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Human transcription factor 
and protein kinase gene fusions 
in human cancer
Kari Salokas, Rigbe G. Weldatsadik & Markku Varjosalo*

Oncogenic gene fusions are estimated to account for up-to 20% of cancer morbidity. Recently 
sequence-level studies have established oncofusions throughout all tissue types. However, the 
functional implications of the identified oncofusions have often not been investigated. In this study, 
identified oncofusions from a fusion detection approach (DEEPEST) were analyzed in detail. Of the 
28,863 oncofusions, we found almost 30% are expected to produce functional proteins with features 
from both parent genes. Kinases and transcription factors were the main gene families of the protein 
producing fusions. considering their role as initiators, actors, and termination points of cellular 
signaling pathways, we focused our in-depth analyses on them. Domain architecture of the fusions 
and their wild-type interactors suggests that abnormal molecular context of protein domains caused 
by fusion events may unlock the oncogenic potential of the wild type counterparts of the fusion 
proteins. To understand overall oncofusion effects, we performed differential expression analysis using 
TCGA cancer project samples. Results indicated oncofusion-specific alterations in gene expression 
levels, and lower expression levels of components of key cellular pathways, in particular signal 
transduction and transcription regulation. the sum of results suggests that kinase and transcription 
factor oncofusions deregulate cellular signaling, possibly via acquiring novel functions.

At any given moment, multitudes of molecular networks are activated in cells throughout the body. An impor-
tant feature of these networks is highly concerted regulation of key signaling, and deviation from homeostasis 
can result in diseases, such as cancer. Cancer is a complex, progressive, multi-step disorder, which stems from 
mutations caused by genomic  instability1. The accumulation of genetic and epigenetic abnormalities ultimately 
leads to the transformation of normal cells into malignant derivatives. Two highly enriched gene groups being 
mutated in the majority of cancer types are protein kinases (PKs) and transcription factors (TFs)2,3. PKs mediate 
most signal transduction events in cells by phosphorylation of specific substrates, thus modifying their activity, 
cellular localization, and/or association with other proteins. TFs are the “transistors” of the cellular signaling 
circuits, controlling the transcriptional outcome of activated signaling by binding to regulative elements of their 
corresponding target genes and driving or suppressing their expression. Therefore, it is easy to understand why 
mutational deregulation of these two gene groups can have such an impact on tumorigenesis.

In addition to harboring activating or inactivating somatic point mutations, PKs and TFs account for a large 
fraction of all human fusion genes involved in cancer (COSMIC, Catalogue of Somatic Mutations in Cancer, 
cancer.sanger.uk4; and dbCRID, Database of Chromosome Rearrangements in  Disease5). Chromosomal translo-
cations creating fusion genes are among the most common mutation class of known cancer genes, and they have 
long been identified as driver mutations in certain types of  cancer6. Recently, oncogenic fusion genes (hereafter 
oncofusions, OFs) have been found in many hematological and solid tumors, demonstrating that translocations 
are a common cause of  malignancy7,8. Fusion mutations occur when two different gene regions fuse together 
via translocation. Examples of consequences of chromosomal fusion to protein structure range from missense 
mutations to expression-change inducing promoter-gene –combinations to fully functional fusion proteins with 
neomorphic properties. A classic example of gained functions is the breakpoint cluster region-Abelson tyrosine-
protein kinase 1 (BCR-ABL1) translocation in chronic myeloid  leukemia9. Alternatively, a proto-oncogene is 
fused to a strong promoter, and thereby the oncogenic function is upregulated due to the strong promoter of the 
upstream fusion partner. This is common in lymphomas where oncogenes are juxtaposed to the promoters of the 
immunoglobulin  genes10, and also in prostate cancer where ETS TF (ERG) is fused with TMPRSS2 regulatory 
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sequences, thus obtaining androgen receptor (AR)-responsive  expression11. The current understanding favors 
the aberrant gene function model rather than promoter-induced over-expression.

The frequency of recurrent OFs varies depending on the specific type of  cancer12–15, but identified transloca-
tions are estimated to account for up to 20% of cancer  morbidity8. Recent fusion prioritization study found that 
in-frame transcripts were the most powerful predictor of driver  fusions16, confirming the intuition that in-frame 
transcripts are crucial to function. Notably, breakpoints were also observed to preferentially avoid splitting of 
domains. Together with frame-shift conservation, such trends could reflect a selection on fusion proteins to 
maintain protein stability and evade degradation  pathways17.

Next-generation sequencing (NGS) of genomes and transcriptomes from primary human cancer cells is 
constantly revealing new gene fusions that are involved in driving tumorigenesis; including examples found in 
colorectal carcinoma, bladder carcinoma, breast cancer and acute lymphoblastic leukemia (ALL)15,18–20. Fur-
thermore, NGS has provided enough detailed sequence information of the fusion breakpoints allowing us to 
initiate systems-level research on human oncofusions. As a result, various algorithms have been developed to 
mine OFs from large cancer datasets such as TCGA. However, the concordance among the different algorithms 
is very low that metacaller approaches utilizing consensus calls have been  employed21, which limit novel OF 
discoveries. Recently a new statistical method,  DEEPEST22, was developed to overcome these limitations. In 
this study, oncofusions that involve PKs and TFs were selected from the data produced by DEEPEST applied to 
the TCGA dataset.

In most cases, it is not possible to draw definite conclusions about the mechanisms or extent by which indi-
vidual translocations contribute to cancer. Predicting protein function from a sequence has proven an extremely 
difficult task. With gene fusions, the task is even more daunting. However, an unexpectedly large number of PKs 
and TFs have been found to be mutationally activated or have increased expression due to gene amplification or 
translocation in  cancer6. The high number of PKs and TFs with relatively low individual mutational frequency 
suggests either that a large number of signaling pathways can contribute to cancer, or that many PKs and TFs 
can regulate the same pathways when activated unphysiologically. Some additional support for this hypothesis 
comes from the interconnectivity of the PK-/TF-oncofusions.

In this study, fusions predicted to produce in-frame proteins were analyzed to understand the protein-level 
implications of fusion events. The fusions were analyzed from the perspective of their domain architecture to 
understand likely modes of action of the novel proteins. Furthermore, known interactomes of the participating 
wild type proteins were used to determine possible mechanisms of action, pathways of interest, and possible 
treatment vectors for affecting as many different fusions as possible. As a result, multiple cellular signaling path-
ways were found to intersect with major subsets of these fusions, and multiple individual key interactors, such as 
NTRK1 with over 200 and EGFR with over 100 interacting fusions, were identified as potential targets of interest.

Materials and methods
fusion selection and annotation. Fusions that involve protein kinase  genes23 and transcription  factors24 
were selected from the 31,007 fusions that were identified by applying DEEPEST to the whole TCGA  dataset22. 
Of these 28,862 were determined to be unique by considering Ensembl gene IDs, biotypes, chromosomal break-
points, AGFusion assigned fusion effects, and resulting protein sequences. AGFusion was used to annotate these 
gene fusions to the human genome assembly GRCh38 v.89 from Ensembl. For analysis involving gene pairs, the 
pair entry was used in alphabetical order (e.g. ERG-TMPRSS2 instead of TMPRSS2-ERG) in all cases. Fusions 
were considered protein coding if both genes contributed over 30 amino acids to the product.

clinical data. Clinical data for TCGA samples was obtained from the GDC data repository. The data was 
matched to AGFusion output data based on TCGA barcode (e.g. TCGA-WB-A80K) using a custom in-house 
python script. Stage information from the clinical data was simplified where possible (e.g., Stage IIA was changed 
to Stage II). Entries such as Stage 0, Stage X and I/II NOS were ignored. Tissue entries were simplified from 
detailed ICD-O 3 topographical codes to more general, e.g. C56.9 → C56, and mapped to names accordingly. 
Chromosomal sequence information from GRCh38 v.89 was used to categorize breakpoints into 5% chromo-
somal interval groups.

Interactor analysis. Interactors for wild type proteins of all fusion partners were obtained from IMEx 
 consortium25 and any interactions that were not confirmed to be physical by experimental methods were dis-
carded. Interactors were added to the interactor set from each fusion, while leaving out the fusion pair genes 
themselves. Annotations for interactors were obtained using Uniprot and Reactome. From Reactome, mappings 
to all levels of pathway hierarchy were used. Dijkstra’s  algorithm26 implemented with a custom python script was 
then used to establish shortest paths to Reactome root nodes for each network node. A weight of 1 was used for 
all network edges.

Domain annotation. For the protein producing fusions, sequences of the protein products were pro-
duced using the AGFusion tools. Duplicate fusions based on fusion genes and protein sequence were discarded. 
Domains were taken from AGFusion output, and mapped to protein sequence in the wild type protein. The 
intactness of domains was then determined by matching the WT domain sequence to the predicted fusion 
protein sequence, and only full length, intact domains were picked for further study. A domain was classified as 
PK- or TF-specific if  ≥ 95% of all its occurrences were in PK or TF proteins, respectively.

Data visualization. Data illustrations were made with CorelDRAW, Excel, and in-house python scripts 
using Matplotlib and Seaborn.  Cytoscape27 was used for creating network figures.
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Differential expression analysis. Gene expression quantification HTSeq-counts –files were downloaded 
from GDC data portal. Samples where OFs with intact, full-length PK, or TF domains were detected were 
grouped together based on fusion gene pairs. The groups were then analyzed with  DESeq228 using other samples 
with protein producing non-PK/-TF fusions as controls. For each pair group, differential expression analysis 
against an equal number of control samples picked from samples in which other protein-producing fusions 
were found. Analysis was repeated 1,000 times for each fusion pair. For the resulting significantly differentially 
expressed genes (q-value < 0.05), basemean and expected values were averaged across all runs, and a fold change 
value calculated based on these. GO annotations were then added from ensembl annotations, and Reactome 
pathways from first mapping ensembl gene IDs to Uniprot via Ensembl BioMart, and then to Reactome lowest 
level pathway terms via Reactome. Z-score value for pathway level over-/underexpression was calculated by a 
method used in  GOplot29 i.e.by deducting the number of underexpressed genes from the number of overex-
pressed genes and dividing the result by the square root of the number of significantly changed genes (FDR 
corrected p  ≤ 0.05).

Results
Detection of oncofusions from TCGA dataset reveals enrichment of PK and TF fusions. In this 
study, we focused on protein producing OF genes. Translocation of chromosomal regions can result in either 
in-frame or out-of-frame OFs (Fig. 1A). To characterize the proteins produced by known OFs in the TCGA 
dataset, which currently contains data from 33 different cancer projects, we launched an analysis to understand 
the potential functional space of the protein producing fusions (Fig. 1B), and especially those that involve either 
a PK or a TF, or both (PK-TF fusions).

The DEEPEST dataset included 31,007 fusions detected from 6,123 cancer samples. Of these, 28,862 were 
unique fusions (Fig. 1C, upper panel). Among the unique OFs, 29% (8,230) were predicted to retain frame, 
and also produce potentially functional proteins, where both genes contributed over 30 in-frame amino acids 
(Fig. 1B, Supplementary table S1). The limit of 30 amino acids was the length of the shortest non-repeat domain 
present in the fused proteins. Examining the resulting protein producing OF set, we noticed an abundance of 
those involving PK or TF. Indeed, these fusions constituted 1,811 protein producing OFs (Fig. 1C, lower panel). 
Generally the proportion of PK/TF fusions was under 0.3, except in the PK/TF—fusion prone cancers acute 
myeloid leukemia, cholangiocarcinoma, thyroid carcinoma, and thymoma. The number of OFs per sample varied 
across cancer types. The types most prone to protein producing fusions were sarcoma (SARC) with an average of 
3.7 protein producing fusions per sample, esophageal carcinoma (ESCA: 3.5 fusions), uterine corpus endometrial 
carcinoma (UCEC: 2.9), stomach adenocarcinoma (STAD: 2.8), breast invasive carcinoma (BRCA: 2.7), uterine 
carcinosarcoma (UCS: 2.6), and ovarian serous cystadenocarcinoma (OV: 2.5).

Due to the prevalence of PK and TF genes in the fusions, we next investigated if they are enriched in particular 
cancers. While in most cancers PK/TF fusions made up around 20–25% of all protein producing OFs, the per-
centage reached 60% in acute myeloid leukemia (LAML) samples , 46% in thymoma (THYM), 45% in thyroid 
carcinoma (THCA), and 37% and 36% in kidney renal papillary cell carcinoma (KIRP) and cholangiocarcinoma 
(CHOL) respectively (Fig. 1C). Acute myeloid leukemia is well known as an OF-prone  cancer30 However, aside 
from the four fusions detected between ABL1 and BCR, the high percentage was mostly TF-driven, with KMT2A, 
RUNX1, and RARA being found in 9, 6, and 4 fusions respectively. This is in contrast to the peak in THCA, which 
is driven by 12 BRAF fusions, 11 fusions of RET, 6 of NTRK1, and 5 of NTRK3, among 8 other protein kinases.

Reading frame retention is common in pK and tf oncofusions. The 31,007 fusions consisted of 
23,354 unique gene pairs and 14,632 individual genes; 14,338 of the pairs did not have any protein producing 
fusions. The top protein producing fusion was RPS6KB1-VMP1 with 13 unique protein producing fusions in 
the dataset, all the others having less than 10 (Fig. 2A). There were 47 fusion gene pairs that were predicted to 
produce protein in at least 4 fusions, 159 in 3 fusions, 835 in 2, and 7,975 in 1 fusion. Out of the 32 fusion gene 
pairs that produced 4 or more unique proteins, 15 were PK/TF fusions.

To better understand the behavior of prolific gene pairs, we next mapped tissue annotations from TCGA 
to fusions of each gene pair based on barcodes from samples, where a fusion of the gene pair was present. In 
contrast to RPS6KB1-VMP1 and ITGB6-RBMS1, which were seen in samples from 6 different cancers, 7,055 
pairs were seen in samples of only one cancer type. Out of these cancer-specific fusions, 38 were predicted to 
produce 2 or more unique proteins (with ERG-TMPRSS2 predicted to produce 4 different unique proteins, 
supplementary table S2). PK/TF fusions featured 1,449 different PK or TF genes, ERG being the most common 
TF, and ERRB2 the most common PK (supplementary table S3). Between 84 and 97 percent of oncofusions in 
each cancer project were unique, highest being sarcoma with 97% unique gene pair combinations, and thyroid 
carcinoma the lowest with 84% (supplementary table S4). Protein producing fusions followed a similar theme, 
unique protein producing fusions making up between 23 and 52% of all oncofusions in each given cancer project 
(supplementary table S4).

We next looked in more detail what cancer stages PK and TF fusions were detected in. The most prominent 
group was stage II breast invasive carcinoma, which also had the most samples in the data set (Fig. 2B). In total, 
of the 1,811 PK and TF fusions, 271 were found in stage I samples, 444 in stage II, 303 in stage III, and 130 in 
stage IV. On average, samples had 0.30 PK/TF fusions per sample. However, in some cancers, PK or TF fusions 
are enriched towards the more severe stages. Discounting stage groups with less than 10 samples, 4 groups had 
more than 0.6 fusions per sample. ESCA stage III samples in particular had 0.76 PK/TF fusions per sample, while 
STAD and BRCA stage IV samples had 0.69 and 0.65 respectively, and STAD stage I had 0.61 (Supplementary 
table S5). The distribution of protein producing OFs mirrored that of PK/TF fusions quite closely (supplemen-
tary figure S1A). In terms of chromosomal breakpoint locations, those in the PK/TF fusions varied compared 
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to all protein producing fusion mutations, but the prominent role of PK/TF fusions is illustrated by overlapping 
hotspots (supplementary figure S2).

Intact, in-frame domains are commonly retained in OFs. To understand the contribution of each 
OF to the overall development or survival of cancerous cells, the functional consequences of any given mutation 
and its impact on the pathways the proteins are involved in must be understood. To this end, we analyzed all 
identified unique protein producing fusions, and the full-length, in-frame domains of the fusion proteins.

While AGFusion does predict protein sequence for each fusion partner, and corresponding conserved or lost 
domains, a domain is counted as conserved already if only 5 amino acids are included in the sequence. To adapt 
this to the study of full-length domains, we first mapped the Pfam identifiers of the domains to sequences in 
the wild type proteins from Uniprot. The domains were then defined as conserved only if the full sequence was 
present in the fusion protein. This resulted in 10,100 conserved domains in all protein producing fusions. Over 
50% (5,373) of these domains are in PK/TF fusions, which account for 22% of all protein producing fusions (sup-
plementary tables S1, S6), suggesting overall domain count strongly favors PK and TF genes, perhaps indicating 
that these fusions produce more functional proteins in comparison to all protein producing fusions.

The most conserved domain was the protein tyrosine kinase domain (Fig. 3A, supplementary table S6), which 
was conserved in 159 fusions. This was followed by the PH domain, a common domain in intracellular signaling 
proteins and proteins of the cytoskeleton, and the protein kinase domain. To assess retention of non-obvious 
PK or TF domains, we classified domains as PK or TF specific if over 95% of the copies were found in PK or 
TF halves of the fusion proteins. This resulted in 622 copies of 131 different TF-specific domains predicted to 
exist in the fusions, compared to 455 copies of 44 PK-specific domains. Most common TF domains were zinc 
finger C2H2 type, KRAB, and HLH DNA binding domains, present in 59, 45, and 43 copies respectively. Many 
TF domains, such as KRAB, are involved in both transcriptional activation and repression, depending on the 
molecular context.

On average, protein producing fusions in samples of most cancer projects tended to have close to 1 intact, 
full length domain per protein producing OF. PK/TF fusions on average had more intact domains in all except 
for 5 projects (Fig. 3B). On average, fusions in all projects tended to have between 1 and 2 intact domains, while 
PK/TF fusions featured a slightly higher average. Although some cancers do appear to have particularly many 
domains, this is mostly due to low count of fusions detected in the project. Exception seems to be acute myeloid 
leukemia, with 47 detected protein producing fusions, 28 of which contain either a PK or a TF. Most striking 
differences being seen in mesothelioma, thyroid carcinoma, rectum adenocarcinoma, and uveal melanoma with 
1.17, 1.14, 1.0, and 1.0 more retained domains on average in PK/TF fusions compared to protein producing 
fusions, respectively.

On the cancer project level, thyroid carcinoma had the highest percentage of PK domains (19% of all domains 
identified in the 97 samples of the project, supplementary table S7, supplementary Figure S3), which totaled to 
34, only exceeded by breast invasive carcinoma with 92 PK specific domains (4% of all BRCA domains), and 
lung adenocarcinoma (LUAD) with 35 (6%). Proportion of TF domains varied less. Kidney renal papillary cell 
carcinoma had 15% of its intact domains in the TF-specific set, followed by acute myeloid leukemia with 12%, 
and rectum adenocarcinoma and prostate adenocarcinoma, both at 11%. Aside from prostate adenocarcinoma, 
these projects had <50 samples in the TCGA dataset.

interactors of fusion partners can point to impact of ofs. To understand what kind of implications 
the functional changes of lost / conserved PK or TF specific domains in new combinations could have for the 

Figure 1.  Schematic illustration of the gene fusions, workflow, and the number of gene fusions in human 
cancer. (A) Schematic description of gene fusions formation. Fusions are formed mainly via balanced and 
unbalanced chromosomal rearrangements, such as translocations, deletions, inversions and insertions. This 
usually leads to formation of a fusion gene with the 5′ end of Gene 1 and 3′ end of Gene 2. If the fusion occurs 
between two protein coding genes, depending on whether the reading frame is violated, and where exactly 
the fusion occurs, a fusion protein may be transcribed with features and domains from both partners. Other 
possible outcomes include full or truncated 3′ gene under the control of the promoter of the 5′ gene. (B) 
Workflow used in this study. Analysis progressed from the total set of fusions discovered by the DEEPEST 
 method22 and moved towards more specific kinase / TF containing, protein producing oncofusions. We started 
with TCGA data-based fusion set from Dehghannasiri et al. (2019), for which we generated protein sequences 
with AGFusion. Domains were added by matching sequence to Uniprot proteins annotated with Pfam domains, 
after which non-unique entries were dropped. Fusions were classified as protein producing, if both gene 
fragments were predicted to produce > 30 AA of protein sequence. From this set, the two most prominent 
protein groups were protein kinases and transcription factors, and thus we focused further analysis on the 1,811 
unique protein kinase or transcription factor containing fusions, using the full protein producing fusion set for 
comparison. Known interactions for wild type fusion proteins were obtained from IMEx consortium, and used 
for estimating maximal foreseeable effect on signaling pathways from Reactome. Finally, TCGA gene expression 
quantification data was used to probe observable effects of kinase/TF fusions, using other protein producing 
fusions as background. (C) Top: Breakdown of samples and fusion mutations by TCGA project. Largest single 
contributor of samples with fusions was TCGA breast invasive carcinoma project (BRCA), which had the 
highest number of samples and identified fusion mutations. Bottom: Proportion of protein producing fusions 
that include PK or TF genes.
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Figure 2.  Clinical characterization of protein producing oncofusions by cancer stage. (A) The most common protein 
producing gene pairs in oncofusions. In total, protein producing fusions were comprised of 23,354 unique gene pairs 
predicted to produce one or more unique protein products. The most common pair was RPS6KB1-VMP1, with over 10 
unique proteins, followed by ITGB6-RBMS2 and ALK-EML4 with 7 each, and LYRM9-P3H4 and RUNX1-RUNX1T1 
at 5. Kinase and TF fusions were common in top protein producing gene pairs, illustrated by blue shading for the 
presence of a protein kinase in gene pair, red for TF, and orange for both. (B) Sunburst diagram of project and stage 
distribution of PK/TF oncofusions. The innermost layer represents the number of fusions in each project. The layers 
radiating out are the proportion of fusions detected in Stage I, II, III, and IV samples, in order from in to out. Total 
numbers of fusions from each stage is marked under the stage indicators.
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Figure 3.  Domain analysis of protein producing fusions. (A) Intact, full-length domains identified in unique protein producing fusions. 
In total, 10,100 intact domains were detected. The protein tyrosine kinase domain was the most prevalent with 159 identifications. In 
addition, protein kinase domain was detected with 108 copies each. Kinase or TF specific domains included 44 and 131 unique domains, 
respectively. 455 copies of kinase-specific domains were seen, and 622 of TF specific. Kinase domains focused more on the two top 
kinase domains, whereas TF domains were a much more evenly distributed group, the top TF-specific domain, C2H2 type zinc finger, 
having 59 copies. (B) The number of domains per protein coding oncofusion in the TCGA projects. (C) Most common interactors of 
protein kinase/TF fusions. Y-axis describes numbers of unique protein producing fusions, where one or both of the fusion partner WT 
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cell and the organism as a whole, we next analysed the interaction networks of the wild type proteins in PK/TF 
fusion set.

Although PK or TF fusion proteins are likely to lose domains necessary for these interactions to form, they 
are also likely to instead gain domains facilitating new interactions. We took the known, experimentally validated 
interactomes of the wild type proteins from the IMEx  consortium25. We treated the resulting interactor set as 
the hypothetical maximal foreseeable effect set, which consisted of interaction partners that may have an effect 
on the fusion protein, or that the fusion protein may have an effect on.

From this set, we found interactors that were particularly prominent. PKs, such as NTRK1, EGFR, and SRC, 
as well as various TFs, like NFKB3 and SP1 were among the top results (Fig. 3C, supplementary table S8). The 
list is mostly made up of other kinases or transcription factors, with NTRK1 potentially interacting with over 
200 individual, unique fusions. Genes found in the COSMIC cancer gene census were more common towards 
high numbers of potentially interacting fusions. Through these interactions it is possible to identify significant 
central nodes through which multiple different fusions in different cancers may affect the growth of the tumor. 
For example, the second most common possible interactor, YWHAG, is a common regulator of signaling path-
ways. Approximately 7.7% of all interactors of protein producing fusions were found in the COSMIC cancer 
gene census, whereas the percentage rises to 29%, and to 40% if we consider only the 100 and 10 most common 
protein producing fusions respectively. Interactors of PK or TF fusions were more often seen in the cancer gene 
census, than those of other protein producing fusions (Fig. 3C upper right inset).

Pathway analysis of OF interactors highlights signal transduction and regulatory func-
tions. Next, we combined Reactome pathway data to the interactor set, and built hierarchic networks of the 
found pathways (Fig. 4A). Considering the dataset, we focused on one network root node: signal transduction, 
and its descendants up to 7 links away. Another root node, gene transcription, can already be seen on this scale, 
which is unsurprising considering the inclusion of many TF fusions, and the interplay of signal transduction 
and gene transcription. For each Reactome pathway, we calculated an interactor count by adding together the 
number of potentially interacting fusions for each protein in the pathway.

Particularly enriched were proteins related to signal transduction, where interactors were detected in 15 
branches from the root. Especially prominent pathways are those relating to receptor tyrosine kinase signaling 
with potential interactors from 1,230 unique PK/TF oncofusions), PI3K-Akt (1,220), Rho GTPases (1,095), Inte-
grin (1,156) and GPCR (905) signaling, as well as MAPK family signaling cascades (1,053). Multiple smaller, but 
significant pathways such as Hedgehog, Notch and Wnt pathways are also seen. Generic transcription pathways 
and their related pathways, such as transcriptional regulation and RNA polymerase II transcription, are very 
prominent as well, with 1,503 PK/TF oncofusions.

The proportion of interactors from each pathway varied slightly between different cancers (Fig. 4B). While 
signal transduction was the most common pathway in most cancers, different signaling cascades, such as MAPK 
cascades or TLR cascades featured much more variation, pointing to relative enrichment of different pathways 
in different fusions, and perhaps to cancer-specific effects of unique gene-pair mutations in said cancers.

Oncofusions lead to distinct changes in gene expression. To understand if intact PK or TF domains 
had a recognizable and distinct downstream effect on gene expression, differential expression analysis was per-
formed. Gene expression quantification result files were downloaded from GDC data portal, and divided into 
groups based on PK/TF fusion gene pairs.

Only gene pairs with conserved kinase or TF domains and at least two expression level quantification result 
files available were used (517 pairs). The analysis was repeated 1,000 times for each gene pair with random non-
PK/TF protein producing control set, and results were filtered based on q value under 0.05. Results and expected 
values were then averaged across the replicates, and a fold change calculated.

In the results, 48,657 differentially expressed genes were thus identified (Fig. 5A, supplementary table S9). 
Overall results indicate mostly downregulation of the expression of majority of genes. The most common over-
expressed genes were MTRNR2L1, SCGBID2, and CTAG2, seen in 346, 323, and 321 pair groups, respectively. 
Other common overexpressed genes were detected in under 300 pair groups. The most common underexpressed 
were PSPHP1, GSTM1, and PPP2R2C, detected in 245, 234, and 227 pair groups, respectively (Fig. 5B). Of all 
the differentially expressed genes, 713 were in the COSMIC cancer gene census. Most common overexpressed 
census genes were WIF1, SSX1, Pax7, PTPRT, and S100A7. These were identified as overexpressed in 285, 
272, 262, 258, and 257 gene pairs, respectively. The most often underexpressed likewise were CDKN2A, SIX2, 
CCNE1, CNTNAP2, and MNX1, identified as underexpressed in 187, 174, 169, 162, and 161 fusion pair groups, 
respectively (supplementary table S10).

Figure 4.  Functional potential of Kinase/TF fusion interactors. (A) Interactors mapped to Reactome pathways. 
The interactors produced hits in almost 2000 pathways. Most prominent hits were centered around signal 
transduction pathways, which links to transcription events via TGF-β signaling pathway. The size of the node 
is directly proportional to number of fusions with interactors identified with the annotation from Reactome 
database. The used annotation file contained annotations for all levels of Reactome hierarchy. Included in 
the figure are pathways up to 7 steps away from the signal transduction root node. The node size is directly 
proportional to the sum of oncofusion interactors, and the count of fusions that interact with them. (B) Relative 
frequency of each pathway per TCGA project on a scale from 0 to 1 (1 being the pathway with most interactors). 
While pathways with the most potential interactors of fusions identified are the same in majority of the projects, 
different subpathways are seen in different projects, such as oncogenic MAPK signaling in DLBC and KIRP, or 
PI3-Akt signaling in UCS and CHOL.

◂
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To gain a more complete image of what pathways each fusion mutation specifically affects, we performed 
analysis with Reactome annotations, and calculated a z-score for each annotation term. Only lowest level Reac-
tome terms were used for mapping. This resulted in a total of 1887 pathways identified with a non-zero z-score 
(supplementary table S11). Of these, 53 displayed z-scores above 7.5 or below −7.5 (Fig. 5C), based on which gene 
pair groups fall into roughly four groups (Fig. 5 C, supplementary table S12), based on what kind of pathways 
the proteins the expression of which fusions up- or downregulate are in. The four groups are centered around 
complement and immunity regulation, ribosomal and exon junction complex functions, mitochondrial func-
tions, and cell cycle related pathways.

Finally, we identified a total of 25 tumor suppressor genes (according to COSMIC cancer gene census), 30 
common fusion genes, and 29 other oncogenes in these four pathway groups. Majority of these (23 fusion genes, 
13 tumor suppressors, and 26 other oncogenes) were in the first group of immune system related pathways.

Discussion
We examined the gene fusion landscape in human cancer (from TCGA datasets). Gene fusions are among the 
most common mutation classes of known cancer  genes6, found both in hematological and solid tumors. Although 
the fusions can drive cancer via expression level changes when an oncogene is fused with a strong promoter 
such as TMPRSS2-ERG fusions in prostate  cancer31, we find that the majority 19,911 of the 28,863 oncofusions 
are in-frame mutations between exonic regions of two protein coding genes. In total, over 9,000 gene pairs were 
seen participating in fusions that were predicted to produce intact, potentially functional proteins. TCGA solid 
tumor samples tended to have fusions producing in-frame proteins of adequate length approximately 20% of 
the time in all diseases (Fig. 1C). Equal distribution across stages may hint at protein producing fusions being 
early events in the development of the tumors from which they were identified. We identified several particularly 
prolific fusion gene pairs, among them capturing also several that have been featured prominently in literature. 
Most prolific protein producing OF gene pairs were found to feature either a protein kinase or a transcription 
factor (Fig. 2C), further validating the previously suggested idea that protein kinase and transcription factor 
fusions constitute to a major fraction of the oncofusions.

We next moved on to characterize the structure of produced fusion proteins, to understand the protein-level 
consequences of the mutations, and thus the possible impact on protein activity in a cellular context. Particularly 
abundant protein groups among all protein producing fusions were PKs and TFs, which has been noted in pre-
vious studies as  well30. We therefore decided to focus on their fusions in particular. Intact, full-length domains 
were abundant in the predicted fusion proteins. Especially protein kinase domain was very prominent, featured 
in 159 unique protein producing fusions (Fig. 3, supplementary table S6). As the kinase domain is usually in the 
C terminal of the protein, fusion mutations can easily cause kinase domains to be mislocalized due to localiza-
tion signals from the fusion partner protein, or deleted membrane-spanning regions of the original kinase, 
for example. In addition to the protein tyrosine kinase domain, 43 other PK-specific domains were identified, 
bringing the total number of PK-specific domains to 455. In comparison, TF-specific domains consisted of a 
wider variety of individual domains, with 622 copies of 131 different domains.

Although fusion proteins are likely to lose domains that facilitate the validated interactions of the wild-type 
proteins, this is not necessarily the case. Receptor tyrosine kinases for example are commonly at the 3′ end of the 
new fusion gene, and the breakpoint often occurs just on the 3′ side of the region coding for the transmembrane 
part of the receptor. This could cause the kinase domain and intracellular protein–protein interaction domains to 
end up in a localization dictated by the 5′ gene. This, in turn, would lead to activation in an inappropriate place 
and/or at an inappropriate time. Similarly affected may be proteins shuttling between nucleus and cytoplasm as 
a response to an outside signal: they may end up perpetually trapped in the cytoplasm or the nucleus, or shuttled 
between the two in atypical conditions. To understand what kind of impact protein domains in novel environ-
ments might have, we next looked at already known interactors of all fusions (Figs. 3C,4). By grouping together 
interactors of both wild type proteins of each fusion, we were able to estimate the maximal set of currently fore-
seeable interactors of the fusion protein. I.e. phosphorylation targets, complex components etc. We found genes 
mentioned in the COSMIC cancer gene census to be enriched in both PK and TF fusions when comparing to 
other protein producing fusions, and occurring at a much higher rate in the interactor set of fusions between PK 
and TF genes. Same trend is reflected in CGC genes being more common the higher the number of potentially 
interacting fusions is. Possible roles of the interactors were then investigated via the Reactome pathway data-
base. Interactors of PK and TF fusions were heavily concentrated around signal transduction pathways (Fig. 4).

To gain insight into whether the deductions so far were valid, we next used TCGA transcription quantifica-
tion data to dig into the effects of specific gene-pair fusions with intact kinase or transcription factor specific 
domains. We discovered observable changes in gene expression, when comparing fusion groups against other 
protein producing fusions (Fig. 5), and effects that were seen to produce a noticeable impact on a pathway level 
as well, pointing to lower activity of various regulatory functions with many of the domain-containing gene pair 
oncofusions. Despite very heterogeneous gene-level differential expression patterns (Fig. 5 A), many genes are 
either over- or underexpressed in hundreds of gene pairs, with the most common ones being seen in the list of 
up- or downregulated genes in over half of all the gene pair groups studied. Considering distinct, pathway-level 
implications of these expression level changes, the fusions fall into two distinct groups based on which Reac-
tome pathways the proteins they over-/underexpress function in (Fig. 5C). What is clear is that even though 
fusions may produce results that look alike, they each bring their own variation, and perhaps the specific cellular 
pathway-level effects of the expression changes are as distinct as fusion pairs themselves. Indeed, although the top 
pathways identified in the fusions formed roughly four groups, with some individual pathways outside of them, 
the full pathway annotation (supplementary table S11) includes a very individualistic figure of each fusion pair. 
The four pathway groups, however, may point to interesting findings about the fusion pairs themselves: Most of 
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Figure 5.  Results of differential gene expression analysis. (A) Overall differential gene expression analysis 
results of the 517 fusion gene pair groups. Over 48,000 differentially expressed genes were found with q-value 
filter of 0.05. (B) Most common overexpressed (left) and underexpressed (right) genes in the differential 
expression data. (C) Reactome pathways detected and enriched in the differential expression data. Only 
pathways with z-score above 7.5 or below -7.5 are shown. Four groups with similar fusion pair patterns are 
highlighted in different colors.
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them overexpress proteins of either the immune system related pathway group, or the other three groups, while 
underexpressing those of the other.

The conservation of domains may suggest conserved active functions, such as those of the kinase domain, 
potentially linked to inappropriate dimerization domains, target recognition domains, or domains that alter the 
entire molecular context of the novel fusion protein by targeting it to the wrong cellular compartment, membrane, 
or membrane raft. Through analyzing interactors of wild type proteins, we have identified multiple common 
interactors. If these interactions rely on the intact domains of the fusion protein, we can assume they represent 
possible pan-fusion drug targets, with which a multi-cancer effect may be achieved.

Taken together, we have now created and characterized the largest dataset of kinase and transcription fac-
tor oncofusions. This database will work as the foundation for molecular cloning and characterization of the 
PK- and TF-oncofusions using biochemistry, proteomics and cell biology—and a baseline hypothesis for the 
expected results.

Data availability
The datasets generated during and analyzed in this study are available either in the supplementary information 
or from the corresponding author on reasonable request.
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