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Efficient harmonic oscillator chain 
energy harvester driven by colored 
noise
M. Romero‑Bastida1 & Juan M. López2*

We study the performance of an electromechanical harmonic oscillator chain as an energy harvester 
to extract power from finite-bandwidth ambient random vibrations, which are modelled by colored 
noise. The proposed device is numerically simulated and its performance assessed by means of the 
net electrical power generated and its efficiency in converting the external noise-supplied power 
into electrical power. Our main result is a much enhanced performance, both in the net electrical 
power delivered and in efficiency, of the harmonic chain with respect to the popular single oscillator 
resonator. Our numerical findings are explained by means of an analytical approximation, in excellent 
agreement with numerics.

A huge development in the miniaturization capability of electronic devices has been observed in the last few 
years. However, the energy density available in batteries aimed at providing the powering for such devices has 
not reached the same rate of improvement when operated in stand-alone configurations1. Among various pos-
sibilities to solve this, as well as other energy-management related issues, it has been proposed the harvesting of 
ambient micro-kinetic energy from the environment, mostly available in the form of random vibrations. In fact, 
a significant amount of kinetic energy is actually present as mechanical displacements characterized by periodic 
and stochastic components. Additionally, shrinking the dimension of mechanical elements down to the nano-
scale results in an increment of the harvesting efficiency in terms of power density and in a significant reduction 
in mass fabrication costs. Kinetic energy harvesting requires a mechanical system that couples environmental dis-
placements to a transduction mechanism for vibrational to electrical energy conversion. To date, various energy 
harvesters have been developed that rely on capacitive2, inductive3, and piezoelectric transduction mechanisms4–7.

Regardless of the employed transduction mechanism, most of the vibrational energy harvesters—also known 
as vibration power generators—consider a linear spring or single harmonic oscillator as the mechanical element 
of the device and treat the external vibrations as sinusoidal vibrations. Thus the maximum power is generated 
when the resonant frequency of the generator matches the ambient vibration frequency, known as resonant 
energy harvesting8. Nearly all current vibration transducers operate in this regime9. However, this approach 
presents numerous drawbacks, being one of the most important ones that the linear harvester resonant peak is 
necessarily very narrow10, which limits their application in real-world environments with stochastic fluctuations 
and a continuous spectrum of vibration frequencies11.

To overcome these difficulties, a different approach based on the exploitation of the properties of non-resonant 
oscillators, i.e. characterized by a non-linear dynamical response, has been proposed12–17. The main rationale 
behind this approach is to try to take advantage of the broad bandwidth frequency response associated with 
nonlinear systems as opposed to the resonant, narrow bandwidth, single-frequency response that characterizes 
purely harmonic oscillators. If the broadband ambient vibrations are modelled by Gaussian white noise, many 
important results have been obtained. For example, it has been shown that, if we consider bistable oscillators 
under proper operating conditions, they can provide better performances compared to those of a linear oscillator 
in terms of energy extracted from a generic wide spectrum vibration12. It has also been established, using the 
Fokker-Planck equation to describe Duffing-type energy harvesters, that the mean power output of the device 
is not affected by the nonlinearity of the spring18, 19. Also, the upper bound on the power output of generic non-
linear energy harvesters driven by Gaussian white noise has been obtained and it has been shown that, subject 
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to mild restrictions on the device parameters, it is always possible to find an optimal linear device that attains 
the upper-bound performance of a nonlinear harvester20.

However, the concept of white noise is an idealisation that may not be valid in many practical situations. 
Random fluctuations acting on physical, chemical or biological systems actually have a finite correlation time. 
For example, in the classical Brownian process there is a timescale given by the typical collision time of the fluid 
molecules with the Brownian particle below which fluctuations cannot be considered uncorrelated. The exist-
ence of finite correlation times is even more important in complex fluids, where hydrodynamic fluctuations 
can be correlated over long time intervals. This is specially relevant for practical harvesting. Since an efficient 
harvester would require to have a response that peaks within the lower end of the frequency bandwidth, where 
most of the noise energy is concentrated—and considering that there are physical limits to the mass or string 
constants that can be used to tune the resonant frequency of such harmonic oscillator—it is unclear that the 
optimal harmonic harvester (see Ref.20) may be actually realizable in systems where environmental fluctuations 
are characterized by colored noise.

After some early experimental and simulation studies21,22, the power output of both a monostable18 and a 
bistable Duffing oscillator with a symmetric potential23 driven by Ornstein–Uhlenbeck noise was determined by 
approximate methods, and the exact analytical expressions for the net electrical power and conversion efficiency 
of power supplied by exponentially correlated noise into electrical power was derived for a linear electromechani-
cal oscillator employed as an energy harvester24,25.

Notwithstanding the recent advances in nonlinear vibration energy harvesters, some important issues have 
remained unaddressed so far. The mechanical part of these systems is usually modelled with a harmonic potential 
plus a nonlinear one that can be considered as an effective potential that accounts for the degrees of freedom 
not explicitly considered in the linear description. This issue becomes relevant at nanometric scales wherein the 
detailed structure of the mechanical resonator has to be taken explicitly into account. This is not only to con-
struct the model, but also to assess the influence of these non-accounted for degrees of freedom in the dynamics. 
Some examples in this direction consist in the studies of nanowire resonators26 and nanoribbons designed for 
vibrational energy harvesting processes27.

In this paper we propose a new energy harvester system that is able to effectively extract energy from the 
low end part of the environmental (colored) noise spectrum, where most energy is available, while being linear, 
simple, and amenable to analytical treatment. Our model consists of a N harmonic oscillator chain with one end 
in contact with the ambient reservoir, while the other end is attached to a transduction circuit. We show that 
this configuration is able to overcome the single harmonic oscillator efficiency, specially in the case of ambient 
noise with a finite correlation time. We find that the harmonic chain leads to a broad spectral response of the 
first oscillator—the one in contact with the ambient—that overlaps with that of the external noise. This leads 
to an optimal energy extraction from the latter, in sharp contrast with the narrow spectral response of single, 
linear-oscillator-based harvesters.

Furthermore, the harmonic lattice lends itself to analytical treatment. We have derived an analytical approxi-
mation that sheds light on the results of spectral analysis obtained by numerical simulations. Our analytical 
results for the harmonic chain help explaining why our proposed model outperforms the single oscillator case 
for the considered parameters, both in delivered power as well as in efficiency.

The rest of the paper is organized as follows: in “Model and methodology” section we present the model as 
well as our methodology. Numerical as well as analytical results are reported in “Results” section. Finally, in 
“Discussion and conclusions” section we discuss the results so far obtained and propose ways to continue this 
line of research.

Model and methodology
Single oscillator model.  An energy harvester is a device that converts the power supplied by external noise 
into electrical energy. This process begins with the damped oscillator being driven by the external noise. Kinetic 
energy is then converted via a piezoelectric transducer mechanism into electrical energy that is then stored in 
a capacitor. We will begin reviewing the original implementation24, that from now on will be termed single-
oscillator case. The mechanical part of the device is described by the dynamical equation for the momentum of 
the stochastically driven damped oscillator of mass m, which reads as

where q is the displacement from the equilibrium position and p is the momentum, with the dot standing for 
temporal derivative. In this equation k is the harmonic constant, γ is the linear damping coefficient, ξ(t) is 
the random driving force, and Ftran(q,V) is the transducer force due to the motion-to-electricity conversion 
mechanism, which depends on the geometry of the transducer and on how the circuit that implements the 
energy conversion cycle operates. It opposes to the motion, just as the friction force, and has its origin in the 
energy loss that occurs when kinetic energy is converted into electric energy. The simplest expression for this 
function is Ftran(q,V) = kvV  , where kv > 0 is a piezoelectric parameter and V(t) is the electric voltage of the 
circuit. The dynamical equation for the voltage has the form V̇ = F(p,V)− V/τp , where τp = RLC is the time 
associated to the charging process of the piezoelectric element, which is larger than any other characteristic time 
of the system, C is the capacitance of the piezoelectric component, RL is the load resistance, and F(p,V) is the 
connecting function with the oscillator. In the following the latter will be taken as F(p,V) = kcp , where kc is 
the coupling constant of the piezoelectric sample.

In this work we are considering a Ornstein–Uhlenbeck (OU) random force, with mean �ξ� = 0 and correla-
tion �ξ(t)ξ(t′)� = σ 2 exp(−|t − t ′|/τc) , where σ is the amplitude and τc is the correlation time of the ambient 
noise. Physically, τc corresponds to the typical time scale above which the noise becomes uncorrelated. The 

(1)ṗ+ γ q̇+ Ftran(q,V)+ kq = ξ(t),
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limit τc → 0 and σ 2 → ∞ , with D = σ 2τc constant, corresponds to the white noise limit28. In order to obtain a 
closed system of equations, it is a standard procedure to employ the equation ξ̇ = − ξ/τc + ζ(t)/τc , where ζ(t) 
is a Gaussian white noise with zero mean and correlation �ζ(t)ζ(t′)� = 2σ 2τcδ(t − t ′) . Therefore the complete 
set of equations reads as 

Since the total mechanical energy of the oscillator is E = p2/2m+ U(q) , where U(q) = kq2/2 is the harmonic 
potential, the corresponding instantaneous power is given by its temporal derivative, i.e. Ė = q̇[ṗ+ U ′(q)] . If in 
this last expression we substitute Eq. (2b) and take the statistical average we obtain

where �· · · � implies both a time-average during the observation interval and an ensemble average over noise 
realizations. �q̇ξ� is the power delivered by the noise, γ �q̇2� is the power dissipated by friction, and kv�q̇V� is the 
power transferred from the oscillator to the transducer. Next, if in dV2/dt = 2VV̇  we substitute Eq. (2c), take 
the statistical average, and consider that the system is in the stationary regime—thus d�V2�/dt = 0 —, we obtain 
the relation �V2� = kcτp�q̇V� . The transducer’s efficiency in converting mechanical to electrical power is given by

Since the transduction mechanism is not the object of the present study we can consider ηme = 1 , without loss of 
generality; thus this value will be henceforth employed. The conversion efficiency of the power delivered by the 
noise to power transferred from the oscillator to the transducer is ηrm = kv�q̇V�/�q̇ξ� ; thus the overall conver-
sion efficiency of power delivered by the noise to net electrical power can be written as

Proposed model: harmonic oscillator chain.  As a mechanical resonator we propose a new setup con-
sisting in a one-dimensional chain of N nearest-neighbor identical harmonic oscillators of mass m, as sketched 
in Fig. 1. Within this scheme the first oscillator in the lattice q1 is directly in contact with the stochastic signal ξ(t) 
and the last one, qN , is connected to the transducer. Thus the equations of motion can be written as 

(2a)q̇ =
p

m

(2b)ṗ = − kq+ ξ −
γ

m
p− kvV

(2c)V̇ =
kc

m
p−

1

τp
V
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ξ

τc
+

ζ

τc
.
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Figure 1.   Sketch of an energy harvester based on a harmonic oscillator chain with one end in contact with the 
ambient noise and the other attached to the electrical transducer circuit.
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where Fi = − F(qi+1 − qi)+ F(qi − qi−1) is the force exerted on the ith oscillator within the bulk, i.e. 
i ∈ [2,N − 1] , due to the nearest-neighbor interaction, whereas for the boundary oscillators F1 = F(q1 − q2) 
and FN = F(qN − qN−1) . In all previous instances F(x) = − kx stands for the harmonic force.

The mechanical energy is defined through the expectation value of the lattice Hamiltonian, that is,

It can be immediately shown, employing Eq. (6b), that

where �q̇1ξ� is the power delivered by the noise, γ �q̇1 2� is the power dissipated by friction with the first oscillator 
in the lattice, and kv�q̇N V� is the power transferred from the Nth oscillator to the transducer. Since we have been 
able to maintain the analogy with the original single-oscillator case, we can infer that the total efficiency of the 
conversion process from power delivered by the external noise to final net electrical power can be defined as the 
quotient of both powers, and thus

which is an expression completely analogous to the one previoulsy employed in the literature24.

Results
Numerical simulations.  For the proposed energy harvester there are four independent parameters, these 
being m, the lattice constant a, the single-oscillator frequency ω0 , and kc . The dimensions of all the physical 
quantities and parameters involved can be expressed as a proper combination of these four independent param-
eters. As a result, one can introduce a set of dimensionless variables by measuring displacements in units of 
[a], mass in units of a reference mass [m0 ] , time in units of [ω−1

0 ]—with ω0 =
√

k/m0  —, momenta in units of 
[aω0m0 ] , force in units of [aω2

0m0 ] , and voltage in units of [kca] . In particular, Eqs. (2a–2d) and (6a–6d) for the 
single oscillator and harmonic chain energy harvesters respectively can be transformed into a dimensionless 
form if the linear damping coefficient γ is measured in units of [m0ω0] , the pizoelectric parameter kv in units of 
[m0ω

2
0/kc] , resistance in units of [k2c /(m0ω

4
0)] , and capacitance in units of [m0ω

3
0/k

2
c ] . The resulting equations are 

the same as Eqs. (2a–2d) and (6a–6d), wherein we have now k = kc = 1 . The remaining dimensionless param-
eters can, in principle, be chosen arbitrarily with the only restriction that the charging time of the pizoelectric 
element τp should be larger than the inverse of the highest normal mode frequency; thus τp = 2 . Therefore, for 
simplicity, we can set all parameters equal to unit—except RL = 2 since τp = RLC has to hold if C = 1 is cho-
sen—and focus on the effects of ambient noise correlation time τc on the system. Furthermore, as we shall see in 
“Analytical results” section, our analytical calculations allow us to identify the relevant couplings that will deter-
mine the dominant behavior at small frequencies (large times), as given by Eqs. (18), (20), (21), and (22). These 
analytical expressions immediately show the effect of changing ambient noise amplitude σ 2 and the piezoelectric 
coupling constant kc . As one can see, these parameters do not change the qualitative system behavior at leading 
order, as all relevant quantities are simply proportional to these parameters. According to these calculations, 
other free parameters will only affect higher-order terms in the Taylor expansion. Note that τc enters all expres-
sions through the noise correlator �|ξ̂ (ω)|2� = 2σ 2/[1+ (ωτc)

2] , which is of utmost importance since it controls 
the overall form of the curves, see Eqs. (18), (20), (21), and (22). In particular, the effect of ambient noise inten-
sity σ 2 is to increase the net electrical power generated by the circuit, as this is proportional to |ξ̂ (ω))|2 at leading 
order in ω → 0 , as shown in Eq. (22). Hence the choice of σ 2 = 1 in all our simulations. In doing so, we will be 
able to actually compare our proposed chain of harmonic oscillators energy harvester with the single oscillator 
example under the same conditions of ambient noise intensity and varying correlation time.

The simulations are performed by solving numerically the Langevin Eqs. (2a–2d) and (6a–6d) by using the 
so-called Heun algorithm; trajectories are computed over an interval of 4096 time units after a transient of 103 
starting from a set of initial conditions given by {q(0) = p(0) = V(0)(≡ V0) = 0} . An ensemble average over 
103 independent realizations has been performed for the chosen parameter set.

In Fig. 2a we present the behavior of the power delivered by the external noise as a function of the correlation 
time. For the single-oscillator case it is clear that external energy can be significantly harvested only arround a 
definite value of τc ≈ 1 , and in a rapidly decreasing rate in both small and large correlation time limits. But in 
contrast, for the oscillator chain the energy harvested only drops in the white-noise limit, i.e. for very short cor-
relation times. In the opposite limit the delivered power is markedly higher than that from the single-oscillator 
harvester for all system sizes and τc values considered. On the other hand, the net electrical power 〈V2〉/RL 
depicted in Fig. 2b presents, for the single oscillator instance, a very similar behavior as its corresponding deliv-
ered power: it has a maximum at a τc ≈ 1 value and is sub-optimal in the entire τc value range. But for N > 1 sizes 
the net electrical power only decreases in the white-noise limit. By contrast, it seems to become independent of 
both τc and N in the colored noise limit, i.e. large τc values. And again, for all correlation time values considered 
the net electrical power is much higher than that delivered by the single oscillator case. Therefore the oscillator 
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ξ

τc
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ζ

τc
,
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〈 N
∑
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m

2
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chain, even for a small value of N = 2 , outperforms the single oscillator energy harvester both in delivering 
power to the system as well as in rendering net electrical power.

The efficiency dependence on τc is displayed in Fig. 3. For all the considered instances the highest efficiency 
figure is achieved in the large τc limit. However, the systems with N > 1 outperform the single-oscillator one in 
the whole studied value range, being particularly efficient in the range τc > 102 , wherein a decreasing N depend-
ence can be noticed. Furthermore, even if the single-oscillator N = 1 harvester has also an almost τc-independent 
efficiency in that same value range, the corresponding net electrical power, see Fig. 2b, is insignificant, something 
that does not happen when larger system sizes are considered.
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Figure 2.   (a) Simulation results of the energy harvester harmonic chain. We plot the power delivered by the 
noise to the first element of the chain, �q̇1ξ� , for a wide range of values of the ambient noise correlation time 
τc : the single oscillator with N = 1 (blue dashed line), and chains of length N = 2 (red), N = 4 (green), N = 6 
(orange), and N = 8 (violet). (b) Total electric power harvested from the ambient fluctuations 〈V2〉/RL vs noise 
correlation time τc . In both panels the parameters are σ 2 = γ = k = kc = kv = C = 1 , V

0
= 0 , m = 1 , and 

τp = RL = 2 in all considered instances.
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Figure 3.   Simulation results of the energy harvester harmonic chain. We plot the efficiency η , given by Eq. (9), 
versus ambient noise correlation time τc . Efficiency of the energy harvester measures the ratio between the 
power delivered by the noise and the net electric power generated by the device. The system sizes, parameter 
values, and color coding as in Fig. 2.
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In order to elucidate the origin of the poor performance of the single-oscillator energy harvester we carry out 
a spectral analysis of all the dynamical variables involved. Thus in Fig. 4a we present the corresponding power 
spectra. Taking into account the average power balance in Eq. (8) it is clear that the relevant correlations cor-
respond to those of q̇ with the external noise ξ and the voltage V, since they are related to the power delivered to 
the noise into the transducer and to the net electrical power, respectively. Now, in the low-frequency limit the 
velocity has a power-law dependence ∼ ω2 that rapidly decouples its behavior to that of ξ , thus decreasing the 
amount of delivered power and reducing the performance of the device. The velocity is coupled to the voltage, but 
because the former is decoupled from the noise at low frequencies, the latter shares the aforementioned decay; 
thus a low net electrical power is obtained in this case. However, for N = 2 both q̇2 and V are now coupled to 
the behavior of the external noise at low frequencies, which assures a significant correlation in that frequency 
regime. This spectral behavior explains the non-decaying correlations depicted in Fig. 2 and the sizable efficiency 
in Fig. 3 for τc > 102 values. An additional advantage is that this result is robust for larger system sizes, since the 
spectra in Fig. 4c for N = 4 remain mostly unchanged.

Analytical results.  Next, to gain a deeper understanding of the low-frequency behavior depicted in Fig. 4 
we perform an analytical study of the harvester in the stationary regime. By taking a sufficiently long transient 
time we can neglect the contribution from the lattice initial state given that normal modes decay after some 
time. This allows us to solve Eqs. (2a–2d) via Fourier transform. Let us denote X̂(ω) ≡

∫

dtX(t) exp(−iωt) ; then 
Eqs. (2b–2c) can be written as 

 After substituting Eq. (10b) in (10a) we can calculate the power spectrum of q̂(ω) as

(10a)−mω2q̂(ω)+ iγωq̂(ω)+ kvV̂(ω)+ kq̂(ω) = ξ̂ (ω)

(10b)iωV̂(ω) = ikcωq̂(ω)−
V̂(ω)
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Figure 4.   Numerical simulation results for (a) power spectra �|X̂(ω)|2� for the single oscillator system variables 
{X} : displacement (blue), momentum (red), voltage (orange), and the OU noise (green). (b) Power spectra for an 
oscillator lattice with N = 2 corresponding to p

1
 (blue), pN (red), voltage (orange), and the OU noise (green). (c) 

Same as in (b) but for N = 4 . In all instances τc = 10 . Same parameter values as in Fig. 2.
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where

and

From Eq. (11) it is clear that the behavior of the displacement and the external noise are closely correlated for 
any frequency value, as can indeed be corroborated from the data reported in Fig. 4a. In particular, in the low-
frequency regime

with the constant C = 2k(kvkc −m/τ 2p )+ (γ /τp + kvkc)
2 . Then, from this last expression it is clear that, in the 

ω → 0 limit, |q̂(ω)|2 ∼ k−2|ξ̂ (ω)|2 . This is precisely the coupling of the displacement and external noise that can 
be appreciated in Fig. 4a. As for the momentum we have |p̂(ω)|2 ∝ |ˆ̇q(ω)|2 ∼ (ω/k)2|ξ̂ (ω)|2 , which is again the 
behavior displayed in the aforementioned figure. From the close coupling between the displacement and voltage 
inferred from Eq. (10b) it is immediate to deduce that the output voltage will experience a drastic drop in the low-
frequency region, which prevents the harvester to adequately perform in the long correlation time limit τc ≫ 1.

For the analytical treatment of the chain we employ the methodology recently developed in Ref.29 based on 
the finite version of the so-called Z-transform, which allows to obtain closed expressions for q̂1(ω) and q̂N (ω) 
in terms of ξ̂ (ω) that read as 

 where 

 These are the corresponding expressions of Ref.29 in the low-frequency limit and particularized to our system.
Therefore, after substituting Eq. (15b) into Eq. (15a), now we can express q̂1(ω) in terms of the power spec-

trum of the external noise as

After some algebra, it can be shown that the order of magnitude of the prefactor in the last equation has the form

On the other hand, for the last oscillator, from Eq. (15b) we obtain

And again, after some lengthy algebra we obtain the expansion for ω → 0

and the corresponding momenta of both boundary oscillators, at lowest order in ω , depend on the frequency as
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2 + G2|ξ̂ |2 − 2GRe(Eq̂1 ξ̂
∗).

(20)|q̂N (ω)|
2 ∼

(1+O(ω2)

O(ω2)
+ const.

)

|ξ̂ (ω)|2,
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which renders |p̂1,N (ω)|2 ∝ |ξ̂ (ω)|2 as ω → 0 , a behavior clearly corroborated by the simulation results in 
Fig. 4b,c.

Finally, since from Eq. (10b) we have that V̂(ω) = [kcωτp/(ωτp − i)] q̂N (ω) , employing Eq. (15b) we obtain 
the approximation

for ω → 0 , which is in excellent agreement with the simulation results in Fig. 4b,c.
In summary, our analytical results show that, in the low-frequency limit, the single harmonic oscillator 

harvester is able to extract energy from the noise generating an electric potential with a power spectrum that 
decays as |V̂(ω)|2 ∼ ω2|ξ̂ (ω)|2 , leading to less energy being harvested at lower frequencies. In contrast, for the 
N-oscillator chain, Eq. (22), one has a flat spectrum |V̂(ω)|2 ∼ |ξ̂ (ω)|2 . Since the total power transferred from the 
oscillators to the transducer is given by �V2� =

∫

dω|V̂(ω)|2 , these results explain the much better performance 
of the harvester based on a chain as compared with the single oscillator, as shown by the numerical results in 
Figs. 2b and 3.

Discussion and conclusions
Our results for the linear oscillator lattice electromechanical energy harvester interacting with an external finite-
bandwidth ambient noise clearly show that its performance is enhanced, both in the net electrical power delivered 
and in its efficiency, compared with the single oscillator instance for any finite value of the noise correlation time 
τc . For sufficiently large values of τc , both net electrical power and efficiency become constant and take large 
values, in sharp contrast to the single oscillator energy harvester, where the combined goals of both maximum 
power and efficiency cannot be attained simultaneously. By means of spectral analysis we have elucidated the 
origin of the poor performance of the single oscillator energy harvester: a power-law frequency dependency 
∼ ω2 of the velocity power spectrum that renders its contribution negligible in the low-frequency limit. This, in 
turn, reduces significantly the power that can be harvested from the external noise. On the contrary, for the chain 
system resonance with the extra frequencies afforded by the additional degrees of freedom contributes to a non-
decaying velocity/momentum power-spectrum in the low-frequency region, wherein most of the noise energy 
resides, thus rendering a consistent performance of the device for finite correlation time values. These numeri-
cal findings have been corroborated by an analytical approximation, with excellent agreement between both.

While most studies of energy harvesters typically consider uncorrelated environmental noise, the reality is 
that this limit is an idealisation to describe noises correlated over very short times. However, in many potential 
applications, like electromagnetic plasmas30, non-Newtonian fluids31 or nanofluidics32, the noise fluctuations may 
exhibit long correlation times. Therefore, energy harvesters that can take advantage of the low end frequency 
band without the need of fine tuning the device response frequency to the right bandwidth, are most welcome. 
In this respect, the chain of harmonic oscillators, with its flat response spectrum, can be a very effective, yet 
simple, way to harvest considerable amounts of energy.

As for possible experimental implementations we recall that the phonon mean-free path in graphene ( ∼ 775 
nm near room temperature33) is much longer than the sizes of various graphene nanostructures recently con-
sidered. Therefore, the intrinsic nonlinearity is insignificant and thus can be regarded as harmonic systems. 
Furthermore, since graphene has a very high thermal conductivity33,34, its energy transport properties are quasi-
ballistic, another property of harmonic systems. Besides graphene other materials with high thermal conductivity 
such as carbon nanotubes35,36 or carbyne37,38 could be considered. At these nanoscopic scales it is known39, from 
studies of mechanical resonators based on carbon nanotubes26,40 and graphene sheets41,42, that damping strongly 
depends on the amplitude of motion and is better described by a nonlinear rather than the linear damping force 
used in the present study. Such nonlinearity leads to a broadening of the resonance frequency that most certainly 
will have a significant influence on the performance of the herein proposed energy harvester.

Besides the potential benefit of using nonlinear or anharmonic resonators as chain elements, another interest-
ing line of reasearch would be to study the feasibility of energy harvesting from other ambient sources, such as 
the harmonic noise with which substantial power amplification has been observed across a wide value range of 
the excitation frequency25. Another possibility could be to try harvesting energy from nonequilibrium fluctua-
tions such as the non-negative biased noise in the form of generalized white Poissonian noise43 or dichotomous 
fluctuations44 with which the transport efficiency of an inertial Brownian particle is significantly enhanced. It is an 
enticing possibility that such flucutations, in the context of the present investigation, could result in a substantial 
increment in either delivered power or efficiency.
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