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controlling oleogel crystallization 
using ultrasonic standing waves
fabio Valoppi1,2,3*, Ari Salmi3, Miika Ratilainen3, Luisa Barba4, Tuomas Puranen3, 
Oskari Tommiska3, Petteri Helander3, Jesse Heikkilä3 & Edward Haeggström3

Oleogels are lipid-based soft materials composed of large fractions of oil (> 85%) developed as 
saturated and hydrogenated fat substitutes to reduce cardiovascular diseases caused by obesity. 
Promising oleogels are unstable during storage, and to improve their stability careful control of the 
crystalline network is necessary. However, this is unattainable with state-of-the-art technologies. We 
employ ultrasonic standing wave (USSW) fields to modify oleogel structure. During crystallization, the 
growing crystals move towards the US-SW nodal planes. Homogeneous, dense bands of microcrystals 
form independently of oleogelator type, concentration, and cooling rate. The thickness of these bands 
is proportional to the USSW wavelength. These new structures act as physical barriers in reducing the 
migration kinetics of a liposoluble colorant compared to statically crystallized oleogels. These results 
may extend beyond oleogels to potentially be used wherever careful control of the crystallization 
process and final structure of a system is needed, such as in the cosmetics, pharmaceutical, chemical, 
and food industries.

Abbreviations
USSW  Ultrasonic standing wave
HIU  High-intensity ultrasound

Oleogels are lipid-based materials that contain 85%–99.5% liquid oil trapped in a network of structuring mol-
ecules called  oleogelators1. Oleogels were developed during the last 15 years as saturated and hydrogenated fat 
 substitutes2. Saturated fats are used in the food, cosmetics, and pharmaceutical industries due to their ability to 
form solid and crystalline structures at room temperature. These crystalline structures are employed as delivery 
and protective systems and structuring  agents3. However, excessive consumption of saturated fats correlates 
with obesity that in turn causes cardiovascular diseases, metabolic syndrome and type-2  diabetes4–6. Obesity is 
a global problem. In 2014, 2.5 billion adults and 41 million children worldwide were overweight or obese; these 
numbers have doubled since  19807. The annual healthcare costs related to treating diseases caused by/related to 
obesity is 60 billion euros in  Europe8 and 210 billion dollars in the  USA9.

Lowering the intake of saturated fats, for example, by using oleogels rich in polyunsaturated fatty acids can 
help reduce cardiovascular diseases caused by obesity. Oleogels can be prepared using  direct1 and  indirect10 
methods. Indirect methods are foam, emulsion and solvent exchange and aerogel templating where proteins or 
polysaccharides are used to prepare the scaffold in which oil is absorbed/retained10. The direct method makes 
use of self-assembling molecules (e.g. monoglycerides, waxes, fatty acids, fatty alcohols, ethyl cellulose, phytos-
terols, phytosterol esters, etc.) to gel the  oil1. Structuring agents are dispersed into the oil, and then a heating and 
a cooling step are successively applied. The oleogelators rearrange themselves during the cooling step to form 
a crystalline/polymeric network. The network entraps the oil and gels the  system11. The direct method is most 
common because it is simple, needs no specific equipment, requires little energy during oleogel preparation and 
is industrially  scalable12.

A disadvantage is that oleogels can release oil during storage due to molecular rearrangements. Unfortu-
nately, this prevents these materials from becoming the ‘fat of the future’2,11,13–15. Much effort has been directed 
to improving oleogel performance by modifying the formulation and  processing16–18. The cooling rate and shear 
force have been used to try to improve the ability of oleogels to retain  oil15,19–23. In systems containing saturated 
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fat, the application of shear force during crystallization aligns the crystals and decreases the oil migration rate due 
to a more densely packed crystal network (increased tortuosity of the system). This makes these systems more 
 stable24,25. However, applying shear force to oleogels often reduces their ability to retain oil because small crystals 
with fewer junction zones among them are  formed20,21. Recently, high-intensity ultrasound (HIU; high-power 
acoustic waves with a frequency above 20 kHz) have been used to tailor the mechanical and functional proper-
ties of saturated fats and  oleogels22,23,26. Unfortunately, HIU creates streaming and particle fractionation effects 
due to transient cavitation, and this leads to uncontrolled modification of the oleogelator crystalline network. 
To improve the storage stability of oleogels, fine control of the assembling of the crystalline network is necessary. 
Such control can be achieved by exposing the oleogels to ultrasonic standing waves (US-SWs).

USSWs oscillate in place and are produced when a wave is confined within boundaries. Ultrasound travelling 
into a medium and reflecting off a surface interferes with the incident wave, creating regions of no displacement 
(nodes) and regions of maximum displacement (anti-nodes). This forms a USSW field. The acoustophoretic 
forces exerted by the USSWs can orient fibbers in aqueous  media27, levitate  objects28 and orient  molecules29, 
 microparticles30,  nanowires31, and  cells32 across many length scales (e.g. nano, micro, and macro) without dam-
aging the samples.

We use USSWs to direct the crystallization of monoglyceride-, sunflower wax-, and candelilla wax-containing 
oleogels and achieve fine control of their microstructure. We chose monoglyceride and waxes because they are 
promising oleogelators in terms of possible  applications16,33. We organized the work into four different parts: 
(i) design, simulation and development of technology made in-house, (ii) the effect of frequency and cooling 
rate on the crystallization of oleogels with the development of a theoretical model, (iii) the effect of oleogelator 
concentration and type and (iv) the effect of USSW treatment on liposoluble colorant migration kinetics. USSWs 
can potentially be used as a platform technology to obtain fine control of the crystallization process of systems 
that contain a growing crystalline network.

Results and discussion
Design, simulation, and test of the experimental chamber. Figure 1a shows the physical principles 
governing the behavior of particles in USSW fields. These fields feature nodal and anti-nodal planes. Between 
these planes, there is a radiation pressure gradient that exerts a force on any particle whose acoustic impedance 
differs from that of the immersion medium. The primary force that the planar standing field generates is the 
acoustic radiation force  (Fac)27,32,34:

where Vp is the volume of the particle, k is the wave number (2π/λ where λ is the ultrasound wave length), Eac is 
the maximum acoustic energy density, z is the distance between the particle and the nodal or anti-nodal plane, 
and φ is the acoustic contrast factor, defined as:

where ρ̂  is the ratio of the density of the particles to that of the medium, and β̂  is the ratio of the compressibility 
of the particles to that of the medium.

Fac pushes the particle towards the nodes or anti-nodes, and the force experienced by the particle changes its 
magnitude and direction based on the position of the particle with respect to the nodal or anti-nodal  planes27. 
Particles move towards the nodal planes if φ is positive. In contrast, particles move towards the anti-nodes if φ 
is negative. During their movement towards the nodal plane, a drag force opposes the particle movement due 
to, for example, the viscosity of the  medium27,34. When the particles arrive at the nodal plane, a secondary force 
acts on the particles and pushes them together. This force is known as secondary radiation force (Fs)34. In the 
case of non-spherical particles, the particles may feel a torque (τ). This torque is generated by the inhomogeneous 
radiation pressure acting along the long axis of the  particles27,32. For instance, a rod-shaped particle can partially 
lie in the nodal plane while the remaining part is in the anti-nodal plane, and therefore the particle rotates. The 
force acting on the particle is proportional to cos(2θ) of the deflection angle θ. Only at θ = 90° (rod horizontally 
oriented in Fig. 1a) is the orientation stable, and no rotation takes place. If the particle size is larger than λ/2, 
the formation of macrostructures is weakened because their characteristic length scale is λ/227, and the acoustic 
forces cease to rapidly increase with particle size, unlike viscous forces. At the same time, the particle must be 
large enough (e.g. in the micrometer range); otherwise, the drag forces  (Fd, Fig. 1a) prevent translation in any 
sensible time. Because Fac and Fd are proportional to particle volume (Vp) and area (Ap), respectively, particles 
with small a surface-to-volume ratio (Ap/Vp < 1 µm−1) are more easily moved inside a USSW field.

Based on these considerations, we designed an experimental chamber featuring two ultrasonic transducers 
able to generate a prescribed standing field (Fig. 1b). The upper transducer is movable so that the number of 
nodal planes can be selected according to Eq. 7 (“Materials and methods”). We then simulated the standing 
field in the experimental chamber. As an example, we report in Fig. 1c on the simulation of a 1 MHz ultrasonic 
standing field generated by emitting ultrasonic waves from the lower transducer placed 3.8 mm apart from the 
top transducer (corresponding to 2.5 λ) in oil. The standing field is composed of nodal planes (white) between 
areas of alternating positive (red) and negative (blue) pressure. Similar results were obtained in the simulation 
of a 2 MHz chamber (Fig. S1a, supporting information).

We then visualized the standing field in the real chamber using a Schlieren setup, which confirmed the pres-
ence of the pressure field in the chamber in holding oil (Figs. 1d and S1b, supporting information). In Schlieren 
experiments, the dark and bright areas are proportional to the derivative of the refractive index in the direction 

(1)Fac = −VpkEacϕsin(2kz),

(2)ϕ =
5ρ̂ − 2

2ρ̂ + 1
− β̂ ,
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Figure 1.  (a) Physical principles governing the behavior of particles in USSW fields: (i) piezoceramic elements, (ii) 
sinusoidal wave generated by the lower piezoceramic element, (iii) nodal plane corresponding to a pressure minimum, (iv) 
anti-nodal plane corresponding to a pressure maximum, (v) and (vi) behavior of spherical particles in the USSW field, with 
arrows indicating forces acting on the particles (Fac = acoustic radiation force, Fd = drag force, Fs = secondary radiation force, 
z = distance between the center of the particle and the nodal plane), (vii) and (viii) behavior of rod/platelet-like particles in 
the USSW field, with arrows indicating the forces acting on the particles (θ = angle between the normal of the nodal plane and 
the major axis of the rod, τ = torque). (b) Design of the experimental chamber. (c) Finite element simulation of the ultrasonic 
standing field in the 1 MHz experimental chamber (top and bottom grey parts are the piezoceramic elements). (d) Schlieren 
imaging of the USSW field in the 1 MHz experimental chamber, with oil used as the medium. (e) Front view (XZ plane) of 
particle movement simulation for 10,000 spherical particles of 100 µm diameter made of monostearin after 10 s in the 1 MHz 
USSW field. (f) Corresponding lateral view (YZ plane) of (e). (g) Image of 30 µm–175 µm long carbon rods dispersed in 
rapeseed oil and subjected to a 1 MHz USSW field; arrows indicate the formed layers of carbon rods. In (c–f), the scale bar 
represents 1 mm along the vertical direction.
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of the applied spatial  filter35; that is, a different contrast between areas is related to differences in pressure, and 
the nodal and anti-nodal planes lie between the dark and bright areas where the intensity is equal to that of the 
background. To gain insight into the behavior of particles in the standing field, we ran particle tracing simula-
tions in the 1 MHz and 2 MHz standing field chambers using 10,000 spherical particles of 100 µm diameter 
made of carbon or monostearin (Videos 1 and 2). In both cases, the particles moved towards the nodal planes 
as expected, with the acoustic contrast factor being positive in both cases (simulation for carbon particles not 
shown). Boundary effects are visible on the lateral sides of the simulated experimental chamber at both 1 MHz 
and 2 MHz, where bands of particles are less defined compared to the central part (Figs. 1e and S1c, supporting 
information, respectively). Bands are continuous along the y direction at both frequencies (Figs. 1f and S1d, 
supporting information), even if some irregularities in shape are found at 1 MHz. We finally studied the behavior 
of carbon rods with a length of 30 µm–175 µm immersed in rapeseed oil and subjected to 1 MHz and 2 MHz 
standing fields. The USSW field pushed the carbon rods to the nodal planes (cf. Fig. 1e,g), forming horizontal 
bands of stacked carbon rods (Fig. 1g). The carbon rods experienced a torque that aligned them horizontally 
(in agreement with the data of Yamahira, Hatanaka, Kuwabara and  Asai27) on polystyrene rods dispersed in an 
aqueous solution.

Effect of frequency and cooling rate on oleogel crystallization. We studied the effect of 0 MHz 
(control samples), 1 MHz, 2 MHz, and 4 MHz USSW fields on the crystal network formation of 5% monoglyc-
eride-containing oleogel crystallized at cooling rates of 1 °C min−1 and 10 °C min−1.

The application of USSW fields on oleogels modified the microscopic structure during crystalline network 
formation. Treated samples appeared inhomogeneous (Fig. 2b–d) compared to the homogenous structure of 
the control sample (Fig. 2a). Sonicated samples feature alternated/stacked dark and light horizontal bands. The 
density of the crystalline material in the bands is proportional to the darkness of the bands. Darker layers contain 
more crystalline material than lighter layers. The crystalline bands developed through the entire thickness of the 
sample (Z direction, Fig. 2e). The thickness of the bands was uniform (Fig. 2f) and inversely proportional to the 
frequency applied (Fig. 2g). Moreover, the number of crystalline bands was directly proportional to the applied 
frequency (Fig. 2g). During crystallization, monoglyceride crystals were pushed towards the nodal planes (cf. 
Figs. 1e and 2b and Video 3) by the pressure gradient forming alternating dense and sparse bands. Applying a 
10 °C min−1 cooling rate instead of a 1 °C min−1 did not statistically alter the band thickness or the number of 
bands with the same USSW frequency (p > 0.05, cf. Figs. 2 and S2, supporting information). Microstructural 
changes are known to affect the mechanical properties and stability of  oleogels15,19–21; therefore, the bands formed 
in oleogels might give different mechanical properties and might affect the stability of the oleogel.

Elongated objects such as  cells32 and polystyrene  fibers27 in aqueous solutions subjected to a USSW field accu-
mulate in the nodal planes and form bands of densely packed material, similar to the formation of monoglyceride 
crystals in oil. The emergence of bands is due to the saturation of the nodal plane by the crystalline material. After 
saturation, crystals are continuously pushed and occupy the closest position to the nodal plane, thus forming 
a band. Moreover, oleogelator crystals change their dimensions (and volume) during crystallization, and the 
acoustic force acting on them increases during crystallization (Eq. 1). Indeed, it is known that oleogelator crys-
tals show a hierarchical structure similar to that of saturated  fats36,37. Hence, there is continuous crystal growth 
from nanocrystals to microcrystals, and eventually the crystals form a macroscopic network. Therefore, during 
crystallization, the forces acting on monoglyceride crystals increase and speed up the translation of the crystals 
to the nodal plane. Additionally, a fast cooling rate produces a high number of nucleation points, leading to a 
high number of small microcrystals with respect to the case where one applies a slow cooling  rate15,19,38. In our 
case, possible differences in microcrystal  dimensions38 did not modify the final outcome, proving that USSWs can 
be applied as a robust method when employing commonly used cooling rates for oleogel  preparation15,17,19,38,39.

To understand the dynamic behavior of crystalline platelets in oil subjected to the USSW field, we carried 
out a mathematical derivation assuming crystals to be disk-shaped particles (ratio between disk diameter and 
thickness equal to or greater than 10. We assumed the crystals to be disk-shaped because this geometrical shape 
can approximate the flat crystalline platelets observed in oleogels containing  monoglycerides21,40, and disks are 
simpler to model compared to platelets. We present the equations used to approximate the median time neces-
sary for the crystalline platelets to translate and rotate in the standing field as a function of the acoustic pressure 
experienced. The derivation of the equations is presented in the supporting information.

Equations 3 and 4 of motion for a single crystal residing in an ultrasonic standing wave are:

Equation 3 features the position z and stiffness Ka , whereas Eq. 4 features the orientation θ and rotational 
stiffness κa . Due to the large dynamic viscosity of the fluid, the mass m and the moment of inertia I are negligible, 
and the behavior is dominated by the drag coefficients B and β . The effect of gravity is neglected for the same 
reason. When calculating the numerical values of the coefficients, we assumed the crystal to be disk-shaped with 
an aspect ratio equal to or greater than 10. By solving the differential equations, we find that the crystals orient 
themselves perpendicularly to the standing wave (horizontally as depicted in Fig. 1a) and slowly travel towards 
the pressure node at z = 0 . We derived the median transport (Eq. 5) and rotation (Eq. 6) time. The model does 

(3)m
∂2z

∂t2
= B

∂z

∂t
+ Kasin2kz

(4)I
∂2θ

∂t2
= β

∂θ

∂t
+ κasin2θ



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14448  | https://doi.org/10.1038/s41598-020-71177-6

www.nature.com/scientificreports/

Figure 2.  (a) Photograph: oleogel statically crystallized, control sample (0 MHz). (b) Photograph: oleogel 
crystallized in a 1 MHz US-SW field. (c) Photograph: oleogel crystallized in a 2 MHz US-SW field. (d) 
Photograph: oleogel crystallized in a 4 MHz US-SW field. (e) White intensity recorded along the Z direction 
(vertically) from a photograph as a function of the distance from the top transducer for the control sample 
(0 MHz) and sonicated samples (1 MHz, 2 MHz, and 4 MHz). Curves were shifted vertically for clarity. Arrows 
indicate the presence of a crystalline band. (f) Thickness of a crystalline band measured on 15 points along the 
X direction (horizontally) from a photograph of sonicated samples (1 MHz, 2 MHz, and 4 MHz). (g) Average 
crystalline band thickness and normalized number of crystalline bands per mm for sonicated samples (1 MHz, 
2 MHz, and 4 MHz) analyzed from photographs. Data is expressed as mean ± standard deviation based on n = 2 
experimental replicates × 8–12 repeated measurements for the band thickness and n = 2 experimental replicates 
for the crystalline band frequency. Values with different uppercase or lowercase letters are statistically different 
(p < 0.05). In (a), (b), (c), and (d), oleogels that contain 5% monoglyceride in rapeseed oil are crystallized at 
1 °C min−1. The top and bottom dark areas are the piezoceramic transducers, and the scale bars are 1 mm.
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not consider the crystal growth rate. However, in the case of platelets of 50 µm–100 µm in size, the translation 
time is comparable to that observed during the experiments:

In Fig. 3, the median travel time is shown as a function of the acoustic pressure generated in a 1 MHz USSW 
field at the anti-node. The curves show that the rotation time is independent of the crystal size, whereas the 
translation time is shorter for large crystals. Increasing the pressure p reduces the characteristic times consider-
ably, t ∝ p−2 . Crystalline platelets grow during cooling, which reduces their translation time as depicted by the 
four different diameters considered in Fig. 3. The predicted time is on order of minutes to seconds for the pres-
sure values estimated in the current experiments (20 kPa–100 kPa), which agreed with the observed behavior. 
Increasing the frequency of the USSW field reduces the transportation time (cf. Figs. 3, S3a and S3b, supporting 
information). This is because the nodal planes are closer at higher frequencies thus reducing z, and Ka increases 
due to higher acoustic force. The rotation time remains unaffected.

Finally, we studied the nano- and microstructural organization of monoglyceride crystals at the nodal and 
anti-nodal planes. We scanned selected samples vertically and horizontally using synchrotron light X-ray dif-
fraction. Figure 4a–d show a selected area of the diffraction pattern in the wide-angle X-ray diffraction region 
between 12.3° and 21.7° 2θ (diagonal). The figures show portions of the Debye–Scherrer diffraction rings for the 
statically crystallized oleogel (0 MHz, Fig. 4a) and oleogels crystallized at 1 MHz, 2 MHz, and 4 MHz (Fig. 4b–d, 
respectively). Whole diffraction patterns are shown in Fig. S4 (supporting information). In general, all treated 
samples showed the formation of microcrystals revealed by the presence of the dark spots on the diffraction 
rings (Fig. 4b–d). In contrast, the statically crystallized sample showed homogeneous diffraction rings indicating 
that no microcrystals were formed. We determined that microcrystals were more abundant in the dense crystal-
line bands than in the sparse bands (data not shown). The nanostructural organization of monoglycerides was 
triclinic β-form with a lamellar thickness of 48 Å–49 Å for oleogels statically crystallized (Fig. 4e), in agreement 
with previously reported  data21,41,42. Similar results were obtained for the oleogels crystallized at 1 MHz (Fig. 4f), 
whereas by increasing the USSW field frequency to 2 MHz and 4 MHz, monoglycerides tended to crystallize in 
the less thermodynamically stable hexagonal α-form with a lamellar thickness of 51.5 Å (Fig. 4g,h). USSW fields 
with higher frequencies (2 MHz and 4 MHz) can disturb monoglyceride crystallization at the nanostructural 
level, forming less stable polymorphic forms. Therefore, USSW fields can affect both micro- and nanostructural 
levels depending on the selected frequency.

Using synchrotron light X-ray diffraction, we confirmed that the dense bands observed in Figs. 2 and S2 
were richer in monoglyceride crystals compared to the sparse bands. This was revealed by the trend in intensity 
of the monoglyceride lamellar structure 001 reflection  (d001) recorded on the dense bands during vertical scans 
(Fig. S5a, supporting information). Oleogels crystallized under the USSW field showed peaks and troughs in the 
diffracted X-ray beam intensity compared to the statically crystallized oleogel. Moreover, we determined that the 
dense crystalline bands have a constant abundance of crystalline monoglycerides in the X direction (horizontal) 
(Fig. S5b, supporting information).

(5)ttra
(
Vp, p

)
≈ 1.2

B

Ka · k

(6)trot
(
Vp, p

)
≈ 1.2

β

κa

Figure 3.  Theoretical estimated characteristic time for rotation (orientation,  trot) and translation  (ttra) of disk-
shaped monostearin crystals with diameters of 1 µm, 10 µm, 50 µm, and 100 µm and an aspect ratio (d/h) equal 
to or greater than 10 in a 1 MHz (936 kHz) US-SW field. The highlighted area corresponds to the estimated 
pressure amplitude based on the time needed during experiments to form bands, taking into consideration 
platelets of 50 µm–100 µm in size.
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Effect of oleogelator concentration and type. We tested selected frequencies (1 MHz and 2 MHz) on 
oleogels containing 2.5%, 10%, and 20% monoglycerides or 2.5% and 5% candelilla or sunflower wax.

We obtained alternating horizontal bands with high and low concentrations of crystalline material in all sam-
ples (visually evaluated). The results of the thickness of the crystalline bands are shown in Fig. 5. The thickness 
of the crystalline bands for samples sonicated at 2 MHz did not statistically differ (p > 0.05) from each other or 
from those measured in 5% monoglyceride oleogels treated at 2 MHz (cf. Figure 2g). However, the thickness of 
the crystalline bands obtained in 2.5% monoglyceride-containing oleogel treated at 1 MHz was greater than 5% 
monoglyceride-containing oleogel sonicated at the same frequency (p < 0.05). We were unable to calculate the 
thickness of crystalline bands in some samples after crystallization (i.e. 10% monoglyceride treated at 1 MHz, 
20% monoglyceride treated at 1 MHz and 2 MHz and all samples containing candelilla wax treated at 1 MHz 
and 2 MHz). This is because of some limitations of our current setup, the tightly packed crystal network formed 
in candelilla wax oleogels compared to sunflower wax  oleogels43 and the dense network of oleogels containing 
high concentrations of  monoglycerides38,41. However, during crystallization we also observed the formation of 
bands in the latter samples (Fig. S2, supporting information).

Different concentrations and types of oleogelators modify the crystalline network density and oleogelator 
platelet  dimensions15,38,43. For instance, candelilla wax forms a densely packed crystalline network composed of 
small oleogelator microcrystals compared to the less densely packed network formed by the bigger sunflower wax 
 microcrystals43. However, irrespective of these differences in oleogel structure we demonstrated that the USSW 
field can modify the crystalline microstructure of the oleogelator network. This indicates that this technology can 
be used as a platform technology to modify the microstructure of the crystalline network in different oleogels.

Colorant migration. Finally, we tested the effect of the USSW-modified oleogels’ microstructure on color-
ant migration.

Figure 4.  Selected area of bidimensional diffraction patterns in the wide-angle X-ray diffraction region between 
12.3° and 21.7° 2θ (diagonal), showing portions of the Debye–Scherrer diffraction rings for (a) statically 
crystallized oleogels (0 MHz) and oleogels crystallized at (b) 1 MHz, (c) 2 MHz, and (d) 4 MHz. Integrated 
patterns with relevant peak position of (e) statically crystallized oleogels (0 MHz), and oleogels crystallized at 
(f) 1 MHz, (g) 2 MHz, and (h) 4 MHz. All figures refer to oleogels containing 5% monoglyceride in rapeseed oil 
crystallized at 1 °C min−1.
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Figure 6a shows the migration of colorant into 5% monoglyceride oleogel crystallized at 10 °C min−1 along the 
Z direction (vertically) as a function of time for samples statically crystallized, crystallized under HIU, sheared, 
and crystallized under a USSW field. We selected 5% monoglyceride oleogel due to the clear bands observed 
during USSW treatment. The colorant diffuses slower in samples crystallized under a USSW field compared 
to the state-of-the-art technology used to tailor oleogel and fat structures. In the figure, data were fitted using 
an exponential equation (Eq. 8) and a data analysis paragraph. After a preliminary fitting, the reaction order 
exponent n was fixed to 0.7, as it was the average value calculated among samples. This allowed us to compare 
the migration rate constant for the different samples. Figure 6b shows the migration rate constants with their 
95% confidence interval (error bars) expressed in mm/h0.7 for the corresponding samples shown in Fig. 6a. 
Figure 6b shows that an USSW retards the migration of the colorant inside oleogel samples because K is smaller 
for USSW- treated samples compared to the other samples (HIU, static, sheared). This could be due to the forma-
tion of layers of crystalline oleogelators, as shown in Fig. 2. The obtained layers act as physical barriers that slow 
down the migration of the colorant. No statistical differences (p > 0.05) were found in the colorant migration rate 
constant between 1 MHz- and 2 MHz-treated oleogels. This could be due to the actual thickness of the dense 
crystalline layer that the colorant has to go through. Indeed, the sum of the thickness of the dense crystalline 
bands in, for example, 1 mm in the vertical direction (Z direction) for both frequencies is 560 ± 30 µm in 1 MHz 
and 680 ± 86 µm in 2 MHz. Because the crystalline bands act as physical barriers, the thickness of the barrier that 
the colorant has to go through is similar in both samples, leading to a similar rate constant. Colorant migration 

Figure 5.  Average crystalline band thickness analyzed from photographs for oleogels containing 2.5% and 
10% monoglycerides and 2.5% and 5% sunflower wax in rapeseed oil, sonicated at 1 MHz and 2 MHz during 
cooling at 10 °C min−1. Data is expressed as mean ± standard deviation based on n = 2 experimental replicates × 5 
repeated measurements. Values with different letters are statistically different (p < 0.05).

Figure 6.  (a) Migration of colorant expressed in mm inside 5% monoglyceride oleogel crystallized at 10 °C/min 
as a function of time for samples statically crystallized, crystallized under HIU, sheared, and crystallized under a 
USSW field. Data is expressed as mean ± standard deviation based on n = 3 experimental replicates × 3 repeated 
measurements. (b) Migration rate constants ± 95% confidence interval (error bars) expressed in mm/h0.7 for 
the samples shown in (a). Values with different letters are statistically different (p < 0.05). The temperature was 
22 ± 2 °C.
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in oleogels has been correlated to oil  migration44 and oxygen  migration45. Further studies are needed to verify 
the barrier properties of oxygen in the crystalline bands formed during USSW treatment.

conclusion
We ultrasonically pushed the crystallization domain into a band-like topology. The thickness of the crystalline 
bands depended on ultrasound frequency, as expected from standing wave theory. The behavior of crystallizing 
oleogels under the USSW field was predicted using the finite element method of simulation, and the dynamics of 
oleogelator crystals in the USSW field was derived by modelling the acoustophoretic force and drag force acting 
on disk-shaped particles. We demonstrated that in our experimental conditions a USSW field can be applied as a 
robust method for oleogel preparation independent of oleogelator type (monoglyceride, sunflower wax, candelilla 
wax), oleogelator concentration (between 2.5 and 20%) and cooling rate (1 °C min−1 and 10 °C min−1). Moreo-
ver, the reduced migration of a liposoluble colorant in the ultrasonically obtained microstructure suggests that 
USSWs can induce the formation of physical barriers that might be further used to improve oleogel performance.

These results suggest that USSW fields are a promising technology to modify the crystalline network of oleo-
gels. USSW field technology is not limited to oleogels but can potentially be used as a platform technology in 
the cosmetics, pharmaceutical, chemical, and food industries where careful control of the crystallization process 
and the final structure of the system is needed.

Materials and methods
Materials. Rapeseed oil was purchased at a local supermarket, Myverol 18–04 K saturated monoglyceride 
(fatty acid composition: 42–48%, C16:0, 50–60% C18:0; melting point 68.05 ± 0.5  °C) was donated by Kerry 
Ingredients and Flavours (Bristol, UK). Sunflower and candelilla waxes were donated by Bionord AB (Stenung-
sund, Sweden). Red Oil O was purchased from Sigma-Aldrich (St. Louis, MO, USA). Acrylonitrile butadiene 
styrene and polylactic acid 3D printer materials were purchased from Ultimaker B.V. (Utrecht, The Nether-
lands). Hard piezoelectric ceramic Pz26 transducers with electrodes on both surfaces were purchased from Meg-
git Ferroperm Piezoceramics (Kvistgaard, Denmark).

oleogels. Oleogels were prepared by mixing rapeseed oil with increasing concentrations of monoglycer-
ide (2.5%, 5%, 10%, and 20%) or wax (2.5% and 5%) at 80 °C or 90 °C in an oven for at least 15 min until the 
crystalline material was completely melted. During melting, the mixture was mixed several times. The molten 
system was then transferred into the preheated experimental chamber. All concentrations are expressed as mass 
percentage (% w/w).

Experimental chamber. The experimental chambers had a variable treatment volume between 50 µL and 
500 µL corresponding to 11 × 4.3 × 1  mm3–10  mm3 featuring two piezoelectric ultrasonic transducers (Fig. 1b). 
The bottom transducer was used as an active element to generate the ultrasonic waves, whereas the top one was 
used as a passive reflector so that a standing field was obtained. The top transducer was connected to an oscil-
loscope to monitor the acoustic pressure inside the chamber. The maximum amplitude was obtained when the 
distance (d) between the transducers satisfies (Eq. 7):

where λ is the wavelength of the ultrasound in oil, and n is the number of nodal planes in the experimental cham-
ber. The chambers were 3D printed in acrylonitrile butadiene styrene using an Ultimaker 3. Ultrasonic trans-
ducers with nominal resonant frequency of 1 MHz, 2 MHz, and 4 MHz (thickness: 2 mm, 1 mm, and 0.5 mm, 
respectively) were cut to a rectangular shape of 10–10.5 × 3.5  mm2–4  mm2 using a low-speed saw mounted with 
a diamond blade. The two transparent windows in the experimental chamber used to monitor the process were 
obtained by sealing two glass cover slips (24 × 24 × 0.16  mm3–0.19  mm3, #1.5, Menzel Gläser, Braunschweig, 
Germany) with silicone (Elastosil E41 Transparent, Wacker Chemie, Munich, Germany) to the 3D printed body.

An Analog Discovery 2 (Digilent, Pullman, WA, USA) multi-function instrument was used for signal genera-
tion and to monitor the amplitude at the reflector. To drive the active transducer, a square wave was generated 
with a signal generator and amplified with a MOSFET pair (TC6320, Microchip, Espoo, Finland). The ampli-
tude of the driving signal was controlled by an adjustable power supply (Elektro-Automatik GmbH & Co. KG, 
Viersen, Germany).

The temperature during USSW-assisted crystallization was monitored using a T-type thermocouple inserted 
directly into the sample. Samples were crystallized by cooling the molten oleogel to room temperature either 
in air at 10 °C min−1 or by using a custom-built temperature control device where the cooling rate was set to 
1 °C min−1. The temperature control device comprises two Peltier elements (TEC1-12706, Hebei, Shanghai, 
China) that either cool or heat the sample depending on the desired cooling rate. The Peltier elements are driven 
by an H-bridge controlled by a microcontroller running a PID loop.

Carbon rods dispersed in rapeseed oil or molten oleogels were transferred into the experimental chamber. 
The chamber was preheated to 80 °C before adding oleogel, whereas experiments involving carbon rods were 
carried out at room temperature (20 °C). After the chamber was connected to the custom-built firmware, the 
top passive transducer mounted on the positioning arm was inserted into the chamber and sonication was 
immediately started. The height of the passive transducer and frequency of the active transducer were adjusted 
to obtain a standing field (maximizing the signal received by the passive transducer). In general, the height was 
3.5 mm–4 mm, 2 mm–2.5 mm, and 1.5 mm for the chambers featuring 1 MHz, 2 MHz, and 4 MHz transducers, 

(7)d = n
�

2
(n = 1, 2, 3, 4 . . . ),
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respectively. The amplitude of the driving signal was selected to maximize the organizing effect of the standing 
field (i.e. minimize the time needed to form the crystalline bands) without producing adverse effects, such as 
uncontrolled streaming based on preliminary trials. The voltage applied to the transducers was 25 V, 10 V, and 
5 V for the chambers featuring 1 MHz, 2 MHz, and 4 MHz transducers, respectively. The excitation frequen-
cies were in the range of nominal frequencies ± 0.1 MHz. During oleogel treatment, sonication was continued 
until the sample was crystallized (at least 5 min after the sample turned opaque). Oleogel control samples were 
prepared in the same way without applying US-SWs. The schematics of the setup are presented in Fig. S7 (sup-
porting information).

Finite element method computer simulations. The standing acoustic field and the particle move-
ment were simulated using COMSOL Multiphysics version 5.4 finite-element method simulation  software46. 
The standing acoustic field was simulated using COMSOL’s Pressure Acoustics, Frequency Domain interface. 
Piezoelectric effects and waves in solids were simulated using Electrostatics and Solid Mechanics interfaces. 
The particle movement was simulated using the Particle Tracing for Fluid Flow interface. All required couplings 
between different physics interfaces were done using COMSOL’s built-in multiphysics interfaces.

Two different 3D model geometries were studied, a chamber designed to be used with a 936 kHz (1 MHz) 
signal and a chamber designed to be used with a 2 MHz signal. Each chamber had two piezo elements, the active 
piezo that was driven with a voltage signal to create the standing field and the passive piezo acting as a reflec-
tor. The piezo elements were 10.5 × 3.5 × 2  mm3 and 10.5 × 3.5 × 1  mm3 for the 1 MHz and 2 MHz chambers, 
respectively. The distance between the active and the passive piezo was calculated to be 2.5 times the wavelength 
(approximately. 3.8 mm) in the 1 MHz chamber and 3.5 times the wavelength (approximately 2.5 mm) in the 
2 MHz chamber. Chambers were modelled and filled with oil (Fig. S8, supporting information). All material 
properties in the simulation were matched to the real properties of the materials used in the chambers.

The simulation geometry was divided into a finite number of hexahedral elements with a maximum size 
of 1/8th of the wavelength by performing meshing. First, the standing acoustic field in frequency domain was 
solved by applying 25 V and 10 V peak-to-peak driving voltage to the active piezo element in the 1 MHz and 
2 MHz chambers, respectively. Voltage amplitudes were selected to match the values used in the corresponding 
experiments. Second, particle movement was simulated in the time domain by calculating the effects of forces 
(acoustophoretic, drag, gravity) on 5,000 or 10,000 spherical particles of 100 µm diameter made of carbon or 
monostearin (selected as representative molecules for monoglycerides) randomly distributed in oil and sub-
jected to the previously simulated standing acoustic field. In all experiments, the default solvers suggested by 
COMSOL were used.

Schlieren imaging. The ultrasonic standing field in the experimental chambers filled with oil was imaged 
using a Schlieren setup. The imaging was performed using the setup described in Lampsijärvi et  al.47 after 
some modification. Briefly, the Schlieren imaging setup was composed of a straight dual-lens Schlieren system 
(f1 = f2 = 200  mm, ø = 24.5  mm), an LED source (523  nm, LZ1-00G102, LED Engin, Inc., Wilmington, MA, 
USA), a digital camera (UI-3480CP, IDS Imaging, Obersulm, Germany) and a microtome blade mounted on a 
three-axis translation stage used as the spatial filter. The experimental chamber filled with oil was placed between 
the lenses. Pictures were taken before (background) and during sonication. The ultrasonic standing field gen-
erated between the transducers was obtained as described in the experimental chamber paragraph. The back-
ground was removed from all images using ImageJ  software48, version 1.51a.

Brightfield and polarized light real time microscopy. Microstructural changes during ultrasonic 
standing wave treatment were recorded using a digital microscope (Shenzhen Andonstar Tech Co., Ltd, Guang-
dong, China). Images and videos were recorded using Windows 10 built-in webcam application software. Polar-
ized light images and videos were obtained using two LPVISE100-A polarized lenses (Thorlabs, Newton, NJ, 
USA) oriented at 90° with respect to each other and mounted on custom-made 3D-printed polylactic acid sup-
ports. Selected images were analyzed using ImageJ  software48, version 1.51a. Images were converted to 8-bit grey, 
and then a line plot profile was recorded by drawing a straight line on the image after spatial calibration. Band 
thickness was calculated by drawing several straight lines on different dense crystalline bands.

Synchrotron light X-ray diffraction. X-ray diffraction patterns were recorded at the X-ray diffraction 
beamline XRD1 at the Elettra Synchrotron Radiation Facility in Trieste (Italy). The X-ray beam emitted by the 
wiggler source on the Elettra 2 GeV electron storage ring was monochromatized by a Si(111) double crystal 
monochromator, focused on the sample and collimated by a double set of slits to a spot size of 50 × 50 µm2. The 
experimental chamber was mounted between two copper palates connected to a programmable water bath. Cir-
culating water was used to control the cooling rate of the chambers during treatment. Analyses were performed 
during cooling from 80 °C to 20 °C at 1 °C min−1 and after the samples reached 20 °C. Samples were scanned 
vertically and horizontally using 50 µm steps. Data were collected at a photon energy of 8.856 keV (λ = 1.4 Å) 
using a 2 M Pilatus silicon pixel X-ray detector (DECTRIS Ltd., Baden, Switzerland). Bidimensional patterns col-
lected with Pilatus were calibrated using lanthanum hexaboride powder  (LaB6, standard reference material 660a 
of NIST) and integrated using the software  FIT2D49, version 12.77. The indexing of the XRD patterns obtained 
by the crystalline phase was performed using the program  WinPlotr50, version July 2017.

Colorant migration test. We performed a colorant migration test on USSW, HIU, mechanically sheared 
and statically crystallized oleogel using the method described by Hwang, Fhaner, Winkler-Moser and  Liu45. In 
this method, dyed oil is added on top of 5% monoglyceride oleogels cooled at 10 °C min−1, and the distance 
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travelled by the colorant inside the oleogel is measured over time. All colorant test samples were obtained using 
1 mL of molten oleogel. The oil was dyed with Oil Red O (Sigma-Aldrich).

To start, we upscaled the experimental chambers by increasing the volume from 150 µL (commonly used 
in other experiments) to more than 1 mL. The chambers comprised a cuvette with a path length of 10 mm in 
which the bottom part was replaced with Polyimide tape (thickness of 50 µm, Kapton tape, China). After the 
molten oleogel was poured into the cuvette, an aluminum reflector (2.5 mm thick) was placed above the sample 
at 1 cm distance from the bottom. Samples were sonicated at 1 MHz and 2 MHz with an input voltage of 25 V 
and 10 V (acoustic intensity < 1 W cm−2), respectively, by placing the cuvette on top of a transducer controlled 
by the custom-built firmware described above. To allow the transmission of ultrasound between the transducer 
and the cuvette, Aquasonic 100 ultrasound transmission gel (Parker Laboratories, Inc., Fairfield, NJ, USA) was 
used. The modified cuvette, aluminum reflector, gel, and transducer were preheated to 80 °C before starting the 
experiment. Sonication was done for 5 min after the sample turned opaque. In the case of 1 MHz sonication, a 
heat sink mounted with a fan was used to dissipate excess heat.

Unmodified cuvettes were used for the HIU treatment and for the sheared and statically crystallized samples. 
After the addition of the molten oleogel into the preheated cuvette at 80 °C, the sample was sonicated at 20 kHz 
using a Vibra-Cell HIU device operating at 130 W nominal electric power (Sonics & Materials Inc., Newtown, 
CT, USA) equipped with a 3.1 mm tip (intensity > 1 W cm−2). The intermittent sonication amplitude was 20% of 
the maximum amplitude of the HIU equipment with a total treatment time of 15 s and with intermittent 1 s ‘on’ 
and 1 s ‘off ’ (parameters optimized to allow oleogels to crystallize without developing extra heat). The cuvette 
was immersed in a cold-water bath, and as soon as the oleogelator started to crystallize (visually determined) 
HIU was  applied22. The tip was immersed into the forming oleogel, close to the surface.

Molten oleogel was added into the preheated cuvette and left to crystallize at room temperature with the same 
aluminum reflector as used in the US-SW-assisted crystallization experiment. The molten oleogel was added 
to the preheated cuvette. During cooling, the sample was sheared with a spatula at a frequency of two complete 
turns per second. The shearing was applied during the crystallization process and continued for 1 min after the 
sample turned completely opaque.

After samples were crystallized, they were left to rest for 30 min at − 20 °C. This operation was necessary to 
allow easy removal of the reflector (if present) and thus minimize damage to the sample surface. All samples 
were cooled at − 20 °C for 30 min to share the same thermal history. Following, sample were stored at room 
temperature for 24 h before analysis. Each sample was prepared in triplicate. Next, 1 mL of dyed oil was added 
on top of each sample, and colorant migration was carefully measured for 72 h at regular intervals with a cali-
per. Three experimental replicates were prepared for each treatment, and each sample at each time point was 
analyzed three times.

Data analysis. All determinations were expressed as the mean ± standard deviation of at least two measure-
ments from two experimental replicates (n ≥ 2 × 2) if not otherwise specified. Statistical analysis was performed 
using the software R, version 3.5.151. A Bartlett’s test was used to check the homogeneity of variance, a one-way 
ANOVA was carried out and a Tukey’s test was used as a post-hoc test to determine significant differences among 
means (p < 0.05). Colorant migration data were fitted using the TableCurve 2D, version 5.01 (Jandel Scientific 
Software, San Rafael, CA, USA). Non-linear regression analysis was performed using (Eq. 8):

where y is the distance in mm travelled by the colorant inside the oleogel, K is the migration rate constant, t is 
time, and n is the reaction order. The Levenberg–Marquardt algorithm was used to perform least squares func-
tion minimization, and the goodness of fit was evaluated based on statistical parameters of fitting  (R2, p, standard 
error) and the residual analysis. Differences among estimated migration rate constants were determined using 
one-way ANOVA and a Tukey’s test, as described above.
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