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Objective function estimation 
for solving optimization problems 
in gate‑model quantum computers
Laszlo Gyongyosi

Quantum computers provide a valuable resource to solve computational problems. The maximization 
of the objective function of a computational problem is a crucial problem in gate-model quantum 
computers. The objective function estimation is a high-cost procedure that requires several rounds 
of quantum computations and measurements. Here, we define a method for objective function 
estimation of arbitrary computational problems in gate-model quantum computers. The proposed 
solution significantly reduces the costs of the objective function estimation and provides an optimized 
estimate of the state of the quantum computer for solving optimization problems.

Quantum computers exploit the fundamentals of quantum mechanics to solve computational problems more 
efficiently than traditional computers1–20. Quantum computers can solve computational problems by exploit-
ing the phenomena of quantum superposition and quantum entanglement5,7–9,18–57. In a quantum computer, 
computations are performed on quantum states that carry the information. Gate-model5,13–18,21,25,43 quantum 
computations provide a flexible framework for the realization of quantum computations in the practice. In a gate-
model quantum computer, computations are realized by quantum gates (unitary operators); and the quantum-
gate architecture integrates a different number of levels and application rounds5 to realize gate-model quantum 
computations5,18,21,25,36–39,43,58–61. The output quantum state of the quantum computer is practically measured by 
a physical measurement apparatus62–68 that produces a classical string. In gate-model quantum computers, the 
quantum states are represented by qubits, the unitaries are realized by qubit gates, and the measurement appa-
ratus is designed for the measurement of qubit systems13–17,19,69–74. Another fundamental application scenario of 
gate-model quantum computations is the small and medium-scale near-term quantum devices of the quantum 
Internet69–128.

An important application scenario of gate-model quantum computers is the maximization of the objective 
function of computational problems5,18,21,25,43. The quantum computer produces a quantum state that yields a 
high value of the objective function (The objective function subject of a maximization refers to an objective func-
tion of an arbitrary computational problem fed into the quantum computer. Objective function examples can 
be found in9,24.). The output state of the quantum computer is measured in a computational basis, and from the 
measurement result, a classical objective function is evaluated. To get a high-precision estimate of the objective 
function of the quantum computer, the measurements have to be repeated several times in the physical layer. In 
each measurement round, a given number of measurement units are applied to measure the output state of the 
quantum computer. This state represents an objective function value via the quantum-gate attributes in the gate 
structure of the quantum computer. The objective function values obtained in the measurement rounds are aver-
aged to estimate the objective function of the quantum computer. Since each round requires the preparation of a 
new quantum state and the application of a high number of measurement units, a high-precision approximation 
of the objective function value of the quantum computer is a costly procedure. The high-resource assumptions 
include not just the preparation of the initial and final states of the quantum computer, the application of the 
unitaries in several rounds, but also the physical apparatus required to measure the output state of the quantum 
computer. The procedure of the objective function estimation in gate-model quantum computers is therefore a 
subject of optimization.

Here, we propose a method for the optimized objective function estimation of the quantum computer and for 
the optimized preparation of the new quantum state of the quantum computer (The terminology “quantum state 
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of the quantum computer” refers to the actual gate parameter values of the unitaries of the quantum computer5. 
Preparation of the target quantum state of the quantum computer refers to the determination of the target gate 
parameters of the unitaries of the quantum computer.). The framework integrates an objective function exten-
sion procedure, a quantum-gate structure segmentation stage, and a machine-learning11,12,19,50,129–135 unit called 
quantum-gate parameter randomization machine learning (QGPR-ML), which outputs the prediction of the new 
quantum computer state. The aim of the objective function extension is to increase the precision the objective 
function estimation procedure. An imaginary measurement round refers to a logical measurement round yielded 
by the post-processing. An imaginary measurement round requires no physical-layer measurement round, since 
it is resulted by logical-layer procedures and methods in the post-processing stage. The imaginary measurement 
round also characterizes the performance of the framework. At a particular number of imaginary rounds, the 
post-processed objective function becomes equal to an objective function yielded from the same number of “real” 
(e.g., physically implemented) measurement rounds. An initial objective function is calculated from an arbitrary 
low number of physical measurement rounds, which is then fed into the objective function extension algorithm 
of the framework. The extended objective function is then fed into a segmentation procedure that decomposes 
the quantum-gate structure of the quantum computer with respect to the properties of the quantum gates in 
the quantum circuit. The gate-based segmentation is rooted in the fact that the gate structure unitaries of the 
quantum computer determine the objective function and therefore the particular output state of the quantum 
computer. The results are then forwarded into the QGPR-ML block, which achieves a randomization and rule-
learning stage. The aim of the randomization is to construct an optimal set for the learning set and test set selec-
tions in rule learning. The rule-learning method outputs a set of optimal rules learned from the input. Finally, a 
prediction stage is applied to the results to determine a new state of the quantum computer for the next iterations.

The novel contributions of our manuscript are as follows: 

1.	 We define a method for objective function estimation for arbitrary computational problems in gate-model 
quantum computers.

2.	 The method reduces the costs of quantum state preparations, quantum computational steps and measure-
ments. The proposed algorithms utilize the measurement results and increase the precision of objective 
function estimation and maximization via computational steps.

3.	 The results are convenient for solving optimization problems in experimental gate-model quantum comput-
ers and for the near-term quantum devices of the quantum Internet.

This paper is organized as follows. In "Related works” section, the related works are discussed. In “System model 
and problem statement” section, the machine-learning-based objective function optimization framework is 
proposed. In “Objective function extension and gate structure decomposition” section, the procedures of the 
framework are discussed. In Section 5, we study the learning model and the quantum computer state prediction 
method. A performance evaluation is given in “Performance evaluation” section. Finally, “Conclusion” section 
concludes the results. Supplemental material is included in the Appendix.

Related works
The related works are summarized as follows.

On the utilized gate-model quantum computer environment, see5,18, and36,38.
In5, the authors studied the problem of objective function estimation of computational problems fed into the 

quantum computer. The authors focused on a qubit system with a fixed hardware structure in the physical layer. 
The input quantum system of the quantum circuit is transformed via a sequence of unitaries, and the qubits of 
the output quantum system are measured by a measurement array. The result of the measurement produces a 
classical bitstring that is processed further to estimate the objective function of the quantum computer.

Examples of objective functions for quantum computers can be found in9.
A quantum circuit design method for gate-model quantum computers has been defined in36. In37, a method 

has been defined for the stabilization of the optimal quantum state of the quantum computer.
A method for the evaluation of objective function connectivity in gate-model quantum computers has been 

proposed in33. An unsupervised machine learning method for quantum gate control in gate-model quantum 
computers has been defined in34. In35, a framework has been defined for the circuit depth reduction of gate-
model quantum computers.

The technique of dense quantum measurement has been defined in38. As it has been proven, the method 
significantly can reduce the number of physical measurement rounds in a gate-model quantum computer envi-
ronment. In39, a training optimization method has been defined for gate-model quantum neural networks.

For some related works on quantum machine learning, see12,13,43,46,136–143. For a detailed summary on these 
references, we suggest also39.

Optimization algorithms are also proved to be useful in various applications. In144, the authors proposed a 
neural network ensemble procedure. The aim of the optimization process is to improve the quality of the neural-
network based prediction intervals. The prediction intervals are used to quantify uncertainties and disturbances 
in neural network-based forecasting. The optimization model utilizes the fundaments of simulated annealing 
and genetic algorithms.

An overview on experimental optimization approaches was proposed in145. In this work, the authors provide 
an overview on recent developments of fault diagnosis and nature-inspired optimal control of industrial process 
applications. The fields of fault detection and optimal control have proven various successful theoretical results 
and industrial applications. This work also contains a review on the recent results in machine learning, data 
mining, and soft computing techniques connected to the particular research fields.
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In146, the authors studied the problem of training echo state networks (ESN) that are a special form of recur-
rent neural networks (RNNs). As an important attribute, the ESN structures can be used for a black box modeling 
of nonlinear dynamical systems. The authors defined a training method that uses a harmony search algorithm, 
and analyzed the performance of their approach.

In147, the authors defined a model-free sliding mode and fuzzy controllers for a particular problem and sub-
ject, called reverse osmosis desalination plants. The paper defines an optimization problem in terms of process 
controlling and fuzzy method. The authors also studied the performance of their solution.

On genetic algorithms for digital quantum simulations, see148. In149, a method for the learning of an unknown 
transformation via a genetic approach was defined. In150, the authors proposed an overview of existing approaches 
on quantum computation.

System model and problem statement
System model.  In the modeled scenario, the goal is the maximization of an objective function C via the 
quantum computer. The aim of the quantum computer run is to produce a quantum state |θ� dominated by com-
putational basis states with a high value of an objective function C5,18 of a computational problem. The quantum 
computer has Ntot total number of the quantum gates (unitaries) that formulates a QG (quantum gate) structure. 
Using the Ntot unitaries U1, . . . ,UNtot , the QG structure of the quantum computer produces an output quantum 
state |θ� as5

where |ψ0� is an initial state and θ is the gate-parameter vector

The aim is to select the θ parameter vector such that the expected value of C is maximized; thus, the value of 
quantum objective function

is high5.
A unitary Uj

(

θj
)

 can be written as5

where Bj is a set of Pauli operators associated with the jth unitary Uj of the quantum computer, j = 1, . . . ,Ntot , 
while ϕj is a continuous parameter, ϕj ≥ 0 , referred to as the gate parameter of unitary Uj.

Let NG

(

Uj

)

 refer to the qubit number associated to gate Uj . Then, the ϕj parameter of an NG

(

Uj

)

-qubit unitary 
Uj can be classified with respect to NG

(

Uj

)

 as

where NG

(

Uj

)

= 1 identifies an 1-qubit gate Uj while NG

(

Uj

)

= N refers to an N-qubit gate Uj.
Without loss of generality, at a given Bj , a particular Uj is approachable via θj , where

Therefore, the |θ� state of the quantum computer depends on the gate parameters of the unitaries of the quantum 
computer, and (4) can also be referred as

where ϕj is determined as in (5).
Let N

(

ϕj
)

 refer to the total number of occurrences of gate parameter value ϕj in the quantum computer (i.e., 
the number of quantum gates with a particular NG qubit number). Then the state |θ� of QG (see (1)) is evaluated as

where |s� = 1√
2n

∑

z |z� , where n is the length of string z resulted from the physical measurement procedure M5.

Using (4), the function of (3) can be rewritten as

(1)|θ� = UNtot

(

θNtot

)

UNtot−1

(

θNtot−1

)

. . .U1(θ1)|ψ0�,

(2)θ =
(

θ1, . . . , θNtot

)T
.

(3)f (θ) = �θ |C |θ�

(4)Uj

(

θj
)

= U
(

Bj ,ϕj
)

= exp
(

−iϕjBj
)

,

(5)ϕj =



















αj , if NG

�

Uj

�

= 1
βj , if NG

�

Uj

�

= 2
...
�j , ifNG

�

Uj

�

= N

,

(6)θj = ϕj .

(7)Uj

(

θj
)

= Uj

(

ϕj
)

,

(8)

|θ� =
∣

∣�1,...,N(�), . . . ,β1,...,N(β),α1,...,N(ϕ),C
〉

=
(

U
(

αN(ϕ)

)

U
(

βN(β)

)

. . .U
(

�N(�)

))

. . . (U(α1)U(β1) . . .U(�1))|s�,

(9)
f (θ) =

〈

�1,...,N(�), . . . ,β1,...,N(β),α1,...,N(ϕ),C
∣

∣C
∣

∣�1,...,N(�), . . . ,β1,...,N(β),α1,...,N(ϕ),C
〉

.
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The schematic model of the objective function optimization framework F is depicted in Fig. 1. The notations 
of the system model are summarized in Table A.1 of the Supplemental Information.

Problem statement.  To get an estimate f (0)(θ) of function f (θ) , a measurement M is required that yields 
the n-length string z, from which C(z) is calculated. Since R measurement rounds required with n measurements 
in each round to get an average objective function C̃(z)

where C(i)(z) , i = 0, . . . ,R − 1 is an objective function determined in the ith round and z is the n-length string 
resulted from the measurement of state |θ� of the quantum computer, it follows that the |M| total number of 
required measurements to get the estimate f (0)(θ) at R rounds is

The problem connected to the objective function estimation is summarized in Problem 1.

(10)C̃(z) = 1
R

R−1
∑

i=0

C(i)(z),

(11)|M| = Rn.

Figure 1.   Framework F of objective function optimization for gate-model quantum computers. The output 
|θ� of the quantum computer is measured by the M measurement that consists of n measurement units and 
yields string z and the initial estimate f (0)(θ) . At R∗ measurement rounds, the total number of measurements 
is R∗n . From the measured objective function C̃0(z) , algorithm AE achieves an objective function extension 
and estimation and outputs f̃ (κ)(θ) , followed by a feature extraction via algorithm AD . The QGPR-ML block 
is decomposed into a randomizing method Af  applied L times (depicted by A L

f  ) and the R rule-generation 
method. The output of the QGPR-ML block is the P (θ) prediction of the new value θ∗ of θ.

Since each step of Problem 1 is a high-cost procedure, at a given R, the cost of the determination of the 
estimate f (0)(θ) is significantly high. Here, we show that by setting an arbitrary low number R for the num-
ber of physical-layer measurement rounds, an arbitrary high-precision estimate f (0)(θ) can be produced by a 
well-constructed post-processing stage. Setting R = 1 represents the situation if only one measurement round 
is required. The post-processing is referred to as optimization framework F . The results clearly indicate that 
the number of physical-layer measurements and the number of rounds required by the quantum computer to 
produce the output quantum state can be significantly decreased by a well-defined post-processing. However, 
after the R measurement rounds are completed, another problem exists, connected to the determination of the 
new output quantum state |θ∗� and summarized in Problem 2.
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For the solution of Problem 1, we propose algorithm AE in the objective function optimization framework 
F . For the solution of Problem 2, we propose the QGPR-ML procedure in F , which yields the P (θ) prediction 
for the selection of the new value of θ for the quantum computer. Since the solution of Problem 1 also eliminates 
the relevance of Sub-problem 2 of Problem 2, only Sub-problem 1 of Problem 2 remains a challenge.

Optimization problems and problem resolutions.  The optimization problems connected to the problem resolu-
tion are as follows. 

1.	 Define a post-processing framework F to determine the new optimal state of quantum computer from the 
measurement results and the parameters of the gate structure of the quantum computer. The problem is 
resolved via the framework F , F :

{

AE ,AD ,A
L
f ,R ,P

}

 , that integrates data extension AE , data analyt-
ics AD , feature extraction and classification A L

f  , learning rule generation R and predictive analytics P.
2.	 At a given number of R∗ physical measurement rounds, determine the C̃(z) objective function that can be 

estimated after κ2R∗ physical measurement rounds if no post-processing is applied, where κ ≥ 1 is a scaling 
coefficient. The number R∗ of physical measurement rounds cannot be increased, only the measurement 
results and the available system parameterization of the quantum computer can be used. This optimization 
problem is resolved via algorithm AE within F.

3.	 Determine the θ∗ novel gate-parameter vector via predictive analytics to set the |θ∗� new state of the quantum 
computer. This optimization problem is resolved via algorithms AD ,A

L
f ,R and P within F.

Objective function optimization framework.  Proposition 1  F is a machine-learning-based objective 
function optimization framework that determines f (θ) and a new state |θ∗� of the quantum computer.

Proof  The input and output and the steps of the proposed machine-learning-based objective function optimi-
zation framework F are described in Procedure 1. The related algorithms and procedures are detailed in the 
next sections.

The optimization framework therefore yields Output 1 via Step 1 and Output 2 via Step 4 as follows.
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Output 1 is the estimate f̃ (κ)(θ) of f (θ) as

where C̃(z) is the averaged objective function

where R(κ) is the “imaginary” measurement rounds of the post-processing

where κ is a scaling coefficient, defined as

while R∗ is the total number of physical measurements, R(κ) ≥ R∗ , and C(i)(z) refers to the objective function of 
the ith round, i = 0, . . . ,R(κ) − 1.

Output 2 is the P (θ) prediction for the selection of the new value of θ to produce new state |θ� via the quan-
tum computer.

In the AD segmentation stage, the QG quantum circuit of the quantum computer is simplified by preserving 
the important characteristic of the state of the quantum computer. The segmented values are fed into the QGPR-
ML block. The features, like the objective function values, are computed from the segmented gate parameters. 
The classification of the |θ� state of the quantum computer is based on the segmented quantum-gate structure. 
The output of the QGPR-ML block is a new value of θ.

The algorithms ( AE , AD , A L
f  , R , P ) defined within F are convergent and operate in an iterative manner 

such that the outputs converge to specific values. The output of F at a given initial θ gate-parameter vector (see 
(2)) converges to the θ∗ global optimum gate-parameter vector that maximizes the objective function of the 
quantum computer. 	�  �

Objective function extension and gate structure decomposition
The post-processing framework F is applied to the results of the M measurement procedure that measures the 
|θ� state produced by the quantum computer. First, the AE objective function extension algorithm is applied, 
followed by the AD decomposition algorithm. The results are then forwarded to the QGPR-ML machine-learning 
unit to predict the new state of the quantum computer.

Objective function extension.  Theorem  1  The objective function of the quantum computer can be 
extended by the AE objective function extension algorithm of F.

Proof  Let C0(z) refer to the cumulative objective function resulted from the physical measurement M at R∗ 
rounds and n measurements in each rounds as

where C0
(

x, y
)

 identifies a component of C(0)(z) obtainable by the measurement of the yth qubit, y = 0, . . . , n− 1 , 
in the xth measurement round, x = 0, . . . ,R∗ − 1.

The dC0(z) dimension (The dX dimension of X refers to the product of the measurement rounds and the meas-
ured quantum states per measurement rounds required for the evaluation of X.) of C0(z) is

For the particular R∗ physical measurement rounds, set R(κ) as given in (16) with the κ scaling coefficient.
Since the physical measurement M consists of the measurements of n qubits, C̃(z) from (15) can be rewritten as

(14)f̃ (κ)(θ) = �θ |C̃(z)|θ�,

(15)C̃(z) = 1
R(κ)

R(κ)−1
∑

i=0

C(i)(z),

(16)R(κ) = κ2R∗,

(17)κ =
√

R(κ)

R∗ ,

(18)C0(z) =
R∗−1
∑

x=0

n−1
∑

y=0

C0
(

x, y
)

,

(19)dC0(z) =
(

R∗ × n
)

.

(20)C̃(z) = 1

R(κ)
CE(z),
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where CE(z) is the extended objective function defined as

where C
(

x, y
)

 identifies a component of C(i)(z) obtainable by the measurement of the yth qubit, y = 0, . . . , n− 1 , 
in the xth measurement round, x = 0, . . . ,R(κ) − 1 , dC(i)(z) = (1× n).

The dimension of CE(z) is

In our model, the number of “real” physical measurement rounds R∗ is also referred to as the 0th level of “imagi-
nary” measurement R(0) of the post-processing procedure; thus,

Therefore, at a particular κ , the R(κ) values of C are averaged to yield the estimate function f̃ (κ)(θ) via (14) using 
C̃(z) as given in (20), which yields f̃ (κ)(θ) as

where CE(z) is given in (21).
The discrete wavelet transform is a useful tool in image processing for noise reduction and to enhance the 

resolution of low-resolution images to obtain high-resolution images129,130. Motivated by these features, we show 
that we can utilize the wavelet transform for the extension of the objective function of the quantum computer. 
However, in our application framework, both the environment and the aims of the procedure are completely 
different.

Let W
(

C(i)(z)
)

 be the discrete wavelet transform function of the (R∗ × n) dimensional function C(i)(z) as

where fφ(·) are wavelet basis functions, W(j)(z) is the transformed objective function, j = 0, . . . ,w(l) − 1 , where 
w(l) is the number of transformed objective function values at a given level l, l ≥ 1 , w(l) = 4+ 3(l − 1) , which 
follows from the execution of W in (25). The dimension of W

(

C(i)(z)
)

 is dW(C(i)(z)) = (R∗ × n).
Applying the inverse function W−1(·) on (25) at a particular fφ(·) , a given C(i)(z) can be expressed as

The proposed method for the objective function extension is given in Algorithm 1 ( AE ). Algorithm 1 integrates 
Sub-procedure 1 ( PE ) for the objective function extension.

The description of Sub-Procedure 1 ( PE ) is as follows.
These results conclude the proof. 	�  �

(21)CE(z) =
R(κ)−1
∑

i=0

C(i)(z) =
R(κ)−1
∑

x=0

n−1
∑

y=0

C
(

x, y
)

,

(22)dCE(z) =
(

κ2R∗ × n
)

.

(23)R∗ = R(0).

(24)f̃ (κ)(θ) = �θ |( 1
R(κ)

CE(z)) | θ�,

(25)

W

(

C(i)(z)
)

= 1√
R∗n

R∗−1
∑

x=0

n−1
∑

y=0

C
(

x, y
)

fφ
(

x, y
)

=
w(l)−1
∑

j=0

W(j)(z),

(26)

C(i)(z) = W
−1

�

W

�

C(i)(z)
��

= W
−1





w(l)−1
�

j=0

W(j)(z)





= 1√
R∗n

R∗−1
�

x=0

n−1
�

y=0

W

�

C(i)(z)
�

fφ
�

x, y
�

.
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Lemma 1  The precision of the estimation of the objective function yielded from a physical-layer measurement M 
can be improved via the AE objective function extension algorithm of F.

Proof  In algorithm AE , function W−1(·) applied on WE(z) yields the extended objective function CE(z) , 
from which estimate f̃ (κ)(θ) of f (θ) can be determined at R∗ physical measurement rounds. The produced 
estimate f̃ (κ)(θ) is equivalent to the estimate f (0)(θ) obtainable at R(κ) = κ2R∗ physical measurement 
rounds, with |M| = nκ2R∗ total measurements. The details are as follows. Since the dimension of WE(z) is 
dWE(z) =

(

κ2R∗ × n
)

 , the CE(z) extended objective function values contains R(κ) = κ2R∗ (16) objective func-
tions evaluated for each measurement round. The estimate f̃ (θ) yielded by the application of W−1(·) on WE(z) 
is analogous to the estimate f (0)(θ) that can be extracted by |M| number of measurements in the physical-layer 
measurement apparatus M via R(κ) measurement rounds as

where |M∗| = nR∗ is the total number of physical-layer measurements. The proof is concluded here. � �

Objective function extension factor.  Let C0(z) be the objective function resulting from the R∗ measurement rounds 
with dimension dC0(z) = (R∗ × n) , where C0(z) is given in (18), W

(

C0(z)
)

 and WE(z) = W
−1

(

W
(

C0(z)
))

 
be the transformed and extended transformed objective function with dimensions dW0(z) = (R∗ × n) and 

(40)|M| = κ2
∣

∣M∗∣
∣ = κ2nR∗,
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dWE(z) =
(

κ2R∗ × n
)

 as given in (28) and (30), and CE(z) be the extended objective function (see (31)) with 
dimension dCE(z) =

(

κ2R∗ × n
)

.
Then let �E(·) be the objective function extension factor, defined as

The quantity in (41) therefore identifies the ratio of the difference of the extended objective function and the 
extended transformed objective function and the difference of the initial objective function and the initial 
extended objective function.
Quantum‑gate structure decomposition.  Theorem 2  The |θ� state of the quantum computer is decom-
posable by the ϕ gate parameters of the quantum computer.

Proof  The proposed scheme can be applied for an arbitrary d-dimensional quantum-gate structure; however, for 
simplicity, we assume the use of qubit gates. Thus, in the QG structure of the quantum computer, we set d = 2 for 
the dimension of the quantum gates. Since the ϕ gate parameters determine the state |θ� of the quantum computer 
(8), the segmentation of the quantum-gate structure is based on the ϕ gate parameters.

Let NG

(

Uj

)

 refer to the qubit number associated with gate Uj , and let ϕj be a gate parameter of an NG

(

Uj

)

-qubit gate unitary Uj

(

ϕj
)

 as given in (5).
Let nt be the number of classes selected for the segmentation of the ϕ gate parameters of the QG structure of 

the quantum computer. Let Hk be the entropy function associated with the kth class, k = 1, . . . , nt , and f ( �φ) be 
the objective function of the segmentation of the QG structure as

where �φ is an d �φ = (nt − 1)-dimensional vector �φ =
[

φ1, . . . ,φnt−1

]

 , where φl is the gate segmentation parameter 
to classify the ϕ gate parameters into lth and (l + 1)-th classes, such that

where χ is an upper bound on the ϕi gate parameters of the quantum computer,

Let �φ∗ be the optimal vector that maximizes the overall entropy in (42),

with (nt − 1) optimal parameters, 0 ≤ φ∗
l ≤ χ ; l = 1, . . . , nt − 1 subject to be determined as

which yields the maximization of the f
(

�φ∗
)

 objective function (42).
The Hk entropies in (42) are defined as

(41)�E

(

WE(z),CE(z)
)

=
∑R(κ)−1

x=0

∑n−1
y=0 (C(x,y)−W(x,y))

2

∑R∗−1
x=0

∑n−1
y=0 (C0(x,y)−W0(x,y))

2 .

(42)f ( �φ) =
nt
∑

k=1

Hk ,

(43)0 ≤ φl ≤ χ ,

(44)max
∀i

ϕi ≤ χ .

(45)�φ∗ =
[

φ∗
1 , . . . ,φ

∗
nt−1

]

,

(46)�φ∗ = argmax
�φ

f ( �φ),

(47)Hk =































H1 =
�φ∗

1
i=1

Pr (N(ϕi))
ω1

ln
�

Pr (N(ϕi))
ω1

�

, if k = 1

H2 =
�φ∗

2
i=φ∗

1+1
Pr (N(ϕi))

ω2
ln
�

Pr (N(ϕi))
ω2

�

, if k = 2

...

Hnt =
�χ

i=φ∗
nt−1+1

Pr (N(ϕi))
ωnt

ln
�

Pr (N(ϕi))
ωnt

�

, if k = nt

,
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where N(ϕi) is the number of occurrences of gate parameter ϕi in the QG structure, with probability distribu-
tion Pr (N(ϕi)) as

where Ntot is the total number of quantum gates in the quantum computer,

while ωi s are sum-of-probability distributions, as

Using (48) and (50), the QG structure can be segmented into nt classes, C QG :
{

C 1, . . . ,C nt

}

 as

with class mean values µQG :
{

µ1, . . . ,µnt

}

 as

As the objective function and the related quantities are determined by Algorithm 2 ( AD ), a particular gate 
parameter ϕj is therefore classified as

(48)Pr (N(ϕi)) = N(ϕi)
Ntot

,

(49)
Ntot
∑

i=1

Pr (N(ϕi)) = 1,

(50)ωQG =



























ω1 =
�φ∗

1
i=1 Pr (N(ϕi))

ω2 =
�φ∗

2
i=φ∗

1+1 Pr (N(ϕi))

...
ωnt =

�χ

i=φ∗
nt−1+1 Pr (N(ϕi))

.

(51)C QG =











































C 1 = Pr (N(ϕ1))
ω1

, . . . ,
Pr

�

N
�

ϕφ∗1

��

ω1

C 2 =
Pr

�

N
�

ϕφ∗1+1

��

ω2
, . . . ,

Pr
�

N
�

ϕφ∗2

��

ω2

...

C nt =
Pr

�

N

�

ϕφ∗nt−1+1

��

ωnt
, . . . ,

Pr (N(ϕχ ))
ωnt

,

(52)µQG =



























µ1 =
�φ∗

1
i=1

i Pr (N(ϕi))
ω1

µ2 =
�φ∗

2
i=φ∗

1+1
i Pr (N(ϕi))

ω2

...

µnt =
�χ

i=φ∗
nt−1+1

i Pr (N(ϕi))
ωnt

.

(53)C QG ∈ ϕj =



















C 1 ∈ ϕj , if 0 ≤ ϕj < φ∗
1 ,

C 2 ∈ ϕj , if φ
∗
1 ≤ ϕj < φ∗

2 ,
...
C nt ∈ ϕj , if φ

∗
nt−1 ≤ ϕj < χ .
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Motivated by the multilevel segmentation procedures131,132, the steps of AD are given in Algorithm 2.
According to Algorithm 2, the φ′

i,j gate classification parameter is evaluated via events Ei as

with the related probabilities132

The proof is concluded here. 	�  �

Error of gate‑parameter decomposition.  The ε �φ∗ error associated with the gate-parameter segmentation algo-
rithm AD at a given �φ∗ , ε �φ∗ is defined as

(55)φ′
i,j =















E1 : φ′
A,j ,A = 1, . . . ,D

E2 : S
�

j
�

+
�

S
�

j
�

− S
�

j
��

u
E3 : φ′

i,j ± pξ

E4 : φ′
i,j

,

(56)Pr
�

φ′
i,j

�

=











Pr (E1) = X
Pr (E2) = 1− X
Pr (E3) = Y
Pr (E4) = 1− Y

.
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where DQG is the depth of the quantum circuit QG of the quantum computer, n is the number of measurement 
blocks at the QG circuit output, ϕQGR

(

i, j
)

 is the ϕ gate parameter associated with the 
(

i, j
)

-th gate of a reference 
quantum circuit QGR , i = 0, . . . ,DQG − 1 , j = 0, . . . , n− 1 , ( ϕR

QG

(

i, j
)

= 0 if there is no gate at 
(

i, j
)

 in QG), and 

ϕ
�φ∗
QG

(

i, j
)

 is the ϕ gate parameter associated with the 
(

i, j
)

-th gate of the segmented QG circuit ( ϕ
�φ∗
QG

(

i, j
)

= 0 if 

there is no gate at 
(

i, j
)

 in QG).

Gate parameter randomization machine learning
The QGPL-ML block splits further the results of AD to achieve a randomized data partitioning and to generate 
rules. The QGPL-ML method integrates algorithms A L

f  and R . Algorithm A L
f  is defined for the data randomi-

zation and selection for the learning, while algorithm R is defined for the rule learning.
Motivated by granulated computing133,134, the data randomization of A L

f  in the QGPL-ML block is based 
on the gate parameters of the quantum gates. The algorithm selects the best training and test instances for the 
rule-learning block via a ratio parameter r ∈ [0, 1] in a multilevel structure. As a corollary, A L

f  avoids class imbal-
ance and sample representativeness issues133,134. Using the results of A L

f  , the rule-generation procedure R uses 
rule-quality metrics (leverage133–135) to identify the best rules in each iteration step. The result of R is L optimal 
rules, where L is the application number (level) of Af .

Randomization and probability distribution.  The benefits of the proposed randomization in A L
f  are 

as follows. The randomization applied A L
f  in allows us to create an optimal Sl learning set and optimal St test 

set in the R rule learning stage. The optimality means that the input data is partitioned into a learning set and 
test set in a semi-randomized (granulated133,134,151,152) way (i.e., not fully randomized) to avoid the issues of class 
imbalance and sample representativeness. These problems are connected to a fully randomization151,152.

The problem of class imbalance means that the ratio of classes of the constructed learning set and test set do 
not represent the ratio of classes of the input data. This problem could occur at a non-optimal random partition-
ing of the input data, and could bring up in both the training and the test set, respectively133,134,151,152.

The problem of sample representativeness is an integrity problem, and it refers to the problem if the train-
ing and test instances have no any connection, which could lead to inconsistency in the learning process151,152.

The procedure of A L
f  applies a semi-randomization on the input data, to avoid these issues. The effect of 

probability distribution of the randomization in A L
f  determines the precision of the construction of the training 

and test sets. The A L
f  procedure allows us to keep the class consistency of the input data in the training and test 

sets, and also to keep the integrity of the instances of the training and test sets. To measure the precision of A L
f  , 

we utilized the L leverage metric135, L ∈ [0, 1] in the R rule learning stage. The probability distribution in A L
f  

has effect on the rule precision generated by R since it uses the outputs of A L
f  . At a full randomization in A L

f  , 
the L value in R low, L → 0 , while for a semi-randomization in A L

f  , L picks up high values, L → 1 , in R.

Procedures.  The procedure A L
f  of the QGPL-ML block is detailed in Algorithm 3.

(57)ε �φ∗ =

√

∑DQG−1

i=0

∑n−1
j=0

(

ϕQGR (i,j)−ϕ
�φ∗
QG(i,j)

)

DQGn
,
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The procedure R of the QGPL-ML block is detailed in Algorithm 4.

State of the quantum computer.  Theorem 3  The state |θ∗� of the quantum computer can be made by the 
output P (θ) of the QGPL-ML procedure.

Proof  The θ∗ new gate parameter vector is determined via a P predictive analytics. The P unit utilizes the outputs 
generated by the units AE , AD , A L

f  and R of F . The input of A L
f  is provided by AD (Algorithm 2), such that 

the input of AD is the extended set of gate parameters determined by the extension algorithm AE (Algorithm 1). 
The prediction of the θ∗ can be made at an initial θ as

where ρ is the gate parameter modification vector

where αi calibrates the gate parameter θi of the ith unitary, i = 1, . . . ,Ntot . The actual value of αi depends on the 
error ε �φ∗ (57) associated with AD.

The precision of the prediction is also controlled by a τ parameter, which quantifies the minimum of number 
of classes ( nt ) selected for the classification of the quantum-gate parameters in the A L

f  procedure.
As the new gate parameter vector

is determined, the quantum computer can set up the state |θ∗�.
The prediction of the |θ∗� new state of the quantum computer are given in Procedure 2.

(59)θ∗ = θ + ρ,

(60)ρ =
(

α1, . . . ,αNtot

)T
,

(61)θ∗ =
(

(θ1 + α1), . . . ,
(

θNtot + αNtot

))T

These results conclude the proof. 	�  �
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Performance evaluation
This section proposes a performance evaluation for the method validation and comparison. We study the preci-
sion of the objective function estimation, the estimation error, and the cost reduction in the objective function 
estimation process.

Objective function estimation.  et C̃R (z) be the R reference objective function that can be estimated at 
R∗
R

 reference physical measurement rounds,

as

where Cr,(i) is the reference objective function evaluated in the ith physical measurement round, 
i = 0, . . . ,R∗

R
− 1, dCr,(i) = 1× n , and Cr(z) is the sum of the κ2R∗ reference objective functions, with dimen-

sion dCr (z) = dCE(z) , where dCE(z) is as given in (22).
The R∗

R
 number of measurement round serves also as reference to a comparison in the performance evaluation 

with the scheme of5, that utilizes only physical layer measurement (i.e., refers to the case if no post-processing 
is applied).

Let C̃(z) be the observed output objective function (see (20)) estimated via the CE(z) extended objective 
function (see (21)) at R(κ) , as C̃(z) = 1

R(κ)

∑R(κ)−1
i=0 C(i)(z) = 1

R(κ)
CE(z).

Then, let σC̃R (z) be the standard deviation of C̃R (z) , defined as

and let σC̃(z) be the standard deviation of C̃(z) , defined as

while σC̃R (z)C̃(z)
 is defined153 as

Using (65), (66) and (67), we define the quantity �(C̃R (z), C̃(z)) to measure the precision of estimation C̃(z) at 
a particular reference objective function C̃R (z) , as

where �(C̃R (z), C̃(z)) ∈ [0, 1] such that at �(C̃R (z), C̃(z)) = 0 , C̃(z) is completely uncorrelated from the ref-
erence objective function C̃R (z) , while at �(C̃R (z), C̃(z)) = 1 the observed C̃(z) coincidences with C̃R (z).

Note, that from �(C̃R (z), C̃(z)) (see (68)) and C̃(z) (see (20)), the value of C̃R (z) can be evaluated as fol-
lows. Let

be a vector formulated from the elements of C̃R (z) , and let

be a vector formulated form the elements of C̃(z).
Then, at a particular �(C̃R (z), C̃(z)) , the reference v(C̃R (z)) can be evaluated from v(C̃(z)) in a convergent 

and iterative manner, as

(63)R∗
R

= R(κ),

(64)C̃R (z) = 1
R∗
R

R∗
R
−1

∑

i=0

Cr,(i)(z) = 1
R∗
R

Cr(z),

(65)σC̃R (z) =







1
R∗
R
−1

R∗
R
−1

�

i=0

�

Cr,(i) − C̃R (z)
�2







1/2

,

(66)σC̃(z) =





1
R(κ)−1

R(κ)−1
�

i=0

�

C(i)(z)− C̃(z)
�2





1/2

,

(67)σC̃R (z)C̃(z)
= 1

R∗
R
−1

R∗
R
−1

∑

i=0

(

Cr,(i) − C̃R (z)
)(

C(i)(z)− C̃(z)
)

.

(68)�(C̃R (z), C̃(z)) =
(

2C̃R (z)C̃(z)
)

(

2σ
C̃R (z)C̃(z)

)

(

(

C̃R (z)
)2+

(

C̃(z)
)2
)

(

σ 2

C̃R (z)
+σ 2

C̃(z)

) ,

(69)v(C̃R (z)) =
(

Cr,(0), . . . ,C
r,
(

R∗
R
−1

))T

(70)v(C̃(z)) =
(

C(0)(z), . . . ,C
(

R(κ)−1
)

(z)
)T
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where χ is a coefficient153, ∇C̃(z)(�(C̃R (z), C̃(z))) is the derivative of �(C̃R (z), C̃(z)) , and P (v(C̃R (z)), v(C̃(z))) 
is a projection

where I is the identity operator, while

Estimation error.  Let assume that the physical reference measurement rounds is set to R∗
R

= R(κ) to evalu-
ate C̃R (z) , such that R∗ is the actually performed physical layer measurement rounds to evaluate C̃(z).

To measure the impacts of measurement rounds on the precision of the objective function estimation, we 
introduce the term µκ(C̃

R (z), C̃(z)) that quantifies the mean squared error (MSE) at a particular scaling factor 
κ as

As the value of the κ scaling factor increases, the information about the reference objective function C̃R (z) 
increases, and the µκ(C̃

R (z), C̃(z)) value decreases.
Then, let µ1(C̃

R (z), C̃(z)) be the MSE value obtainable at R∗ measurement rounds, i.e., κ = 1 , evaluated via 
as (74)

For κ > 1 , let

be a quantity that measures the squared difference of the objective function values. Assuming an optimal situa-
tion, the value of ξκ is close to zero, ξκ ≈ 0 . For ξκ = 0 , it can be concluded that

(71)
v(C̃(z)) = v(C̃(z))± χP (v(C̃R (z)), v(C̃(z)))

· ∇C̃(z)(�(C̃R (z), C̃(z))),

(72)P (v(C̃R (z)), v(C̃(z))) = I − V(v(C̃R (z)), v(C̃(z)))VT (v(C̃R (z)), v(C̃(z))),

(73)V
(

v(C̃R (z)), v(C̃(z))
)

= v(C̃(z))−v(C̃R (z))
∥

∥v(C̃(z))−v(C̃R (z))
∥

∥

.

(74)µκ

(

C̃R (z), C̃(z)
)

= 1
κ2R∗

κ2R∗−1
∑

i=0

(

Cr,(i) − C(i)
)2

.

(75)µ1

(

C̃R (z), C̃(z)
)

= 1
R∗

R∗−1
∑

i=0

(

Cr,(i) − C(i)
)2

.

(76)ξκ =
κ2R∗−1
∑

i=R∗

(

Cr,(i) − C(i)
)2

Figure 2.   Cost reduction of objective function estimation. (a) The f (κ , ξκ ) cost function at ξκ = 0 . The 
resulting cost is f (κ , 0) = 1

κ2
 . The initial objective function f0 = 1 associated with the evaluation of the 

reference objective function C̃R (z) from R∗
R

= R(κ) physical measurement rounds is depicted by a red dot. (b) 
The f (κ , ξκ ) cost function at ξκ > 0 scenarios at µ1(C̃

R (z), C̃(z)) = 100 and 1R∗ ξκ = {10, 25, 50, 75, 100} . The 
resulting cost is f (κ , ξκ ) = f0η(κ , ξκ ).
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while for ξκ > 0,

that is, for ξκ > 0 , (78) coincidences with (74). Additional results are included in the Appendix.

Cost reduction.  The cost reduction is evaluated as follows. Let f0 be the cost function of the evaluation of 
the reference objective function C̃R (z) via R∗

R
= R(κ) physical measurement rounds (i.e., no post-processing is 

applied), defined as a reference cost with a unit value

At a given f0 , the f (κ) be the cost function associated to the evaluation of C̃(z) at a particular κ and ξκ is defined as

where η(κ , ξκ ) identifies the ratio of

As follows, at ξκ = 0 , the proposed post-processing method reduces the cost of objective function estimation 
by a factor

and for any ξκ > 0 , the �f (κ , ξκ ) increment in the f (κ , 0) cost function is

In Fig. 2. the f (κ , ξκ ) cost function values are depicted for a given κ , κ = {1, . . . , 10} , with f0 = 1 . In Fig. 2(a), 
the ξκ = 0 scenario is depicted. In this case, the objective function estimation cost is reduced to f (κ , 0) = 1

κ2
 . 

In Fig. 2(b), the ξκ > 0 scenario is illustrated for µ1(C̃
R (z), C̃(z)) = 100 and 1R∗ ξκ = {10, 25, 50, 75, 100} . The 

resulting cost is reduced to f (κ , ξκ ) = f0η(κ , ξκ ) , where η(κ , ξκ ) is as given in (81).

Conclusion
Gate-model quantum computers provide an implementable architecture for experimental quantum computa-
tions. Here we studied the problem of objective function estimation in gate-model quantum computers. The 
proposed framework utilizes the measurement results and increases the precision of objective function estimation 
and maximization via computational steps. The method reduces the costs connected to the physical layer such 
as quantum state preparation, quantum computation rounds, and measurement rounds. We defined an objec-
tive function extension procedure, a segmentation algorithm that utilizes the gate parameters of the unitaries of 
the quantum computer, and a machine-learning unit for the system state prediction. The results are particularly 
convenient for the performance optimization of experimental gate-model quantum computers and near-term 
quantum devices of the quantum Internet.

Ethics statement.  This work did not involve any active collection of human data.

(77)
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,
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(79)f0 = 1.

(80)f (κ , ξκ ) = f0η(κ , ξκ ).
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