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A one‑step mild acid route 
to fabricate high performance 
porous anti‑reflective optical films 
from cationic polymeric nanolatex
Tong Zhang1,2, Jiannan Jia3, Yao Xiao3, Binhua Shen3, Zhiyong Wang2, Xiaosu Yi4, 
Xvsheng Qiao3* & Yan Zhao1*

Porous silica anti-reflection (AR) films are of importance in solar cells’ photon harvest. However, the 
usual utilized method to fabricate AR films is the two-step method since the formation of porous 
silica NPs (first step) and silica coating sol (second step) always require chemical systems at distinct 
pH values. To reduce the complexity of the process, we choose cationic emulsion as an approach to 
produce the porosity and propose a convenient one-step route to get high-performance antireflective 
films. A single layer SiO2 anti-reflective (AR) film with high optical transmittance up to 97.5% at 
740 nm was fabricated from composite sol that was made from cationic emulsion nanolatex and 
tetraethylorthosilicate under acid catalysis condition. After calcination, the transmittance of AR 
coated glasses still held the transmittance of 96% at 550 nm. Composited with SiO2, Al2O3, or TiO2 sol 
binders, the transmittance of AR coated glasses could be recovered as high as 97.9% at 650 nm and 
the pencil hardness was further strengthened up to 6H. The composite sol can keep stable at least one 
month at ambient temperature without any visible precipitation. Therefore, the proposed method is 
promising for developing high-performance AR films effectively and economically.

Single-layer antireflective (SLAR) coating has been widely applied to enhance optical transmission in various 
devices such as solar cell front substrates and optical lenses1,2. Generally, there are two strategies can be utilized 
for SLAR films to get high optical transmittances: (1) to fabricate a SLAR film with an optical thickness equal to 
1/4 wavelength; (2) to prepare it with a refractive index nc = (n0n1)1/2, where n0 and n1 are the refractive indices 
of the air and the substrate, respectively3. Among various methods to fabricate SLAR films, the sol–gel method 
is universally applied in the industry owing to its merits suitable for large area, uniform, and low-cost coatings. 
By sol–gel methods, the optical thickness can be easily optimized through changing coating parameters, and the 
refractive index can also be facilely tuned through compositing various void structures. In recent years, sol–gel 
methods have been intensively exploited to prepare porous SLAR films on a large scale. Mizoshita et al.4 reported 
a sol–gel SLAR film with outstanding AR performances by compositing mesoporous silica nano-spheres with 
hexamethyldisilazane (HDMS) alkylated surface and mesoporous silicon sol binders produced by polyethylene 
oxide–polypropylene oxide–polyethylene oxide (P123) block copolymer templates. Zhang et al.5 utilized a PAA 
template method to fabricate hollow silica nano-spheres under alkaline conditions and deposited it onto the 
glass substrate. To strengthen the mechanical performances, the final SLAR film was fabricated by filling the 
interspace between silica nano-spheres with acid silica sol. However, the precise methodology and evaluation 
for the preparation process and final coating have never be considered strictly in a real sol–gel engineering 
implementation4,6. Firstly, in practical experiments, the silica nanoparticle or hollow spheres usually coming from 
ammonia catalysis reaction is so hard to be applied in the sol–gel coating industry. Because they will cause the 
acid silica sol (as a kind of binder) tuning to a semi-solid condition and induce SLAR films with poor mechanical 
properties7. Secondly, the productivity for silica porous nanoparticles is so low and the centrifugation process 
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is inevitable8. Thirdly, other template methods, such as introducing polymer molecules as templates to fabricate 
low refractive index coating, are extremely limited by the high silica viscosity, which leads to non-repeatability9.

Herein, we choose cationic emulsion as an approach to adjust the porosity and propose a convenient route to 
get high performance antireflective. An emulsion system can be dispersed with high content suspended solids, so 
it has been applied as an important part of the coating industry, including both water and solvent-based coatings. 
A sol containing silica hollow spheres and an emulsion containing nano cationic polymer are usually chemically 
compatible under acid condition, so they are easy to be composited into a stabile SLAR film sol. The composite 
sol does not need any complex subsequent treatment (surface modification) and preforms good optical trans-
mittance after applying to the glass substrate. The approach is illustrated in Fig. 1. Firstly, nano-scale polymer 
spheres are prepared. Then, by a sol–gel method, inorganic material (silica) precursor is coated on the surface of 
the nano-organic template to form polymer/silica core/shell spheres, which is subsequently mixed with binder sol 
to produce a stable coating sol. Next, the precursor coating sol is deposited on the substrate glass to prepare an 
uncured SLAR film. Finally, in the high-temperature tempering process, the organic matter can be removed well 
to achieve a porous SLAR film with enhanced mechanical properties. Since most of the emulsion is polymerized 
from organic monomers, it can be almost completely decomposed at high temperature (450–750 °C), cumber-
some steps of removing templates in traditional preparation process are omitted. This method can be conducted 
easily and exhibit a huge practical application prospect in outdoor solar panels.

Results and discussion
Previous studies10,11 mostly used a two-step method to prepare porous silica antireflection film. This is mainly 
because the formation of porous silica nano-particles (NPs) (first step) and silica coating sol (second step) require 
chemical systems at distinct pH values. The tetraethylorthosilicate (TEOS) is more easily hydrolyzed and polym-
erized under alkaline conditions to form silica NPs (first step). In contrast, as a typical binder to organize silica 
NPs into AR film, silica sol (binder) with chain-like internal structures is generally catalyzed and synthesized 
from TEOS under acidic conditions (second step), such as hydrochloric acid or acetic acid12. The silica prepared 
in the first step needs to be modified to remove the alkaline substance so that it can be uniformly dispersed in 
the acidic silica sol binder in the second step to form composite AR film sol. Therefore, direct exploitation of 
synthesizing silica NPs under acidic conditions can eliminate the cumbersome steps of removing the alkaline 
substance of silica NPs.

Under acidic conditions, it is inaccessible to obtain uniform silica nanospheres due to strong polycondensa-
tion. For this reason, we proposed a novel moderate method based on cationic emulsion nanolatex, as shown 
in Fig. 1. Because the TEOS hydrolysate is usually negatively charged, we design an oppositely charged polymer 
particles from organic monomers [BA (Butyl acrylate), St (Styrene) and DMC (Methacryloxyethyltrimethyl 
ammonium chloride)] to form cationic polymeric nanolatex (CPN) emulsion (Fig. 1a, b). After adding CPNs 
in acidic hydrolyzed silica sol, the negatively charged silica species will adsorb onto the CPNs surface through 
strong electrostatic interaction to form core–shell structures in the composite sol (Fig. 1c, d). In this strategy, 
DMC, the cationic monomer with ammonium, can act as a polymeric catalyst under acidic condition and/or a 
physical scaffold for silica deposition on the surface of CPN13. The hydrolysis occurs in a weak acid condition 
more quickly than in alkaline condition14,15. Subsequently, dip coating is utilized to fabricate precursor coating 
on substrates (Fig. 1e), which can be eventually converted into porous silica AR film after calcination (Fig. 1f). 
This method has the following advantages: (1) it can avoid extra steps like centrifugation or acid washing to 
remove ammonia4,8,16; (2) acid condition is beneficial to the subsequent surface modification to improve the 
dispersibility of composite nanoparticles17; (3) high solid concentration of CPNs can promise high effective 
productivity than other methods18; (4) pyrolysis of CPNs can be associated with glass manufacturing which needs 
high-temperature tempering process. Therefore, this method can be a promising choice to make an economical 
and effective AR film.

Figure 1.   The preparation scheme of porous silica optical AR film from cationic emulsion nanolatex.
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Cationic polymeric nanolatex (CPN).  Figure 2 clearly shows the effect of DMC on the produced CPN 
particle size. DMC is a highly reactive and water-soluble cationic polymerizable monomer19. 2,2′-azobis [2-meth-
ylpropionamidine] dihydrochloride (AIBA) acts as a cationic initiator to assist the reaction among DMC, BA, 
and St. Active tri-polymer segments (DMC/BA/St) are thus formed as initial nuclei to be potentially grown into 
larger CPN particles20. DMC on CPN surfaces with positive charge chemically stabilize the produced emulsion. 
It then avoids the sedimentation of the emulsion. With an increasing introduction of DMC, the CPN size gradu-
ally decreases. At the same time, the resulting emulsion is more stable in our experiments due to the formation of 
fine CPN particles with increased surface charge density. It has been previously reported19,20 that extremely water 
solubility of DMC would induce secondary nucleation at a high DMC introduction case, resulting in an uneven 
CPN size distribution. Those phenomena were not observed in this experiment because of the low introduction 
level of DMC.

Figure 3 provides the evidence of the cationic initiator (AIBA) concentration effect on the CPN particle size. 
As the amount of AIBA decreases from 0.1 g to 0.04 g, the particle distribution changes from mono-dispersive 
at 55 nm to poly-dispersive at 50–100 nm. This phenomenon can be related to traditional nucleation and growth 
theory. A high nucleation rate leads to a small particle size of the newly formed phase, and vice versa21. When 
AIBA is reduced to a certain amount (0.06–0.04 g), the concentration of nucleation in the seed emulsion drops 
significantly. The subsequent monomer polymerization process can only start from a limited number of seeds, 
thus an individual CPN particle can grow up to a large size. A large amount of AIBA further stabilizes the pro-
duced CPN emulsion with high stability. In our experiments, those with 0.1 g or 0.08 g AIBA kept blue trans-
parent almost without precipitation after half one year, while white precipitation emerged in those with 0.06 g 
and 0.04 g AIBA after one or half a month. The white precipitation is mainly from unpolymerized monomers 
(DMC, BA, and St) in the emulsion.

AR film with CPN composite sol.  Well-coated CPN/SiO2 can be obtained by controlling the core/shell 
precursor ratio (CPN emulsion/TEOS ratio), TEOS hydrolysis rate (acetic acid concentration, water/ethanol 
ratio), polycondensation rate (amino group concentration, Coulomb interaction). As shown in Fig.  4a, the 
uncoated CPN particles are uniformly dispersed and have a particle size of about 50 nm. Although there have 
been a large number of papers about polymer latex22, to the best of our knowledge, this is the smallest cationic 
nanolatex size with high uniformity via emulsifier-free emulsion polymerization. The small size of CPNs is 
essential to avoid scattering in the visible range. The involvement of large CPN particle and void size will result 
in a foggy appearance of AR film.

At an acid catalytic condition, the hydrolyzation rate of TEOS is much faster than the polycondensation rate, 
where polycondensation even starts before hydrolyzation of TEOS. When the ratio of CPN/TEOS is 2:1 and H2O: 
EtOH is 1: 40, the SiO2 partially coating on CPN (Fig. 4b) can be obtained at acid catalytic condition (pH ≈ 3). 
The star-like CPN/SiO2 nanoparticles form after the fine silica nanoparticles depositing onto the CPN surface. 
Although the acid sol can be stably stored for a period of time in the test, the SiO2 produced by hydrolysis does 
not completely grow on the polymer surface. According to the above mentioned reaction dynamic feature of an 
acid sol–gel system, for obtaining SiO2 well coated CPN sol, there is a lack of TEOS and H2O, but excessive in 
CPN and EtOH. Those deduce an inadequate hydrolyzation of TEOS as well as a lower production rate of SiO2. 
The dilution effect by ethanol also breaks the electrostatic repulsion balance of the CPN emulsion and induces 
a poor mono-dispersibility of the final product deposition23. It thus causes the abnormal growth of the coating 

Figure 2.   The SEM images of polymer nanolatex with different introduction of DMC: (A) DMC = 0.02 mL, (B) 
DMC = 0.1 mL, (C) DMC = 0.3 mL, (D) DMC = 0.7 mL.
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layer at the local site and the unevenness of the entire surface by the polycondensation of TEOS cover. For the 
above reasons, the hydrolysis/polycondensation processes of an increased amount of TEOS should be controlled 
by adjusting the ratio of water to ethanol. Then, the ratio of CPN/TEOS is adjusted to 1:1, the ratio of water to 
ethanol is increased to 10:3, and the pH value is kept at 3. This can adjust the dispersibility of the latex particles 
in the mixed solvent and alleviate the excessive polycondensation of TEOS24. As a result, well coated CPN/SiO2 
sol (Fig. 4c, d) can be eventually prepared with blue white semitransparency.

Figure 3.   The SEM images of polymer nanolatex with different introduction of AIBA: (a) AIBA = 0.1 g, (b) 
AIBA = 0.08 g, (c) AIBA = 0.06 g, (d) AIBA = 0.04 g.

Figure 4.   TEM (a, b, d, e) and HADDF-STEM (f) images of CPN/SiO2 core/shell nanostructures. (c) The 
photograph of CPN/SiO2 core/shell nanostructure composite sol.
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With this new route for preparing an antireflection coating sol, the silica nanoparticle obtained by the weak 
acid coating method does not need to be post-washed after centrifugation. The obtained nanoparticles have a 
uniform spherical morphology and good dispersibility, and the coating on each CPN nanoparticle is very even. To 
a further step, the above method is suitable to fabricate 100 nm size CPN/SiO2 core/shell nanoparticles (Fig. 4e, 
f). The contrast of the core/shell nanostructure can be recognized under the TEM (Fig. 4e) and HADDF-STEM 
observation (Fig. 4f). The outer surface has a bright area of about 10 nm, which is different from the core. It 
indicates that silica does grow on the surface of microspheres. Thus, a very stable CPN/SiO2 composite sol is 
obtained (see Fig. 4c). It can keep stable at room temperature and normal pressure for more than half a year.

The optical transmittance of the AR films (Fig. 5a) can be improved from below 92% to the maximum of 
94–96% with different dip-coating parameters. For the aim to optimize the transmittance at a certain wavelength 
(λ), we could modify AR films as follow strategies: (1) to maximize the destructive interference by adjusting the 
layer thickness, d, to be λ/4nc; (2) to minimize Fresnel reflection loss by inserting a single layer AR film with an 
intermediate refractive index, nc = (n0n1)1/2, where n0 and n1 are the refractive indices of the air and the substrate, 
respectively. Due to thickness directed destructive interferences and refractive index determined Fresnel reflec-
tion losses on the interface between layers, the investigated films can get good AR performances. The Λ-shape 
transmittance curves in Fig. 5a, b show the typical thickness-wavelength dependent destructive interference, 
following d = λ/4nc equation. For single-layer ARC, it can promote the transmittance to the maximum at the 
wavelength “4ncd”. When the wavelength of incident light changes deviating from such specific wavelength, no 
complete destructive interference will happen and the transmittance would decrease rapidly. The maximum 
transmittance wavelength in Fig. 5a redshifts from 400 to 550 nm to 650 nm when changing the dip-coating 
speed from 2 mm/s to 4 mm/s to 6 mm/s and in Fig. 5b blue shifts from 750 to 550 nm before and after cured. 
It suggested that thickness of the single-layer ARCs increase with acceleration of the dip-coating speed and the 
single-layer ARCs exhibited an obvious shrinkage in thickness after cured. Those will be discussed in details 
with the above two strategies.

With strategy (1), we initially explored the optical behavior of AR films with various thicknesses controlled 
by the dip-coating speed25. The thickness of a dip-coating film is altered by dip-coating speed (U0), sol viscosity 
(η), sol density (ρ), surface tension (r) and the gravity constant (g) according to the formula (1)14:

Thus, the maximum transmittance wavelength of a single layer AR film is proportional to its thickness. Therefore, 
the film thickness becomes large with an accelerating dip-coating. The maximum transmittance wavelength in 
Fig. 5a redshifts from 400 to 550 nm to 650 nm when changing the dip-coating speed from 2 mm/s to 4 mm/s 
to 6 mm/s.

With strategy (2), we choose the porous silica layer to reduce the reflective loss. When porous AR films are 
applied, the reflectance can be calculated with the formula (2)26:

Accordingly, the selection of material is a challenge because nglass is 1.5151 (BK7 at 633 nm) and calculations 
would set nAR to be approximately as low as 1.2226. Alternatively, we could composite a number of pores inside the 
films to decrease the apparent reflective index. In this case, the pores are originated from nanospheres stacking 
before calcination (Fig. 5a) and voids producing through removing polymer nanospheres after the calcination 
(Fig. 5b). The porosity as well as the apparent refractive indices are also influenced by dip-coating speed, so 
the absolute transmittance values of different samples in Fig. 5a are different from each other. For single-layer 
ARC, it can promote the transmittance to the maximum just for one single wavelength and a certain incidence 
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Figure 5.   (a) The transmittance spectra of nanoporous silica optical AR films dip-coated with different pulling 
speed, (b) the transmittance spectra of cured and uncured nanoporous silica optical AR films dip-coated with 
the 4 mm/s pulling speed, (c) thermal gravimetric analysis (TGA) curve of dry composite sol.
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angle. When the wavelength of incident light changes at a normal angle, no complete destructive interference 
will happen and the transmittance would decrease rapidly. Then, Λ-shape AR effect shows up in our experiment 
results. However, the interesting phenomenon in Fig. 5b is the maximum of optical transmittance of the AR 
film before calcination reaches beyond 97.5% at 740 nm, while it drops down to 96% at 550 nm after calcination. 
This is a consequence of overestimation of realistic refractive index. The over high porosity means the refrac-
tive index is much smaller than ideal value (1.22) resulting in less effective AR effect. Regardless of absorption 
and diffuse reflection, for the uncured sample, the minimum reflectance equals to 2.5% (1–0.975) occurring at 
the maximum transmittance peak (740 nm); for the cured sample, it equals to 4% (1–0.960) occurring at the 
maximum transmittance peak (550 nm). Then, according to formula (2), the apparent refractive indices could 
be roughly evaluated as 1.050 (uncured) and 1.006 (cured), respectively. That is to say, the refractive index of 
the cured sample is much farther away from the ideal refractive index (1.22) than the uncured sample. Hence, 
the AR effect was weakened after calcination.

The TGA curve (Fig. 5c) reveals that the coating layer lost its weight by > 50% after calcination (at 700 °C), 
implying increased porosity and decreased refractive index. Further assuming there is no absorption of light and 
according to the effective medium theory, we can calculate the porosity with the formula (3)26:

As a result, porosities are calculated as 91.08% and 99.08% for uncured and cured coatings, respectively. The 
estimated porosities are obviously over large, but the variation trend due to calcination is still consistent with 
the observed one. Figure 6 shows the SEM images of surface morphologies and photographs of the AR films 
before and after calcination. Both cured and uncured samples display high porosity morphologies (Fig. 6a, b, 
d, e) and exhibit relatively low reflectance compared to bare glass substrates (Fig. 6c, f). The uncured glass with 
coating exhibits a dim blue color, while the cured glass with coating appears as relatively strong red-shifted color. 
The reference glasses without coating both have a bright reflection. Those are consistent with the transmission 
spectrum in Fig. 5b.

A calcination heat treatment is usually necessary for an AR film to get strengthened in pencil hardness. 
Under the dip-coating speed of 4 mm/s, pencil hardness of a single layer AR film can be improved from 2H/3H 
before calcination to 3H/4H after calcination. However, the SEM observation (Fig. 6a, b, d, e) reveals that the 
surfaces of the films before and after calcination are similarly loose and porous. Those are still unfavorable to get 
strengthened mechanical properties for the AR films. Therefore, the overall performances of AR films should be 
optimized with the required thickness and porosity together. Basing on its high porosity, some typical binder sol 
could be introduced to enhance its mechanical properties and offset decreased refractive index.

Strengthening with SiO2/Al2O3/TiO2 binder.  Although the above AR films from the composite sol have 
good optical anti-reflection performances, their strengths are not yet satisfactory since there are no strong bonds 
between the particles. The overall mechanical properties of the film are still as low as 3H/4H. To explore the 
optical properties of commonly used thin film materials, we introduced some typical binder materials, such as 
acidic silica sol, alumina sol, and titanium oxide sol to improve the mechanical performance of porous AR films.

(3)P = 1−
n2AR − 1

n2glass − 1

Figure 6.   The SEM and magnified SEM images of uncured (a, b) and cured (d, e) silica optical AR films. The 
photographs of uncured (c) and cured (f) glasses coated with composite sol films. The circled areas in (b, e) are 
some loose and porous structures existed in the AR films even after calcination.
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Strengthened by SiO2 binder.  Using SiO2 sol as a binder (Fig. 7a–c) can strengthen the hardness of AR films 
to 5H/6H and maintain maximum transmittance at 97.9%. The CPN/SiO2 composite sol can be directly mixed 
with acidic SiO2 sol to prepare the final AR film sol with SiO2 binders. The film with the SiO2 binder not only 
has a good anti-reflection effect throughout the visible spectral region but also possesses a relatively high pen-
cil hardness. It indicates that there are strong adhesion strengths between the binder and the particles. Some 
literature16 reported that the introduction of SiO2 binders will lead to a loss of optical transmittance, but the 
opposite results were observed in our experiments. A suitable amount of SiO2 binder addition is helpful to 
enhance the mechanical properties of porous AR films. Observing different areas on the same glass (Fig. 7b), one 
can find the area with an AR film has a weaker optical reflection or a brighter mirror image than that without AR 
films. On the SEM image (Fig. 7c), the surface of the AR film with SiO2 binders also appears much denser than 
that without SiO2 binders (Fig. 6). Some holes are retained in the films after sintering. Hollow SiO2 particles are 
observed to be well adhered by SiO2 binders. The thickness of the SiO2 binder enhanced AR films are observed 
as about 100–200 nm in the TEM cross-section image, as shown in Supplementary Fig. S1 shows. The smooth 
silica films without other surface modifications are hydrophilic after thermal treatment, so the water contact 
angle is measured as about 30° as shown in Supplementary Figs. S1 and S2. It was favorable for the AR film to 
get a self-cleaning performance. A group of transmittance spectra (Supplementary Fig. S3) and a TEM image 
with low magnification (Supplementary Fig. S4) could further prove the uniformity of the coating. Therefore, 
a much compact, uniform, and hydrophilic porous SiO2@SiO2 binder skeleton is thus formed to support the 
performance improvement.

Strengthening with Al2O3 binder.  Utilizing acidic Al2O3 sol as a binder (Fig. 7d–f) can strengthen the hardness 
of AR films to 6H with keeping the maximum transmittance of 98.0%. The acid Al2O3 sol was prepared by the 
method in the literature27, and it was mixed with CPN/SiO2 composite sol to prepare the final AR film sol with 
Al2O3 binders. Although the refractive index of Al2O3 is as high as 2, which is much larger than SiO2 or glass sub-
strate, the AR performance and the mechanical properties of the porous SiO2@Al2O3 binder film are comparable 
with those of the porous SiO2@SiO2 binder film. Its wide-band anti-reflection performance is even better, maybe 
because the Al2O3 sol is positively charged and well compatible with the CPN/SiO2 composite sol. Thus, only a 
much dim mirror image (the left in Fig. 7e) can be observed at the porous SiO2@Al2O3 binder coating region. 

Figure 7.   UV–VIS–NIR transmission spectra (a, d, g) of films using SiO2, Al2O3 and TiO2 sol as binders; 
photographs (b, e, h) and surface images (c, f, i) of the coated glasses.
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From the SEM image (Fig. 7f) that the pore distribution is uniform and the particles have good dispersibility. 
Those help the AR films achieve good optical AR and mechanical performance.

Strengthening with TiO2 binder.  Utilizing acidic TiO2 sol as a binder (Fig. 7g–i) can strengthen the hardness 
of AR films to 6H, but the optical transmittance is weakened down to 80–90%. Similar to the acidic Al2O3 sol, 
an acidic TiO2 sol was prepared according to the literature, and it was mixed with CPN/SiO2 composite sol to 
prepare the final AR film sol with TiO2 binders. The refractive index is as high as 2.2, which is much larger than 
the refractive index of the inorganic silicate glass (1.4–1.5). It thus leads the AR films to get only a relatively low 
optical transmittance below 90% (Fig. 7g), especially in the ultraviolet-blue spectral region. This is because TiO2 
itself is a semiconductor with a forbidden bandwidth of about 3 eV, which can absorb ultraviolet light. From the 
photograph (Fig. 7h), it can be observed that the strong reflection makes the AR film area much brighter than 
those without coating. The positively charged TiO2 pure sol also has so good compatibility with the CPN/SiO2 
composite sol that the final CPN/SiO2 and TiO2 composite sol can keep uniformly dispersed without apparent 
precipitation for several months. The surface topography (Fig. 7i) of the film is much flatter than the other films 
(Fig. 7c, f). It suggests that the porous SiO2@TiO2 binder films can be applied as optics functional surfaces not 
in UV–Vis but NIR spectral region.

Conclusion
Mono-dispersive CPN/SiO2 core/shell nano-spheres were expediently fabricated throughout an acidic condition 
with polymerization of template emulsion (DMC/BA/St) and a subsequent shell (SiO2) coating. The chemical 
stability and the size of CPN/SiO2 nano-spheres could be well adjusted by the introduction amount of DMC and 
AIBA. Single layer nanoporous anti-reflective (AR) films were thus made through the strategies of tuning thick-
ness and producing void structures. Initial dip-coated CPN/SiO2 AR films had optical transmittance as high as 
97.5% around 740 nm with much low pencil hardness (2H/3H). After calcination, CPNs were removed to form 
high porosity and low refractive index SiO2 AR film. It led the AR film to get the maximum optical transmittance 
down to 96% at 550 nm and the improved pencil hardness of 3H/4H. With SiO2 or Al2O3 binder, the AR films 
were further strengthened with improved pencil hardness up to 6H and held excellent optical transmittance 
as high as 97–98%. But the AR film strengthened by TiO2 only presented a much low optical transmittance 
(80–88%). The composite sols were chemically stable at ambient temperature at least for one month without any 
visible precipitation. The facile preparation method is beneficial to mass production in the practical industry.

Materials and methods
Cationic polymeric nanolatex (CPN) were prepared by emulsion polymerization using 2,2′-azobis[2-methylpro-
pionamidine] dihydrochloride (AIBA) (0.5 g) and cationic monomer methacryloxyethyltrimethyl ammonium 
chloride (DMC) (0.07 g), together with Butyl Acrylate (BA) (1 g), Styrene (St, C8H8) (5 g) and H2O (45 g). The 
polymerization was carried out in nitrogen at 70 °C for 2 h and the stirring speed was adjusted at 700 rpm. 
Firstly, the prepared CPN (5.0 g) was added dropwise into preformed silica sol (15 mL) and stirring vigorously, 
where the molar ratios of TEOS (Ethylsilicate): EtOH: H2O: AcOH (acetic acid) = 1:4:12:0.4. After stirring for 
4 h, 30 mL EtOH was added into it and the composite sol was stored in a low temperature (5 °C). The sol was 
deposited on cleaned bare glasses using a double side dip-coating process and calcination in air (700 °C for 
5 min) to remove the CPN. Parallelly, the CPN emulsion is mixed with a binder such as a TiO2 sol or an Al2O3 
sol in a certain ratio, and coated on an ultra-white glass to obtain a corresponding functional film material, and 
subjected to relevant test and characterization.

The morphologies of nanoparticles (NPs) in the sol were observed by transmission electron microscope 
(TEM) images taken with a Tecnai G2 transmission electron microscope operated at an acceleration voltage of 
200 kV. The surface morphology of the coatings was determined by scanning electron microscopy (SEM, Hitachi 
S-4800). The transmittance spectra of the AR films were measured by an UV–Vis–NIR (U-4100). Thermal gravi-
metric analysis (TGA) was used to evaluate the weight loss of composites, using TA Q500 thermal analyzer. The 
pencil scratch test was performed by using pencils (B-3084T3) with hardness ranging from 6B (the softest) to 
6H (the hardest).
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