 
TCGA dataset was based on the size of the primary breast tumor (T), the spread of cancer to lymph nodes (N) 
and distant metastasis (M) according to the American Joint Committee on Cancer. For classification purposes, 
the dataset was divided into early-stage (stages 1 and 2) and advanced-stage (stages 3 and 4) groups. There were 
258 patients in the early-stage group and 90 patients in the advanced-stage group. Clinical characteristics of the 
patients with HCC used in this current study is displayed in Supplementary Fig. S6.

establishing the SVM‑Hcc. We proposed a method, SVM-HCC, to identify a miRNA signature capable 
of distinguishing early-stage and advanced-stage HCC based on miRNA expression profiles. SVM-HCC is based 
on an  SVM29 incorporating the feature selection algorithm IBCGA. SVMs are powerful statistical learning algo-
rithms that use non-linear transformation to map data from input space to higher-dimensional space to identify 
better predictive models. SVMs have become popular in the biomedical sciences, especially in cancer research, 
due to their potential predictive  performance54.

We used miRNA expression profiles of patients with HCC as inputs. SVMs work implicitly by only comput-
ing the corresponding kernels in the feature space between two data points, xi and xj. The SVM kernel function 
is defined as
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where ϕ(x) is the mapping function. SVM-HCC was developed using the LIBSVM  package55, where the radial 
basis function (RBF) is used as the kernel function for the implementation of the SVM. RBF is defined as follows:

In this study, the SVM parameters C and γ were optimized based on 10-CV. While establishing the SVM-
HCC, an optimal feature selection algorithm, IBCGA, was incorporated into the SVM. IBCGA is an intel-
ligent evolutionary  algorithm56 that uses an orthogonal array crossover to solve large parameter optimization 
problems. In the optimization process, IBCGA selects a minimum number of features, in this case miRNAs, 
while improving its predictive performance. We have successfully applied IBCGA to various types of cancer 
 predictions31,33,57,58. To distinguish early-stage from advanced-stage HCC, the parameter settings of SVM and 
IBCGA were encoded into binary “genes.” In this study, genetic algorithm (GA) terms were used to represent the 
genes and “chromosomes.” We used 540 miRNA (m = 540) expression profiles from 348 HCC patients (n = 348) 
as input. IBCGA parameters were rstart = 10, rend = 50,  Npop = 50, and  Gmax = 60, as used  in31. The steps involved in 
IBCGA are as follows.

Step 1: (Evaluation) Evaluate the fitness value of all individuals using the fitness function, which is the predic-
tion accuracy in terms of 10-CV.

Step 2: (Selection) Use a tournament selection method that selects the winner from two randomly selected 
individuals to generate a mating pool.

Step 3: (Crossover) Select two parents from the mating pool to perform an orthogonal array crossover 
operation.

Step 4: (Mutation) Apply a conventional mutation operator to randomly selected individuals in the new 
population. To prevent the highest fitness value from deteriorating, mutation is not applied to the best individuals.

Step 5: (Termination test) If the stopping condition for obtaining the solution is satisfied, then output the best 
individual as the solution. Otherwise, go to Step 2.

Step 6: (Inheritance) If r < rend, randomly change one bit in the binary GA genes for each individual from 0 
to 1; increase the number r by one, and go to Step 2. Otherwise, stop the algorithm.

Weka classifier. We used  Weka59, a powerful data mining tool that uses well-known machine learning algo-
rithms. We compared the predictive performance of SVM-HCC with those of some machine learning methods 
such as SMO, MLP, naïve Bayes, LIBSVM, and random forest. We performed 10-CV to evaluate the performance 
of the machine learning models.

evaluation metrics. We evaluated the predictive performance of the classifier using the following evalu-
ation metrics: sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC), accuracy (ACC ), and 
area under the ROC curve (AUC).

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

 Data availability
All data analyzed during this study are publicly available at TCGA data portal (https ://porta l.gdc.cance r.gov/).

Received: 19 March 2020; Accepted: 13 August 2020

References
 1. El-Serag, H. B. Hepatocellular carcinoma. N Engl J Med 365, 1118–1127. https ://doi.org/10.1056/NEJMr a1001 683 (2011).
 2. de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13, 

607–615. https ://doi.org/10.1016/s1470 -2045(12)70137 -7 (2012).
 3. Beasley, R. P. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61, 1942–1956 (1988).

(1)K
(

xi , xj
)

= ϕ(xi).ϕ(xi)

(2)K
(

xi , xj
)

= exp
(

−γ xi − xj
)2

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)SN =
TP

TP + FN

(5)SP =
TN

TN + FP

(6)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(7)Accuracy =
TP + TN

TP + TN + FP + FN

https://portal.gdc.cancer.gov/
https://doi.org/10.1056/NEJMra1001683
https://doi.org/10.1016/s1470-2045(12)70137-7


11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14452  | https://doi.org/10.1038/s41598-020-71324-z

www.nature.com/scientificreports/

 4. Forner, A., Llovet, J. M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245–1255. https ://doi.org/10.1016/s0140 -6736(11)61347 
-0 (2012).

 5. Lin, C. W. et al. Heavy alcohol consumption increases the incidence of hepatocellular carcinoma in hepatitis B virus-related cir-
rhosis. J Hepatol 58, 730–735. https ://doi.org/10.1016/j.jhep.2012.11.045 (2013).

 6. Crownover, B. K. & Covey, C. J. Hereditary hemochromatosis. Am Fam Physician 87, 183–190 (2013).
 7. Stoller, J. K., Lacbawan, F. L. & Aboussouan, L. S. in GeneReviews((R)) (eds M. P. Adam et al.) (University of Washington, Seattle 

University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights 
reserved., 1993).

 8. Blum, H. E. Treatment of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 19, 129–145. https ://doi.org/10.1016/j.
bpg.2004.11.008 (2005).

 9. Chen, C. H. et al. Long-term trends and geographic variations in the survival of patients with hepatocellular carcinoma: analysis 
of 11,312 patients in Taiwan. J Gastroenterol Hepatol 21, 1561–1566. https ://doi.org/10.1111/j.1440-1746.2006.04425 .x (2006).

 10. Marrero, J. A. Current treatment approaches in HCC. Clin Adv Hematol Oncol 11, 15–18 (2013).
 11. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198. https 

://doi.org/10.1016/j.ccr.2006.01.025 (2006).
 12. Mohamed, A. A. et al. MicroRNAs and clinical implications in hepatocellular carcinoma. World J Hepatol 9, 1001–1007. https ://

doi.org/10.4254/wjh.v9.i23.1001 (2017).
 13. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 

103, 2257–2261. https ://doi.org/10.1073/pnas.05105 65103  (2006).
 14. Iorio, M. V. et al. MicroRNA signatures in human ovarian cancer. Can. Res. 67, 8699. https ://doi.org/10.1158/0008-5472.CAN-

07-1936 (2007).
 15. Li, X. et al. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 59, 579. https ://doi.org/10.1136/

gut.2008.17549 7 (2010).
 16. Wong, Q. W. L. et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. 

Gastroenterology 135, 257–269. https ://doi.org/10.1053/j.gastr o.2008.04.003 (2008).
 17. Hung, J.-H. et al. MicroRNA-224 down-regulates Glycine N-methyltransferase gene expression in Hepatocellular Carcinoma. Sci 

Rep 8, 12284. https ://doi.org/10.1038/s4159 8-018-30682 -5 (2018).
 18. Wei, R. et al. Clinical significance and prognostic value of microRNA expression signatures in hepatocellular carcinoma. Clin. 

Cancer Res. 19, 4780. https ://doi.org/10.1158/1078-0432.CCR-12-2728 (2013).
 19. Borel, F., Konstantinova, P. & Jansen, P. L. M. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocel-

lular carcinoma. J. Hepatol. 56, 1371–1383. https ://doi.org/10.1016/j.jhep.2011.11.026 (2012).
 20. Toffanin, S. et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 

140, 1618-1628.e1616. https ://doi.org/10.1053/j.gastr o.2011.02.009 (2011).
 21. Abajian, A. et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised 

machine learning—an artificial intelligence concept. J Vasc Interv Radiol 29, 850-857.e851. https ://doi.org/10.1016/j.jvir.2018.01.769 
(2018).

 22. Wang, J. et al. Development and evaluation of novel statistical methods in urine biomarker-based hepatocellular carcinoma screen-
ing. Sci Rep 8, 3799. https ://doi.org/10.1038/s4159 8-018-21922 -9 (2018).

 23. Nagy, Á, Lánczky, A., Menyhárt, O. & Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using 
expression data of independent datasets. Sci Rep 8, 1–9 (2018).

 24. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838. https ://doi.org/10.1038/natur e0370 2 
(2005).

 25. Chen, X. et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel nonin-
vasive biomarkers for nonsmall cell lung cancer diagnosis. Int. J. Cancer 130, 1620–1628. https ://doi.org/10.1002/ijc.26177  (2012).

 26. Zhu, C. et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br. J. 
Cancer 110, 2291–2299. https ://doi.org/10.1038/bjc.2014.119 (2014).

 27. Wang, L. G. & Gu, J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer 
Epidemiol. 36, e61-67. https ://doi.org/10.1016/j.canep .2011.05.002 (2012).

 28. Kahraman, M. et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 8, 11584. 
https ://doi.org/10.1038/s4159 8-018-29917 -2 (2018).

 29. Vapnik, V. N. An overview of statistical learning theory. IEEE Trans. Neural Netw 10, 988–999. https ://doi.org/10.1109/72.78864 
0 (1999).

 30. Shinn-Ying, H., Jian-Hung, C. & Meng-Hsun, H. Inheritable genetic algorithm for biobjective 0/1 combinatorial optimization prob-
lems and its applications. IEEE Trans Syst. Man Cybern. Part B Cybern. 34, 609–620. https ://doi.org/10.1109/TSMCB .2003.81709 
0 (2004).

 31. Yerukala Sathipati, S. & Ho, S.-Y. Identifying a miRNA signature for predicting the stage of breast cancer. Sci. Rep. 8, 16138. https 
://doi.org/10.1038/s4159 8-018-34604 -3 (2018).

 32. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 
143, 29–36. https ://doi.org/10.1148/radio logy.143.1.70637 47 (1982).

 33. Yerukala Sathipati, S. & Ho, S.-Y. Identifying the miRNA signature associated with survival time in patients with lung adenocar-
cinoma using miRNA expression profiles. Sci. Rep. 7, 7507. https ://doi.org/10.1038/s4159 8-017-07739 -y (2017).

 34. Tung, C. W. & Ho, S. Y. Computational identification of ubiquitylation sites from protein sequences. BMC Bioinform. 9, 310. https 
://doi.org/10.1186/1471-2105-9-310 (2008).

 35. Nagy, Á, Lánczky, A., Menyhárt, O. & Győrffy, B. Validation of miRNA prognostic power in hepatocellular carcinoma using 
expression data of independent datasets. Sci. Rep. 8, 9227. https ://doi.org/10.1038/s4159 8-018-27521 -y (2018).

 36. Chandrashekar, D. S. et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 
(New York, NY) 19, 649–658. https ://doi.org/10.1016/j.neo.2017.05.002 (2017).

 37. Sarver, A. L. et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and 
are characteristic of undifferentiated proliferative states. BMC Cancer 9, 401. https ://doi.org/10.1186/1471-2407-9-401 (2009).

 38. Balaguer, F. et al. Colorectal cancers with microsatellite instability display unique miRNA profiles. Clin. Cancer Res. 17, 6239–6249. 
https ://doi.org/10.1158/1078-0432.ccr-11-1424 (2011).

 39. Lee, C. H. et al. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int. J. Mol. Sci. 
14, 11560–11606. https ://doi.org/10.3390/ijms1 40611 560 (2013).

 40. Gao, H. B., Gao, F. Z. & Chen, X. F. MiRNA-1179 suppresses the metastasis of hepatocellular carcinoma by interacting with ZEB2. 
Eur. Rev. Med. Pharmacol. Sci. 23, 5149–5157. https ://doi.org/10.26355 /eurre v_20190 6_18179  (2019).

 41. Zheng, J., Dong, P., Gao, S., Wang, N. & Yu, F. High expression of serum miR-17-5p associated with poor prognosis in patients 
with hepatocellular carcinoma. Hepatogastroenterology 60, 549–552. https ://doi.org/10.5754/hge12 754 (2013).

 42. Dang, S. et al. MiR-299-3p functions as a tumor suppressor via targeting Sirtuin 5 in hepatocellular carcinoma. Biomed. Pharma-
cother. 106, 966–975. https ://doi.org/10.1016/j.bioph a.2018.06.042 (2018).

 43. Zhu, H. R. et al. Microarray expression profiling of microRNAs reveals potential biomarkers for hepatocellular carcinoma. Tohoku 
J. Exp. Med. 245, 89–98. https ://doi.org/10.1620/tjem.245.89 (2018).

https://doi.org/10.1016/s0140-6736(11)61347-0
https://doi.org/10.1016/s0140-6736(11)61347-0
https://doi.org/10.1016/j.jhep.2012.11.045
https://doi.org/10.1016/j.bpg.2004.11.008
https://doi.org/10.1016/j.bpg.2004.11.008
https://doi.org/10.1111/j.1440-1746.2006.04425.x
https://doi.org/10.1016/j.ccr.2006.01.025
https://doi.org/10.1016/j.ccr.2006.01.025
https://doi.org/10.4254/wjh.v9.i23.1001
https://doi.org/10.4254/wjh.v9.i23.1001
https://doi.org/10.1073/pnas.0510565103
https://doi.org/10.1158/0008-5472.CAN-07-1936
https://doi.org/10.1158/0008-5472.CAN-07-1936
https://doi.org/10.1136/gut.2008.175497
https://doi.org/10.1136/gut.2008.175497
https://doi.org/10.1053/j.gastro.2008.04.003
https://doi.org/10.1038/s41598-018-30682-5
https://doi.org/10.1158/1078-0432.CCR-12-2728
https://doi.org/10.1016/j.jhep.2011.11.026
https://doi.org/10.1053/j.gastro.2011.02.009
https://doi.org/10.1016/j.jvir.2018.01.769
https://doi.org/10.1038/s41598-018-21922-9
https://doi.org/10.1038/nature03702
https://doi.org/10.1002/ijc.26177
https://doi.org/10.1038/bjc.2014.119
https://doi.org/10.1016/j.canep.2011.05.002
https://doi.org/10.1038/s41598-018-29917-2
https://doi.org/10.1109/72.788640
https://doi.org/10.1109/72.788640
https://doi.org/10.1109/TSMCB.2003.817090
https://doi.org/10.1109/TSMCB.2003.817090
https://doi.org/10.1038/s41598-018-34604-3
https://doi.org/10.1038/s41598-018-34604-3
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1038/s41598-017-07739-y
https://doi.org/10.1186/1471-2105-9-310
https://doi.org/10.1186/1471-2105-9-310
https://doi.org/10.1038/s41598-018-27521-y
https://doi.org/10.1016/j.neo.2017.05.002
https://doi.org/10.1186/1471-2407-9-401
https://doi.org/10.1158/1078-0432.ccr-11-1424
https://doi.org/10.3390/ijms140611560
https://doi.org/10.26355/eurrev_201906_18179
https://doi.org/10.5754/hge12754
https://doi.org/10.1016/j.biopha.2018.06.042
https://doi.org/10.1620/tjem.245.89


12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14452  | https://doi.org/10.1038/s41598-020-71324-z

www.nature.com/scientificreports/

 44. Zhang, Y. et al. Downregulated miR-621 promotes cell proliferation via targeting CAPRIN1 in hepatocellular carcinoma. Am. J. 
Cancer Res. 8, 2116–2129 (2018).

 45. Ding, M. et al. Integrated analysis of miRNA, gene, and pathway regulatory networks in hepatic cancer stem cells. Journal of 
translational medicine 13, 259–259. https ://doi.org/10.1186/s1296 7-015-0609-7 (2015).

 46. Liu, Y. et al. miR-539 inhibits FSCN1 expression and suppresses hepatocellular carcinoma migration and invasion. Oncol. Rep. 37, 
2593–2602. https ://doi.org/10.3892/or.2017.5549 (2017).

 47. Jiang, L., Li, X., Cheng, Q. & Zhang, B. H. Plasma microRNA might as a potential biomarker for hepatocellular carcinoma and 
chronic liver disease screening. Tumour Biol. 36, 7167–7174. https ://doi.org/10.1007/s1327 7-015-3446-7 (2015).

 48. Yang, X. W. et al. MicroRNA-1269 promotes proliferation in human hepatocellular carcinoma via downregulation of FOXO1. 
BMC Cancer 14, 909. https ://doi.org/10.1186/1471-2407-14-909 (2014).

 49. Mo, Y. et al. Long non-coding RNA XIST promotes cell growth by regulating miR-139-5p/PDK1/AKT axis in hepatocellular 
carcinoma. Tumour Biol. 39, 1010428317690999. https ://doi.org/10.1177/10104 28317 69099 9 (2017).

 50. Zhou, J. et al. MicroRNA-152 inhibits tumor cell growth by directly targeting RTKN in hepatocellular carcinoma. Oncol. Rep. 37, 
1227–1234. https ://doi.org/10.3892/or.2016.5290 (2017).

 51. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 
13, 2498–2504. https ://doi.org/10.1101/gr.12393 03 (2003).

 52. Vlachos, I. S. et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucl. Acids Res. 43, W460–
W466 (2015).

 53. Di Bisceglie, A. M. Hepatitis B and hepatocellular carcinoma. Hepatology (Baltimore, MD) 49, S56–S60. https ://doi.org/10.1002/
hep.22962  (2009).

 54. Chu, F. & Wang, L. Applications of support vector machines to cancer classification with microarray data. Int. J. Neural Syst. 15, 
475–484. https ://doi.org/10.1142/s0129 06570 50003 96 (2005).

 55. Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27. https ://doi.
org/10.1145/19611 89.19611 99 (2011).

 56. Shinn-Ying, H., Li-Sun, S. & Jian-Hung, C. Intelligent evolutionary algorithms for large parameter optimization problems. IEEE 
Trans. Evol. Comput. 8, 522–541. https ://doi.org/10.1109/TEVC.2004.83517 6 (2004).

 57. Yerukala Sathipati, S., Huang, H.-L. & Ho, S.-Y. Estimating survival time of patients with glioblastoma multiforme and characteri-
zation of the identified microRNA signatures. BMC Genom. 17, 1022–1022. https ://doi.org/10.1186/s1286 4-016-3321-y (2016).

 58. Yerukala Sathipati, S., Sahu, D., Huang, H.-C., Lin, Y. & Ho, S.-Y. Identification and characterization of the lncRNA signature 
associated with overall survival in patients with neuroblastoma. Sci. Rep. 9, 5125. https ://doi.org/10.1038/s4159 8-019-41553 -y 
(2019).

 59. Frank, E., Holmes, G., Witten, I. H., Trigg, L. & Hall, M. Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481. 
https ://doi.org/10.1093/bioin forma tics/bth26 1 (2004).

Author contributions
Srinivasulu Yerukala Sathipati (SYS) and Shinn-Ying Ho (SYH) designed the system and carried out the detailed 
study. SYS participated in the design of the system and implemented programs. All authors participated in 
manuscript preparation and approved the final manuscript.

funding
This work was supported by Ministry of Science and Technology ROC under the contract numbers MOST 
109-2221-E-009-129-, 109-2740-B-400-002-, 108-2221-E-009-127–, 108-3011-F-075-001–, and 108-2218-E-
029-004–, and was financially supported by the “Center For Intelligent Drug Systems and Smart Bio-devices 
 (IDS2B)” from The Featured Areas Research Center Program within the framework of the Higher Education 
Sprout Project by the Ministry of Education (MOE) in Taiwan. The funders had no role in study design, data 
collection and analysis, decision to publish, or preparation of the manuscript.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information  is available for this paper at https ://doi.org/10.1038/s4159 8-020-71324 -z.

Correspondence and requests for materials should be addressed to S.-Y.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1186/s12967-015-0609-7
https://doi.org/10.3892/or.2017.5549
https://doi.org/10.1007/s13277-015-3446-7
https://doi.org/10.1186/1471-2407-14-909
https://doi.org/10.1177/1010428317690999
https://doi.org/10.3892/or.2016.5290
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1002/hep.22962
https://doi.org/10.1002/hep.22962
https://doi.org/10.1142/s0129065705000396
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1109/TEVC.2004.835176
https://doi.org/10.1186/s12864-016-3321-y
https://doi.org/10.1038/s41598-019-41553-y
https://doi.org/10.1093/bioinformatics/bth261
https://doi.org/10.1038/s41598-020-71324-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Novel miRNA signature for predicting the stage of hepatocellular carcinoma
	Anchor 2
	Anchor 3
	Results and discussion
	The comparison of AUCs. 
	Ranking of miRNA signature. 
	Validation of top-ranked miRNA prognostics in HCC. 
	Expression difference of top ranked miRNAs in tumor vs normal. 
	Significance of top-ranked miRNAs in cancer. 
	KEGG pathway and gene ontology enrichment analysis. 
	MiRNAs co-expressed with the top-ranked miRNAs. 
	MiRNAs correlated to the hepatitis infection. 

	Conclusions
	Materials and methods
	Dataset. 
	Establishing the SVM-HCC. 
	Weka classifier. 
	Evaluation metrics. 

	References


