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tight security bounds 
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The BB84 quantum key distribution (QKD) combined with decoy‑state method is currently the most 
practical protocol, which has been proved secure against general attacks in the finite‑key regime. 
Thereinto, statistical fluctuation analysis methods are very important in dealing with finite‑key 
effects, which directly affect secret key rate, secure transmission distance and most importantly, the 
security. There are two tasks of statistical fluctuation in decoy‑state BB84 QKD. One is the deviation 
between expected value and observed value for a given expected value or observed value. The other 
is the deviation between phase error rate of computational basis and bit error rate of dual basis. Here, 
we provide the rigorous and optimal analytic formula to solve the above tasks, resulting to higher 
secret key rate and longer secure transmission distance. Our results can be widely applied to deal with 
statistical fluctuation in quantum cryptography protocols.

So far, there have existed many kinds of protocols describing how quantum key distribution (QKD)1,2 works, 
such as the Bennett–Brassard—1984 (BB84)3, Bennett–Brassard–Mermin—19924, Bennett—19925, six-state6, 
continuous  variable7,8 and measurement-device-independent9–11 protocols. Although different protocols con-
tain different processes, they all serve the same purpose to guarantee that two parties, named Alice and Bob, 
can share a string of key data through a channel fully controlled by an eavesdropper, named  Eve3. Unlike some 
computational assumptions, these protocols are all proven to be secure with fundamental physical laws in the 
recent  years12–18, which shows the great advantage in information transmitting that QKD holds. BB84 stands 
out as the most important protocol due to its best overall performance. However, implementations of the BB84 
protocol differ from the original theoretical proposal. For an ideal single-photon source is not available yet, in 
actuality, a weak pulsed laser source is in place of it. Nevertheless, there is a critical flaw in the weak pulsed laser 
source that an non-negligible part of laser pulses contains more than one photon, which will be exploited by 
Eve through the photon-number-splitting (PNS)  attack19. To address this drawback with high channel loss, the 
decoy-state method is  introduced20–22.

The source will generate the phase-randomized coherent state in decoy-state method, which can be regarded 
as the mixed photon number state. The essence of the decoy state idea can be summarized as that the yield (bit 
error rate) of n-photon in signal state is equal to that in decoy state. However, this equal-yield condition can only 
be established under the asymptotic-key regime. The expected value of yield (bit error rate) of n-photon in signal 
state and decoy state are identical while the corresponding observed value cannot be assumed to be the same 
in the finite-key regime. By exploiting the decoy-state method, one can establish the linear system of equations 
about the expected values to obtain expected value of yield (bit error rate) of the single-photon component, 
where we need estimate the expected value of some parameters given by the known observed values. Actually, 
the observed value of yield (bit error rate) of the single-photon component in the key extraction data is what we 
really need, where we must estimate the observed value given by the known expected value.

The Gaussian analysis  method23 is first proposed to deal with the the deviation between expected value and 
observed value given by the known observed value. The Gaussian analysis method is not rigorous because of 
the identically distributed assumption, which can only be valid in the collective attack. Resulting the extracted 
secret key cannot be secure against the coherent attack. Recently, the multiplicative form Chernoff  bound24 and 
Hoeffding  inequality25 methods are proposed to remove the identically distributed assumption, respectively. 
However, there is a considerable gap between the secret key rate bounds obtained from Chernoff–Hoeffding 
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method and that obtained from the Gaussian analysis. In order to close this gap, the inverse solution Chernoff 
bound  method26 is presented, which achieves a similar performance with Gaussian analysis. Here, we should 
point out that the inverse solution Chernoff bound method also seems to be not rigorous. An important assump-
tion in Chernoff bound is that one should have the prior knowledge of expected value. However, the problem 
that we have in hand is the opposite that we need to estimate expected value for a given observed value. This is 
why the multiplicative form Chernoff bound is somehow complex and carefully tailored. A direct criterion is 
that the lower bound result of inverse solution Chernoff bound is superior to the Gaussian analysis when one 
has a small observed value. Note that the result of Gaussian analysis should be optimal because the identically 
distributed assumption is a special case.

For BB84 protocol, one need bound the the conditional smooth min-entropy27, which relates to the phase 
error rate. The phase error rate cannot be directly observed, which can only be estimated by using the random 
sampling without replacement theory for security against the general attacks. A hypergeometric distribution 
 method28 is first proposed to deal with the deviation between phase error rate of computational basis and bit error 
rate of dual basis in the finite-key regime. By using the inequality scaling technique, a numerical equation solution 
by using Shannon entropy  function29 is acquired to estimate the phase error rate. Based on this, an analytical 
solution is obtained when the data size is  large25. A looser analytical solution is using the Serfling  inequality24. 
By exploiting the Ahrens map for Hypergeometric distribution, one uses Clopper–Pearson confidence  interval30 
replace the Serfling inequality. Recently, a specifically tailored analytical solution is  acquired31, which achieves a 
big advantage compared to Serfling inequality. Here, we should point out that the specifically tailored analytical 
 solution31 for random sampling without replacement is incorrect. The inequality scaling of binomial coefficient 
and Eq. (11) in supplementary information of Ref.31 is wrong.

In order to further improve the secret key rate in the case of high-loss, some authors of us have developed 
the tightest method to solve the above two tasks of statistical  fluctuation32. Thereinto, the numerical equation 
of Chernoff bound is used to estimate the observed value for a given expected value. A numerical equation of 
Chernoff bound’s variant is exploited to obtain the expected value for a given observed value. A numerical equa-
tion relating to the hypergeometric distribution is directly applied to acquire the phase error rate for a given bit 
error rate. These numerical equation solutions are very tight but they are very inconvenient to use. On the one 
hand, it will be very time consuming if we optimize the system parameters globally by solving transcendental 
equations. On the other hand, it is a challenge to solve transcendental equations for each time post-processing 
in commercial QKD system with hardware. In this work we present the optimal analytical formulas to solve the 
two tasks of statistical fluctuation by using the rigorous inequality scaling technique. Furthermore, we establish 
the complete finite-key analysis for decoy-state BB84 QKD with composable security. The simulation results show 
that the secret key rate and secure transmission distance of our method have a significant advantage compared 
with previous rigorous methods.

Results
Statistical fluctuation analysis. We let x∗ be the expected value, x be the observed value, x and x be the 
lower and upper bound of x. Here, we first introduce the numerical equation result of Ref.32. Then we present the 
tight analytical formulas by using the rigorous inequality scaling technique, which are the slightly looser bounds 
than those obtained by solving equations.

Random sampling without replacement. Let Xn+k := {x1, x2, ..., xn+k} be a string of binary bits with n+ k size, 
in which the number of bits value is unknown. Let Xk be a random sample (without replacement) bit string with 
k size from Xn+k . Let � be the probability of bit value 1 observed in Xk . Let Xn be the remaining bit string, where 
the probability of bit value 1 observed in Xn is χ . Then, in this article, we let Cj

i =
i!

j!(i−j)! be the binomial coef-
ficient. For any ǫ > 0 , we have the upper tail Pr[χ ≥ �+ γU] ≤ ǫ , where γU represents γU (n, k, �, ǫ) and γU is 
the positive root of the following  equation32

Calculating Eq. (1), we get numerical results of γU , corresponding to the upper bound of the random sampling 
without replacement. Solving transcendental equation Eq. (1) is usually very complicated. Here, we are going to 
make use of some techniques mathematically to get rigorous tight analytical result. Detailed proof can be found 
in “Methods” section. For the upper tail, let 0 < � < χ ≤ 0.5 , we have the analytical result

where A = max{n, k} and G = n+k
nk ln n+k

2πnk�(1−�)ǫ2
 . Therefore, the upper bound of χ can be given by χ = �+ γU 

with a failure probability ǫ . Figure  1 shows the comparison results between our method and previous 
 method24–26,32, which means that our analytic result is optimal and closes to the numerical results.

Chernoff bound. Let X1,X2...,XN be a set of independent Bernoulli random variables that satisfy Pr(Xi = 1) = pi 
(not necessarily equal), and let X :=

∑N
i=1 Xi . The expected value of X is denoted as x∗ := E[X] =

∑N
i=1 pi . An 

observed value of X is represented as x for a given trial. Note that, we have x ≥ 0 , x∗ ≥ 0 , x∗ is known and x 
is unknown. For any ǫ > 0 , we have the upper tail Pr[x ≥ (1+ δU)x∗] ≤ ǫ , where δU represents δU (x∗, ǫ) and 
δU > 0 is the positive root of the following  equation32

(1)lnCk�
k + lnCn(�+γU )

n − lnC
(n+k)�+nγU

n+k = ln ǫ.

(2)γU =
(1−2�)AG

n+k +
√

A2G2

(n+k)2
+ 4�(1− �)G

2+ 2 A2G
(n+k)2

,
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For any ǫ > 0 , we have the lower tail Pr[x ≤ (1− δL)x∗] ≤ ǫ , where δL represents δL(x∗, ǫ) and 0 < δL ≤ 1 is 
the positive root of the following  equation32

By solving Eqs. (3) and (4), we get numerical results of δU and δL , corresponding to the upper bound and lower 
bound. Solving transcendental equations Eqs. (3) and (4) are usually very complicated. For the upper tail, by 
using the inequality ln(1+ δU ) > 2δU/(2+ δU ) in Eq. (3), we have the analytical result

where we let β = ln ǫ−1 . For the lower tail, by using the inequality − ln(1− δL) < δL(2− δL)/[2(1− δL)] in 
Eq. (4), we have the analytical result

Therefore, the lower and upper bound of observed value x for a given expected value x∗ can be given by 
x = x∗ + β

2 +
√

2βx∗ + β2

4  and x = x∗ −
√
2βx∗ with a failure probability ǫ , respectively. Note that we must 

have the lower bound x ≥ 0 . The analytic result of upper bound in Eq. (5) is also acquired in Ref.26 while we 
obtain more optimal lower bound in Eq. (6).

Variant of Chernoff bound. Let X1,X2...,XN be a set of independent Bernoulli random variables that sat-
isfy Pr(Xi = 1) = pi (not necessarily equal), and let X :=

∑N
i=1 Xi . The expected value of X is denoted as 

x∗ := E[X] =
∑N

i=1 pi . An observed outcome of X is represented as x for a given trial. Note that, we have x ≥ 0 , 
x∗ ≥ 0 , x is known and x∗ is unknown. For any ǫ > 0 , we have the upper tail Pr[x∗ ≤ x +�U] , where we use 
�U represents �U (x, ǫ) and �U is the positive root of the following  equation32

For any ǫ > 0 , we have the upper tail Pr[x∗ ≥ x +�L] , where �L represents �L(x, ǫ) and �L is the positive root 
of the following  equation32

By solving Eqs. (7) and (8), we get numerical results of �U and �L , corresponding to the upper bound and lower 
bound. Solving transcendental equations Eqs. (7) and (8) are usually very complicated. For the upper tail, by 
using the inequality ln

(

1+ �U

x

)

< �U

x

(

2+ �U

x

)

/

[

2
(

1+ �U

x

)]

 in Eq. (7), we have the analytical result

For the lower tail, by using the inequality ln
(

1+ �L

x

)

> 2�L

x /

(

2+ �L

x

)

 in Eq. (8), we have the analytical result

(3)x∗[δU − (1+ δU ) ln(1+ δU )] = ln ǫ.

(4)−x∗[δL + (1− δL) ln(1− δL)] = ln ǫ.

(5)δU =
β +

√

8βx∗ + β2

2x∗
,

(6)δL =
√

2β

x∗
.

(7)−�U + x ln
x +�U

x
= ln ǫ.

(8)�L − (x +�L) ln
x +�L

x
= ln ǫ.

(9)�U = β +
√

2βx + β2.

Figure 1.  Comparison of the random sampling without replacement for five methods: our analytic result, 
analytic result with Serfling  inequality24, approximate analytic  result25, numerical result with Shannon entropy 
 function26 and optimal numerical result with binomial  coefficient32. Let n = 10

5 and failure probablity 
ǫ = 10

−10.
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Therefore, the lower and upper bound of expected value x∗ for a given observed value x can be given by 

x∗ = x + β +
√

2βx + β2 and x∗ = x − β
2 −

√

2βx + β2

4  with a failure probability ǫ , respectively. Note that 
we must have the lower bound x∗ ≥ 0 . Utilizing a simple function transformation, the numerical result of upper 
bound x∗ with Eq. (7) is the same as (Eq. (28) in this paper) in Ref.26, while the analytic result of upper bound is 
more optimal in this work. The numerical result of lower bound x∗ with Eq. (8) is different from that in Ref.26, 
and the difference between two analytic results of lower bound is only β . However, we should point out that our 
result is always inferior to the Gaussian analysis, while the result of Ref.26 is superior to the Gaussian analysis 
given a small observed value, details can be found in Fig. 2. It means that our result is rigorous while that of Ref.26 
is not. The case of small observed value is very important since the vacuum state is widely used in decoy-state 
method, especially for the experiment of measurement-device-independent  QKD33.

Finite‑key analysis for decoy‑state BB84 QKD. We exploit our statistical fluctuation analysis methods 
to deal with finite-key effects against coherent  attacks25,34 for BB84 QKD with two decoy states. Note that the 
four-intensity  protocol35 usually has better performance. Compared with previous  results24–26, we provide the 
complete extractable secret key formula. For example, the number of vacuum component events, the number 
of single-photon component events, and the phase error rate associated with the single-photons component 
events are all required to use observed values in the extractable secret key formula, while all or part of them are 
taken as the expected values in Ref.24–26. Obviously, they are observed values, for instance, the QKD system with 
single-photon  source27.

The asymmetric coding BB84 protocol, based on which we consider our protocol, means that the bases Z 
and X are chosen with biased probabilities, both when Alice prepare the quantum states and when Bob measure 
those states. Furthermore, intended to simplifying the protocol a little, we let the secret key be extracted only if 
Alice and Bob both choose the Z basis. Also, for the same purpose, the protocol will be built on the transmission 
of phase-randomized laser pulses and makes use of vacuum and weak decoy states. Below we provide a detailed 
description of the protocol with active basis choosing.

1. Preparation The first three steps are repeated by Alice and Bob for i = 1, . . . ,N until the conditions in the 
reconciliation step are satisfied. Alice will prepare weak coherent pulse and encode under the {Z,X} basis, 
along with an intensity k ∈ {µ, ν, 0} . Let the probability of choosing Z and X basis be pz and px = 1− pz . 
Simultaneously, the probabilities of selecting intensities are pµ , pν and p0 = 1− pµ − pν , respectively. Then 
Alice sends the weak coherent pulse to Bob through the insecure quantum channel.

2. Measurement When receiving the pulse, Bob also chooses a basis Z and X with probabilities qz and 
qx = 1− qz , respectively. Then, he measures the state with two single-photon detectors in that basis. An 
effective event represents at least one detector click. For double detector click event, he acquires a random 
bit value.

3. Reconciliation Alice and Bob share the effective event, basis and intensity information with each other using 
an authenticated classical channel. We use the following sets Zk ( Xk ), which identifies signals where both 
Alice and Bob select the basis Z ( X ) for k intensity. Then, they check for |Zk| ≥ nZk  and |Xk| ≥ nXk  for all 
values of k. They repeat step 1 to step 3 until these conditions are satisfied. We remark that the vacuum state 
prepared by Alice has no basis information.

4. Parameter estimation After reconciling the basis and intensity choices, Alice and Bob will select a size of 
nZ = nZµ + nZν  to get a raw key pair (ZA,ZB) . All sets are used to compute the number of vacuum events sZ0  
and single-photon events sZ1  and the phase error rate of single-photon events φZ

1  in ZA . After that, a condition 

(10)�L =
β

2
+

√

2βx +
β2

4
.

Figure 2.  Comparison of the lower bound of expected value given a observed value for five methods: our 
analytic result, numerical result of Ref.32, Gaussian analysis, numerical result and analytic result of Ref.26.
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should be met that the phase error rate φZ
1  is less than φtol , where φtol is a predetermined phase error rate. If 

not, Alice and Bob abort the results and get started again. Otherwise, they move on to step 5.
5. Postprocessing  First, Alice and Bob operate an error correction, where they reveal at most �EC bits of informa-

tion. Then, an error-verification step is performed using a random universal2 hash function that announces 
⌈log2

1
εcor

⌉ bits of  information36, where εcor is the probability that a pair of nonidentical keys passes the error-
verification step. At last, there is a privacy amplification on their keys to get a secret key pair ( SA,SB ), both 
of which are ℓ bits, by using a random universal2 hash function.

Before stating how to calculate the security bound, we will spell out our security criteria, i.e., the so-called 
universally composable  framework37. We have two criteria ( εcor and εsec ) to determine how secure of our protocol. 
If Pr[SA �= SB] ≤ εcor , which means the secret keys are identical except with a small probability εcor , we can call 
it is εcor-correct. Meanwhile, if (1− pabort)�ρAE − UA ⊗ ρE�1/2 ≤ εsec , we can call it is εsec-secret. Thereinto, 
ρAE is the classical-quantum state describing the joint state of SA and E, UA is the uniform mixture of all possible 
values of SA, and pabort is the probability that the protocol aborts. This security criterion guarantees that the pair 
of secret keys can be unconditionally safe to use, we can call the protocol is ε-secure if it is εcor-correct and εsec
-secret with εcor + εsec ≤ ε.

The protocol is εsec-secret if the secret key of length ℓ  satisfies25

where h(x) := −x log2 x − (1− x) log2(1− x) is the binary Shannon entropy function. Note that observed values 
sZ0  , sZ1  and φZ

1  are the lower bound for the number of vacuum events, the lower bound for the number of single-
photon events, and the upper bound for the phase error rate associated with the single-photons events in ZA , 
respectively. Here, we simply assume an error correction leakage �EC = nZζh(EZ) , with the efficiency of error 
correction ζ = 1.22 and the bit error rate EZ in (ZA,ZB).

Let nZk  and nXk  are the observed number of bit in set Zk and Xk . Let mZ

k  and mX

k  denote the observed number 
of bit error in set Zk and Xk . Note that one cannot obtain the mZ

µ and mZ
ν  , which we just hypothetically use to 

estimate the error correction information. The bit error rate is EZ = (mZ
µ +mZ

ν )/n
Z . By using the decoy-state 

method for finite sample sizes, we can have the lower bound on the expected numbers of vacuum event sZ∗0  and 
single-photon event sZ∗1  in ZA,

where nZ∗0  and nZ∗ν  ( nZ∗µ  and nZ∗0  ) are the lower (upper) bound of expected values associated with the observed 
values nZ0  and nZν  ( nZµ and nZ0  ). We can also calculate the lower bound on the expected number of single-photon 
event sX∗

1  and the upper bound on the expected number of bit error tX∗
1  associated with the single-photon event 

in Xµ ∪ Xν,

where we use a fact that expected value mX∗
0 ≡ nX

∗
0 /2 . Parameters nX∗

0  and nX∗
ν  ( nX∗

µ  , nX∗
0  and mX∗

ν  ) are the 
lower (upper) bound of expected values associated with the observed values nX0  and nXν  ( nXµ , nX0  and mX

ν  ). 
The nine expected values nZ∗0  , nZ∗ν  , nZ∗µ  , nZ∗0  , nX∗

0  , nX∗
ν  , nX∗

µ  , nX∗
0  and mX∗

ν  can be obtained by using the variant 
of Chernoff bound with Eqs. (9) and (10) for each parameter with failure probability εsec/23 , for example, 
nZ

∗
ν = nZν −�L(nZν , εsec/23).

Once acquiring the four expected values sZ∗0  , sZ∗1  , sX∗
1  and tX

∗

1  , one can exploit the Chernoff bound with Eqs. (5) 
and (6) to calculate the corresponding observed values sZ0  , sZ1  , sX1  and tX1  for each parameter with failure prob-
ability εsec/23 , for example, sZ1 = sZ

∗
1 (1− δL(sZ

∗
1 , εsec/23)) . By using the random sampling without replacement 

with Eq. (2), one can calculate the upper bound of hypothetically observed phase error rate associated with the 
single-photon events in ZA,

(11)ℓ = sZ0 + sZ1

[

1− h
(

φ
Z

1

)]

− �EC − log2
2

εcor
− 6 log2

23

εsec
,

(12)

sZ
∗

0 ≥ (e−µpµ + e−νpν)
pzn

Z∗
0

p0
,

sZ
∗

1 ≥
µ2e−µpµ + µνe−νpν

µν − ν2

×

(

eν
nZ

∗
ν

pν
−

ν2

µ2
eµ

nZ
∗

µ

pµ
−

µ2 − ν2

µ2

pzn
Z∗
0

p0

)

,

(13)

sX
∗

1 ≥
µ2e−µpµ + µνe−νpν

µν − ν2

×

(

eν
nX

∗
ν

pν
−

ν2

µ2
eµ

nX
∗

µ

pµ
−

µ2 − ν2

µ2

pxn
X∗
0

p0

)

,

t
X∗

1 ≤
µe−µpµ + νe−νpν

ν

(

eν
mX∗

ν

pν
−

pxn
X∗
0

2p0

)

,
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In order to show the performance of our method in terms of the secret key rate and the secure transmission 
distance, we consider a fiber-based QKD system model with active basis choosing measurement. We use the 
widely used parameters of a practical QKD  system38, as listed in Table 1. For a given experiment, one can 
directly acquire the parameters nZk  , nXk  , mZ

k  and mX

k  . For simulation, we can use the formulas nZk = NpkpzqzQ
Z

k  , 
nXk = NpkpxqxQ

X

k  , mZ

k = NpkpzqzE
Z

k Q
Z

k  and mX

k = NpkpxqxE
X

k Q
X

k  , where QZ

k  and QX

k  are the gain of Z and X basis 
when Alice chooses optical pulses with intensity k. For vacuum state without basis information, we should reset 
nZ0 = Np0qzQ

Z
0  , nX0 = Np0qxQ

X
0  , mZ

0 = Np0qzE
Z
0Q

Z
0  and mX

0 = Np0qxE
X
0 Q

X
0  . EZk  and EXk  are the bit error rate of 

Z and X basis when Alice chooses optical pulses with intensity k. Without loss of generality, these gain and bit 
error rate parameters can be given  by23

where we assume that those observed values for different parameters can be denotes by their asymptotic values 
without Eve’s disturbance. η = ηd × 10−αL/10 is the overall efficiency with the fiber length L and single-photon 
detector (Table 1).

To show the advantage of our results compared with previous  works24–26, we drew the curves about the 
secret key rate ℓ/N as function of the fiber length, as shown in Fig. 3. For a given number of signals 1010 , only 
ten seconds in 1 GHz system, we optimize numerically ℓ/N over all the free parameters. For fair comparison, 
we add a step about from expected value to observed value estimation for all curves, which is not taken into 
account in Refs.24,25. The corresponding methods of Refs.23–26 to deal with statistical fluctuation can be summa-
rized in Methods. Note that the black dashed line uses the Gaussian analysis to obtain expected value instead of 
the inverse solution Chernoff bound  method26. The simulation results show that the secret key rate and secure 
transmission distance of our method have significant advantage under the security against the general attacks.

(14)φ
Z

1 =
t
X

1

sX1
+ γU

(

sZ1 , s
X
1 ,

t
X

1

sX1
,
εsec

23

)

.

(15)
Q
Z

k
= Q
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k
= 1− (1− Y0)e

−kη

E
Z

k
Q
Z

k
= E

X

k
Q
X

k
= edQ

Z

k
+ (e0 − ed)Y0

,

Table 1.  List of simulation parameters. ηd is the detection efficiency of single-photon detector, ζ is the 
efficiency of error correction, α is the attenuation coefficient of single-mode fiber, ed is the misalignment rate, 
and N is the number of optical pulses sent by Alice.
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Figure 3.  The secret key rate vs fiber length. It shows the comparison of the secret key rates of different 
statistical fluctuation methods. Numerically optimized secret key rates with logarithmic scale are obtained for a 
predetermined signals N = 10

10.
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Conclusion
In this work, we proposed the almost optimal analytical formulas to deal with the statistical fluctuation under 
the security against the general attacks. Analytical formulas of classical postprocessing can be expediently used 
in practical system, which do not introduce complex calculations of resource consumption. Our methods can 
directly increase the performance without changing the quantum process, which should be widely used to quan-
tum cryptography protocols against the finite-size effects. In order to compare with previous works, we establish 
the complete finite-key analysis for decoy-state BB84 QKD, including from observed value to expected value, 
from expected value to observed value and from the observed bit error of X basis to hypothetical observed phase 
error of Z basis. We remark that the joint constraint  method39 can further decrease the statistical fluctuation. 
However, we do not consider this issue in this paper due to the lack of the analytical solutions, which is difficult 
to implement in commercial systems. The secret key rate of decoy-state BB84 QKD is linear scaling with channel 
transmittance η , which has been shown by the repeaterless PLOB  bound40.

Methods
Proof of random sampling without replacement. Here, we use the technique of Ref.31 to acquire 
the correct analytical results. We remark that the result of Ref.31 is wrong due to the incorrect inequality scal-
ing about binomial coefficient and Eq. (11) in supplementary information of Ref.31. Specifically, a sharp double 
inequality for binomial coefficient can be given by Ref.41,

where m > p ≥ 1 and x ≥ 1 . Ref.31 directly substitutes p = α , m = 1 and x = n to give a inequality about binomial 
coefficient. Actually, one has α ≤ 0.5 in the calculation of the phase error rate. Therefore, one cannot simply 
let p = α . Besides, there is a minus sign in Eq. (11) in supplementary information of Ref.31, thus, one cannot 
directly exploit � to replace �all.

For the upper tail, the failure probability ǫ can be bound  by29,31,32 Ck�
k C

nχ
n /C

(n+k)y
n+k  , where y = �+ n

n+kγ and 
χ = �+ γ . Let F(α, n) = α−αn(1−α)−(1−α)n

√
2πnα(1−α)

 and the sharp double inequality for binomial  coefficient41

where we let p = 1 , α = 1
m and mx = n in Eq. (16). One can give the following inequality for failure probability

where Shannon entropy function h(x) = −x log2 x − (1− x) log2(1− x) . Note that one can prove 

e
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< 1 and 
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< 1 for n, k > 0 and 0 < � < y < χ ≤ 0.5 . 
Thereby, the inequality can be given by

By using Taylor expanding for the case of n ≥ k , we have nh(χ)+ kh(�)− (n+ k)h(y) ≤ h′′(y)
2

γ 2nk
n+k  , where 

h′′(y) = − 1
y(1−y) ln 2 . Therefore, by solving a quadratic equation with one unknown, we have

where parameter G = n+k
nk ln n+k

2πnk�(1−�)ǫ2
 . By using Taylor expanding for the case of n ≤ k , we have the following 

inequalities nh(χ)+ kh(�)− (n+ k)h(y) ≤ nh(�)+ kh(χ)− (n+ k)h(z) ≤ h′′(z)
2

γ 2nk
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Note that the above result is always true for all n, k > 0 and 0 < � < χ ≤ 0.5.

Method in Ref.24. The upper bound of the random sampling without replacement can be calculated by 
using the Serfling inequality,

The upper bound and lower bound of expected value for a given observed value can be calculated by using the 
multiplicative form Chernoff bound as follows. We always can obtain the worst lower bound of expected value, 
µL = x −

√

N/2 ln ǫ−1 , where N is the total number of random variables. Let test1 , test2 and test3 denote, respec-
tively, the following three conditions: µL ≥ 32

9 ln(2ǫ−1
1 ) , µL > 3 ln ǫ−1

2  and µL >

(

2
2e−1

)2
ln ǫ−1

2  , and let 
g(x, y) =

√

2x ln y−1 . Now: 

1. When test1 and test2 are fulfilled, we have that �U = g(x, ǫ41/16) and �L = g(x, ǫ
3/2
2 ).

2. When test1 and test3 are fulfilled (and test2 is not fulfilled), we have that �U = g(x, ǫ41/16) and �L = g(x, ǫ22).
3. When test1 is fulfilled and test3 is not fulfilled, we have that �U = g(x, ǫ41/16) and �L =

√

N/2 ln ǫ−1
2 .

4. When test1 is not fulfilled and test2 is fulfilled, we have that �U =
√

N/2 ln ǫ−1
1  and �L = g(x, ǫ

3/2
2 ).

5. When test1 and test2 are not fulfilled, and test3 is fulfilled, we have that �U =
√

N/2 ln ǫ−1
1  and �L = g(x, ǫ22).

6. When test1 , test2 and test3 are not fulfilled, we have that �U =
√

N/2 ln ǫ−1
1  and �L =

√

N/2 ln ǫ−1
2

To simplify this simulation, we consider the case of ǫ = ǫ1 = ǫ2 . For all observed value x, we make x∗ = x +�U 
and x∗ = x −�L , where

Note that it is not rigorous in Eq. (23) for small x.

Method in Ref.25. The upper bound of the random sampling without replacement can be calculated by

where the result is true only when n and k are large.
The upper bound and lower bound of expected value for a given observed value can be calculated by using the 

tailored Hoeffding inequality for decoy-state method. Let xk be the observed value for k intensity and X =
∑

k xk . 
Therefore, we have x∗k = xk +�U and x∗k = xk −�L , where

Note that the deviation is the same for all intensities of k, which will lead large fluctuation for small intensity, 
especially vacuum state.

Method in Ref.26. The upper bound of the random sampling without replacement can be calculated by 
using the following transcendental equation,

The upper bound and lower bound of expected value for a given observed value can be calculated by using the 
Gaussian analysis. Therefore, we have x∗ = x +�U and x∗ = x −�L with

where a = erfcinv(b) is the inverse function of b = erfc(a) and erfc(a) = 2√
π

∫∞
a e−t2dt is the complementary 

error function.
Furthermore, the upper bound and lower bound of expected value for a given observed value can also be cal-

culated by using the inverse solution Chernoff bound. Therefore, we have x∗ = x/(1− δU ) and x∗ = x/(1+ δL) , 
where δU and δL can be obtained by using the following transcendental equation,
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while the slightly looser analytic result can be given by

and

Through simple calculation, the upper bound and lower bound are x∗ = x + 3
2β +

√

2βx + 9
4β

2  and 

x∗ = x + β
2 −

√

2βx + β2

4  , respectively.
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